Problems on Algebra II

Summer 2021
A. Schmitt

Problem Set 3

Due: Monday, May 10, 2021, 4pm

Exercise 1 (Abelian subcategories; $5+5$ points).
a) Is the category of finite abelian groups an abelian subcategory of the category of abelian groups?
b) Let R be a commutative ring with unit. Is the category of finitely generated R-modules always an abelian subcategory of the category of R-modules?
Definitions. Let \mathscr{C} be a category. A subcategory \mathscr{D} of \mathscr{C} is specified by a subclass $\mathrm{Ob}(\mathscr{D}) \subset$ $\mathrm{Ob}(\mathscr{C})$ and, for any two objects $X, Y \in \operatorname{Ob}(\mathscr{D})$, a subset $\operatorname{Mor}_{\mathscr{D}}(X, Y) \subset \operatorname{Mor}_{\mathscr{C}}(X, Y)$, such that

- $\forall X \in \operatorname{Ob}(\mathscr{D}): \operatorname{id}_{X} \in \operatorname{Mor}_{\mathscr{D}}(X, X)$,
- $\forall X, Y, Z \in \operatorname{Ob}(\mathscr{D}), \forall f \in \operatorname{Mor}_{\mathscr{D}}(X, Y), g \in \operatorname{Mor}_{\mathscr{D}}(Y, Z): g \circ f \in \operatorname{Mor}_{\mathscr{D}}(X, Z)$.

Then, \mathscr{C} is itself a category. We say that \mathscr{C} is a full subcategory of \mathscr{C}, if

$$
\operatorname{Mor}_{\mathscr{D}}(X, Y)=\operatorname{Mor}_{\mathscr{C}}(X, Y),
$$

for all $X, Y \in \mathrm{Ob}(\mathscr{D})$.
If \mathscr{A} is an abelian category and \mathscr{B} is a subcategory, we say that \mathscr{B} is an abelian subcategory, if

- it contains the null object,
- for all $A, B \in \operatorname{Ob}(\mathscr{B}), \operatorname{Mor}_{\mathscr{D}}(X, Y)$ is a subgroup $\operatorname{Mor}_{\mathscr{C}}(X, Y)$,
- for all $A, B \in \mathrm{Ob}(\mathscr{B})$, the direct $\operatorname{sum} A \oplus B$ of A and B in \mathscr{A} is contained in \mathscr{B},
- for all $A, B \in \mathrm{Ob}(\mathscr{B})$ and any morphism $f: A \longrightarrow B$ in \mathscr{B}, the kernel and the cokernel of g in \mathscr{A} are contained in \mathscr{B}.

Observe that \mathscr{B} will then be an abelian category.
Exercise 2 (Abelian categories; 7+3 points).
a) Let \mathscr{D} be a small category and \mathscr{A} an abelian category. Show that the category $\operatorname{Fun}(\mathscr{D}, \mathscr{A})$ of covariant functors from \mathscr{D} to \mathscr{A} is again an abelian category.
b) Let \mathscr{A} be an abelian category. Show that the category of complexes in \mathscr{A} is also an abelian category.

Exercise 3 (A complex of abelian groups; 5 points).
Consider the abelian groups

$$
C^{k}:=\left\{\begin{array}{rr}
0, & \text { if } k<0 \\
\mathbb{Z} /\langle 8\rangle, & \text { if } k \geq 0
\end{array}, \quad k \in \mathbb{Z}\right.
$$

and, for $k \geq 0$, the homomorphisms

$$
\begin{aligned}
\delta^{k}: C^{k} & \longrightarrow C^{k+1} \\
{[\ell] } & \longmapsto[4 \cdot \ell] .
\end{aligned}
$$

For $k<0, \delta^{k}: C^{k} \longrightarrow C^{k+1}$ is defined in the obvious way. Show that $\left(C^{\bullet}, \delta^{\bullet}\right)$ is a complex of abelian groups and compute its cohomology groups.
Exercise 4 (Complexes of vector spaces; $5+10$ points).
Let K be a field.
a) Suppose we are given K-vector spaces $\left(B^{k}\right)_{k \in \mathbb{Z}}$ and $\left(H^{k}\right)_{k \in \mathbb{Z}}$. For $k \in \mathbb{Z}$, set $C^{k}:=B^{k} \oplus H^{k} \oplus$ B^{k-1} and

$$
\begin{aligned}
\delta^{k}: C^{k} & \longrightarrow C^{k+1} \\
(a, b, c) & \longmapsto(0,0, a)
\end{aligned}
$$

Show that $\left(C^{\bullet}, \delta^{\bullet}\right)$ is a complex of K-vector spaces with

$$
H^{k}\left(C^{\bullet}, \delta^{\bullet}\right) \cong H^{k}, \quad k \in \mathbb{Z}
$$

b) Let $\left(E^{\bullet}, \varepsilon^{\bullet}\right)$ be a complex of K-vector spaces. Prove that it is isomorphic to the complex from
a) that is constructed from $\left(B^{k}\left(E^{\bullet}, \varepsilon^{\bullet}\right)\right)_{k \in \mathbb{Z}}$ and $\left(H^{k}\left(E^{\bullet}, \varepsilon^{\bullet}\right)\right)_{k \in \mathbb{Z}}$.

