Problems on Algebra II

Summer 2021

A. Schmitt

Problem Set 4

Due: Monday, May 17, 2021, 4pm

Exercise 1 (The snake lemma; 10 points). Let \mathscr{A} be an abelian category and

a commutative diagram in \mathscr{A} with exact rows. Show that it induces an exact sequence

$$0 \longrightarrow \ker(f) \longrightarrow \ker(g) \longrightarrow \ker(h) \longrightarrow \operatorname{coker}(f) \longrightarrow \operatorname{coker}(g) \longrightarrow \operatorname{coker}(h) \longrightarrow 0$$

Exercise 2 (The Zassenhaus lemma; 6+4 points). **Zassenhaus lemma.**¹

Let G be a not-necessarily commutative group, $A, C \subset G$ subgroups, and $B \triangleleft A$, $D \triangleleft C$ normal subgroups. Then,

$$\frac{(A \cap C) \cdot B}{(A \cap D) \cdot B} \cong \frac{(A \cap C) \cdot D}{(B \cap C) \cdot D}.$$

The Zassenhaus lemma is visualized by the diagram²

in which downward edges stand for inclusions. (Because of the shape of the diagram, the result is also refered to as butterfly lemma.)

¹From: H. Zassenhaus, *Zum Satz von Jordan–Hölder–Schreier*, Abh. Math. Sem. Univ. Hamburg **10** (1934), no. 1, 106-8. (Hans Julius Zassenhaus (1912 - 1991), German mathematician.)

²By Claudio Rocchini, https://commons.wikimedia.org/wiki/File:Butterfly_lemma.svg.

a) Prove the lemma (for non-commutative groups).

b) How would you formulate the lemma in an abelian catgory?

Exercise 3 (Injectives and projectives; 5+5 points).

Let *R* be a noetherian ring and $\underline{\text{fgMod}}_R$ the abelian category of **finitely generated** *R*-modules. a) Does $\underline{\text{fgMod}}_R$ have enough projectives? b) Does $\underline{\text{fgMod}}_R$ have enough injectives? (Consider the special cases that *R* is a field and $R = \mathbb{Z}$.)

Exercise 4 (Projective quiver representations; 10 points). Determine the projective representations of the quiver $\bullet \longrightarrow \bullet$ in the category <u>Vect</u>_k, k a field.