Problems on Algebra II

Summer 2021

A. Schmitt

Problem Set 10

Due: Monday, June 28, 2021, 4pm

Exercise 1 (Presheaves which are not sheaves; 8 points).

Give an example of a topological space X and a presheaf \mathscr{F} on X which satisfies the second sheaf axiom ("gluing") but not the first one.

Exercise 2 (Sheaves on [0,1]; 5+5 points).

a) Let the interval I := [0, 1] be endowed with the metric topology coming from the absolute value. Show that there is a unique sheaf of abelian groups \mathscr{F} on I with stalks $\mathscr{F}_0 = \mathbb{Z} = \mathscr{F}_1$ and $\mathscr{F}_x = 0$, for $x \in (0, 1)$.

b) Let $\mathscr{G} := \underline{\mathbb{Z}}_I$ be the constant sheaf on *I* associated with the group \mathbb{Z} and \mathscr{F} the sheaf from Part a). Describe the sheaf homomorphisms from \mathscr{F} to \mathscr{G} and from \mathscr{G} to \mathscr{F} .

Exercise 3 (Sheaves on S^1 ; 5+5 points).

Let $p \in S^1$ be a point, $U := S^1 \setminus \{p\}, j : U \longrightarrow S^1$ the inclusion, and \mathscr{S}_p the skyscraper sheaf with stalk \mathbb{Z} at p.

a) Show that there is an exact sequence

 $0 \, \longrightarrow \, \underline{\mathbb{Z}}_X \, \longrightarrow \, j_{\star} \underline{\mathbb{Z}}_U \, \longrightarrow \, \mathscr{S}_p \, \longrightarrow \, 0.$

b) Compute the left exact sequence which results from applying $\Gamma(I, -)$ to the above exact sequence, for every open interval *I* on the circle. (Do you have a guess for $H^1(S^1, \mathbb{Z}_X)$?)

Exercise 4 (Gluing sheaves; 12 points).

Let X be a topological space and $(U_i)_{i \in I}$ an open covering of X. Suppose \mathscr{F}_i is a sheaf on U_i , $i \in I$,

$$\varphi_{ij}\colon \mathscr{F}_{i|U_i\cap U_j}\longrightarrow \mathscr{F}_{j|U_i\cap U_j}$$

is an isomorphism, $i, j \in I$, and the following conditions are satisfied:

- i) $\forall i \in I : \varphi_i = \mathrm{id}_{\mathscr{F}_i}$,
- ii) $\forall i, j, k \in I : \varphi_{ik|U_i \cap U_j \cap U_k} = \varphi_{jk|U_i \cap U_j \cap U_k} \circ \varphi_{ij|U_i \cap U_j \cap U_k}.$

Prove that there are a sheaf \mathscr{F} on X and isomorphisms $\psi_i \colon \mathscr{F}_{|U_i} \longrightarrow \mathscr{F}_i, i \in I$, such that

$$\forall i, j \in I: \quad \psi_{j|U_i \cap U_j} = \varphi_{ij} \circ \psi_{i|U_i \cap U_j}.$$

Show that \mathscr{F} is unique up to canonical isomorphism, i.e., if \mathscr{F}' and ψ'_i , $i \in I$, is a different set of such data, then there is a unique isomorphism $\chi : \mathscr{F} \longrightarrow \mathscr{F}'$ with $\psi_i = \psi'_i \circ \chi_{|U_i}$, $i \in I$.