Problems on Algebraic Geometry

Summer 2021
A. Schmitt

Problem Set 2
Due: Monday, May 3, 2021, 4pm

Exercise 1 (Mono- and epimorphisms in Sets; 8 points).

Prove that a map $\alpha: A \longrightarrow B$ in the category Sets of sets is a monomorphism if and only if it is injective and an epimorphism if and only if it is surjective.
Exercise 2 (Free abelian groups; $4+6$ points).
Let \mathcal{C} be the category whose objects are free abelian groups of finite rank and whose morphisms are group homomorphisms.
a) Is \mathcal{C} an additive category?
b) Give an example of a monomorphism $\alpha: A \longrightarrow B$ in \mathcal{C} which is both a mono- and an epimorphism, but not an isomorphism.
Exercise 3 (The null object in an additive category; 7 points).
Let \mathcal{A} be an additive category. Recall that there is an element $0 \in \operatorname{Ob}(\mathcal{A})$ with $\operatorname{Mor}_{\mathcal{A}}(0,0)=$ $\{0\} .{ }^{1}$ Show that, for every $A \in \operatorname{Ob}(\mathcal{A})$,

$$
\operatorname{Mor}_{\mathcal{A}}(0, A)=\{0\} \quad \text { and } \quad \operatorname{Mor}_{\mathcal{A}}(A, 0)=\{0\}
$$

This means that 0 is a null object in the category \mathcal{A}.
Exercise 4 (Direct sums and products; $5+5+5$ points).
a) Let \mathcal{C} be a category and $A, B \in \mathrm{Ob}(\mathcal{C})$. A triple $\left(C, \iota_{1}, \iota_{2}\right)$, consisting of $C \in \operatorname{Ob}(\mathcal{C})$, $\iota_{1}: A \longrightarrow C$ and $\iota_{2}: B \longrightarrow C$ is said to be the direct sum of A and B, if for every object D of C and every pair of morphisms $\varphi_{1}: A \longrightarrow D$ and $\varphi_{2}: B \longrightarrow D$, there is a unique morphism $\Phi: C \longrightarrow D$ with

$$
\varphi_{1}=\Phi \circ \iota_{1} \quad \text { and } \quad \varphi_{2}=\Phi \circ \iota_{2} .
$$

Notation: $A \oplus B:=C$.
Define the dual notion of a direct product $A \sqcap B$.
b) Let \mathcal{A} be an additive category. Show that, for any two objects A and B of \mathcal{A}, the direct sum $A \oplus B$ comes with morphisms $\pi_{1}: A \oplus B \longrightarrow A$ and $\pi_{2}: A \oplus B \longrightarrow B$, such that $\left(A \oplus B, \pi_{1}, \pi_{2}\right)$ is the direct product of A and B.

[^0]c) Let \mathcal{A} be an additive category, $A, B, C \in \operatorname{Ob}(\mathcal{A})$, and $\iota_{1}: A \longrightarrow C, \iota_{2}: B \longrightarrow C$, $\pi_{1}: C \longrightarrow A$, and $\pi_{2}: C \longrightarrow B$ morphisms. Suppose
\[

\pi_{i} \circ \iota_{j}=\left\{$$
\begin{array}{ll}
0, & \text { if } i \neq j \\
\text { id, } & \text { if } i=j
\end{array}
$$, i, j \in\{1,2\}, \quad and \quad \iota_{1} \circ \pi_{1}+\iota_{2} \circ \pi_{2}=\operatorname{id}_{C}\right.
\]

Show that $\left(C, \iota_{1}, \iota_{2}\right)$ is the direct sum of A and B.

[^0]: ${ }^{1}$ Of course, $0: 0 \longrightarrow 0$ stands for id_{0}.

