Problems on Algebra I – Series 1

WS 2020/2021

M. Benyoussef, H. Lin, A. Schmitt

Due: Monday, November 16, 2020, 12pm

Exercise 1 (The Weyl algebra; 2+3+7+3 points). Let $\operatorname{End}_{\mathbb{C}}(\mathbb{C}[x])$ be the set consisting of all \mathbb{C} -linear maps $\lambda \colon \mathbb{C}[x] \longrightarrow \mathbb{C}[x]$. i) Endow $\operatorname{End}_{\mathbb{C}}(\mathbb{C}[x])$ with the structure of a ring. ii) The elements

$$\lambda_1: \mathbb{C}[x] \longrightarrow \mathbb{C}[x]$$
$$p \longmapsto \frac{\mathrm{d}}{\mathrm{d}x}(p)$$

and

$$\begin{array}{rcl} \lambda_2 \colon \mathbb{C}[x] & \longrightarrow & \mathbb{C}[x] \\ p & \longmapsto & x \cdot p \end{array}$$

belong to $\operatorname{End}_{\mathbb{C}}(\mathbb{C}[x])$. Compute

$$\lambda_1 \cdot \lambda_2 - \lambda_2 \cdot \lambda_1.$$

iii) Show that there is a unique subring $R \subset \text{End}_{\mathbb{C}}(\mathbb{C}[x])$, such that

- $\lambda_1, \lambda_2 \in R$,
- if $R' \subset \operatorname{End}_{\mathbb{C}}(\mathbb{C}[x])$ is a subring with $\lambda_1, \lambda_2 \in R'$, then $R \subset R'$.

This ring is called the Weyl algebra.

Show that any element of R may be written as a finite \mathbb{C} -linear combination of elements of the form

$$\lambda_1^{m_1} \cdot \lambda_2^{m_2}, \quad m_1, m_2 \in \mathbb{N}.$$

iv) Write the element

$$\lambda_1 \cdot \lambda_2 \cdot \lambda_1 - 2 \cdot \lambda_2 \cdot \lambda_1 \cdot \lambda_2 + 3 \cdot \lambda_2^2 \cdot \lambda_1 - 5$$

as a finite C-linear combination of elements of the form

$$\lambda_1^{m_1} \cdot \lambda_2^{m_2}, \quad m_1, m_2 \in \mathbb{N}.$$

Exercise 2 (Principal ideals; 5 points).

Give a concrete example of an ideal $I \subset \mathbb{Z}[x]$ which is not a principal ideal. Of course, you have to justify that the ideal you found is not a principal ideal. Exercise 3 (Units and nilpotent elements; 3+3+4 points).

i) Let *R* be a ring and $n \in R$ a nilpotent element. Show that 1 + n is a unit.

ii) Deduce that the sum u + n of a unit $u \in R$ and a nilpotent element $n \in R$ is a unit. iii) Describe the units of $\mathbb{Z}/\langle n \rangle$ for $n \ge 1$.

Exercise 4 (Units in polynomial rings; 10 points).

Let *R* be a ring and $f = a_0 + a_1x + \cdots + a_nx^n \in R[x]$ a polynomial. Show that *f* is a unit if and only if a_0 is a unit and a_1, \ldots, a_n are nilpotent elements. **Instructions.**

- For "←", use the previous exercise.
- For " \Longrightarrow ", let $g = b_0 + b_1 x + \dots + b_m x^m \in R[x]$ be a polynomial with fg = 1. Prove by induction on *r* that

$$a_n^{r+1}b_{m-r} = 0, \quad r = 0, ..., m.$$
 (1)

To this end write $fg = c_0 + c_1x + \cdots + c_{m+n}x^{m+n}$ and look at $a_n^{r+1}c_{m+n-r-1}$. Finally, deduce from (1) that a_n is nilpotent and conclude by induction on n.