Problems on Algebraic Geometry

Summer 2021

A. Schmitt

Problem Set 2

Due: Monday, May 3, 2021, 4pm

Exercise 1 (Mono- and epimorphisms in Sets; 8 points).

Prove that a map $\alpha \colon A \longrightarrow B$ in the category <u>Sets</u> of sets is a monomorphism if and only if it is injective and an epimorphism if and only if it is surjective.

Exercise 2 (Free abelian groups; 4+6 points).

Let C be the category whose objects are free abelian groups of finite rank and whose morphisms are group homomorphisms.

a) Is \mathcal{C} an additive category?

b) Give an example of a monomorphism $\alpha \colon A \longrightarrow B$ in \mathcal{C} which is both a mono- and an epimorphism, but not an isomorphism.

Exercise 3 (The null object in an additive category; 7 points).

Let \mathcal{A} be an additive category. Recall that there is an element $0 \in Ob(\mathcal{A})$ with $Mor_{\mathcal{A}}(0,0) = \{0\}^{1}$. Show that, for every $\mathcal{A} \in Ob(\mathcal{A})$,

 $Mor_{\mathcal{A}}(0, A) = \{0\}$ and $Mor_{\mathcal{A}}(A, 0) = \{0\}.$

This means that 0 is a **null object** in the category \mathcal{A} .

Exercise 4 (Direct sums and products; 5+5+5 points).

a) Let \mathcal{C} be a category and $A, B \in Ob(\mathcal{C})$. A triple (C, ι_1, ι_2) , consisting of $C \in Ob(\mathcal{C})$, $\iota_1: A \longrightarrow C$ and $\iota_2: B \longrightarrow C$ is said to be the *direct sum of* A and B, if for every object D of C and every pair of morphisms $\varphi_1: A \longrightarrow D$ and $\varphi_2: B \longrightarrow D$, there is a unique morphism $\Phi: C \longrightarrow D$ with

$$\varphi_1 = \Phi \circ \iota_1$$
 and $\varphi_2 = \Phi \circ \iota_2$.

Notation: $A \oplus B := C$.

Define the dual notion of a **direct product** $A \sqcap B$.

b) Let \mathcal{A} be an **additive** category. Show that, for any two objects A and B of \mathcal{A} , the direct sum $A \oplus B$ comes with morphisms $\pi_1 \colon A \oplus B \longrightarrow A$ and $\pi_2 \colon A \oplus B \longrightarrow B$, such that $(A \oplus B, \pi_1, \pi_2)$ is the direct product of A and B.

¹Of course, $0: 0 \longrightarrow 0$ stands for id_0 .

c) Let \mathcal{A} be an additive category, $A, B, C \in \text{Ob}(\mathcal{A})$, and $\iota_1 \colon A \longrightarrow C$, $\iota_2 \colon B \longrightarrow C$, $\pi_1 \colon C \longrightarrow A$, and $\pi_2 \colon C \longrightarrow B$ morphisms. Suppose

$$\pi_i \circ \iota_j = \begin{cases} 0, & \text{if } i \neq j \\ \text{id}, & \text{if } i = j \end{cases}, \ i, j \in \{1, 2\}, \text{ and } \iota_1 \circ \pi_1 + \iota_2 \circ \pi_2 = \text{id}_C$$

Show that (C, ι_1, ι_2) is the direct sum of A and B.