Problems on Algebraic Geometry

Summer 2021
A. Schmitt

Problem Set 1

Due: Monday, April 26, 2021, 4pm

Exercise 1 (The Yoneda lemma; $3+3+3+3+3$ points).
a) Let \mathcal{C} be a category and $A \in \operatorname{Ob}(\mathcal{C})$. Show that

$$
\begin{aligned}
h_{A}: \mathcal{C} & \longrightarrow \text { Sets } \\
B & \longmapsto \operatorname{Mor}_{\mathcal{C}}(A, B) \\
f: B \longrightarrow C & \longmapsto(g: A \longrightarrow B) \longmapsto(f \circ g: A \longrightarrow C)
\end{aligned}
$$

is a covariant functor and that

$$
\begin{aligned}
h^{A}: \mathcal{C} & \longrightarrow \text { Sets } \\
B & \longmapsto \operatorname{Mor}_{\mathcal{C}}(B, A) \\
f: B \longrightarrow C & \longmapsto(g: C \longrightarrow A) \longmapsto(g \circ f: B \longrightarrow A)
\end{aligned}
$$

is a contravariant functor. These functors are called representable functors.
b) Let $F: \mathcal{C} \longrightarrow \underline{\text { Sets }}$ be a (covariant) functor. Let A be an object of \mathcal{C} and $a \in \mathcal{F}(A)$. Show that

$$
\begin{aligned}
h_{a}: h_{A} & \longrightarrow F \\
f: A \longrightarrow B & \longmapsto F(f)(a)
\end{aligned}
$$

is a natural transformation of functors.
c) Let $\Phi: h_{A} \longrightarrow F$ be a natural transformation of functors. Define

$$
a_{\Phi}:=\Phi(A)\left(\mathrm{id}_{A}\right) \in F(A) .
$$

Prove that the assignments $\Phi \longmapsto a_{\Phi}$ and $a \longmapsto h_{a}$ are inverse to each other and, therefore, identify the natural transformations between h_{A} and F with the elements of $F(A)$.
d) Rewrite this result for contravariant functors.
e) Conclude that two objects A and B define isomorphic functors h_{A} and $h_{B}\left(h^{A}\right.$ and $\left.h^{B}\right)$ if and only if they are isomorphic.
Exercise 2 (Groups and their centers; 8 points).
Let Grps be the category of groups and $\underline{A b}$ the category of abelian groups. For a group G, denote by

$$
Z(G):=\{g \in G \mid \forall h \in G: g \cdot h=h \cdot g\}
$$

its center. Is it possible to extend the map

$$
\begin{aligned}
\mathrm{Ob}(\underline{\mathrm{Grps}}) & \longrightarrow \mathrm{Ob}(\underline{\mathrm{Ab}}) \\
G & \longmapsto Z(G)
\end{aligned}
$$

to a functor F : Grps $\longrightarrow \underline{A b}$?
Exercise 3 (Adjoint functors; 5+5 points).
Let Top be the category of topological spaces, Sets the category of sets, and F : Top \longrightarrow Sets the forgetful functor.
a) Construct a functor G : Sets $\longrightarrow \underline{\text { Top }}$, such that, for all $A \in \mathrm{Ob}(\underline{\text { Top }})$ and all $B \in$ $\mathrm{Ob}(\underline{\text { Sets }})$,

$$
\operatorname{Mor}_{\underline{\text { Top }}}(A, G(B))=\operatorname{Mor}_{\underline{\underline{S e t s}}}(F(A), B)
$$

The functor G is said to be right adjoint to F (and F left adjoint to G).
b) Construct a functor $H: \underline{\text { Sets }} \longrightarrow \underline{\text { Top }}$, such that, for all $A \in \mathrm{Ob}(\underline{\text { Top }})$ and all $B \in$ Ob(Sets),

$$
\operatorname{Mor}_{\underline{\text { Top }}}(H(A), B)=\operatorname{Mor}_{\underline{S e t s}}(A, F(B))
$$

Here, G is left adjoint to F and F right adjoint to G.
Exercise 4 (The category of finite sets; 7 points).
Describe the skeleton of the category of finite sets.

