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Abstract— Three-dimensional digital terrain models are of the structure of the underlying function using local gratlie
fundamental importance in many areas such as the geo-sciencesfeatures and the local marginal data likelihood (see Figure

and outdoor robotics. Accurate modeling requires the ability 1o ¢4 g jlustration). Indeed, this idea is akin to adaptiveage
deal with a varying data density and to balance smoothing against . . . ’ . .
smoothing studied in computer vision, where the task is to

the preservation of discontinuities. The latter is particularly ; e i ) g
important for robotics applications, as discontinuities that arise, achieve de-noising of an image without reducing the contras
for example, at steps, stairs, or building walls are important of edges and corners [14, 6]. Although these approaches from
features for path planning or terrain segmentation tasks. In this the computer vision literature are not specifically desibfue

paper, we present an extension of the well-established Gaussianyegjing with a varying density of data points or with potehti
process regression technique, that utilizes non-stationary corvia

ance functions to locally adapt to the structure of the terrain gaps to fill, they nevertheless served as an inspiration der o

data. In this way, we achieve strong smoothing in flat areas and kernel adaptation approach.
along edges and at the same time preserve edges and corners. The

derived model yields predictive height distributions for arbitrary Sesssessscassesaosl

. . . . O 00 000000000]
locations of the terrain and therefore allows us to fill gaps in the O e e et
data and to perform conservative predictions in occluded areas. Seeeaecasnesssses
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The modeling of three-dimensional terrain has been widely Soeaeeeaneneatats

studied across different research areas like the geoesrsenr
robotics. Important applications in the latter case inelmgb- Fig- 1. A hard, synthetic regression problem (left). Thetimrous regions

. . . . should be smoothed without removing the strong edge featurea@proach
bile robotics for agriculture, search and rescue, or sllaveie.  ,chieves this by adapting local kernels to the terrain dagat.

In these domains, accurate and dense models of the three-
dimensional structure of the environment enable the robot t
estimate the traversability of locations, to plan its pata joal ~ The paper is structured as follows. We first discuss related
location, or to localize itself using range sensor measargs work in the next section. In Section lll, we formalize the-ter
Building a digital terrain model means to transform a set &@in modeling problem using Gaussian processes and irteodu
sensory inputs, typically a 3D point cloud or the raw rang@Ur approach to non-stationary adaptive regression. @ebii
sensor readings, to a function mapping 2-dimensional pdd&sents our experimental results on real and simulateairer
coordinates to elevation values. While geological appticest data sets.
often operate on a larger spatial scale, where local terrain
features can be neglected, autonomous robots greatly rely
on distinct structural features like edges or corners ta@ui A broad overview over methods used for modeling terrain
navigation, localization, or terrain segmentation. We¢fme data is given by Hugentorp [5]. Elevation maps have been
have two, at the first glance contradicting requirements fased as an efficient data structure for representing dense
terrain models: First, raw sensory data needs to be smoothedain data [1, 8] and have later been extended to multi-
in order to remove noise and to be able to perform elevatitevel probabilistic surface maps [16]. (Hr et al. [4] present
predictions at all locations and, second, discontinuitiesd to an approach to filling local gaps in 3D models based on local
be preserved as they are important features for path plgnnilinear interpolation. As their approach has yielded pramgis
localization and object recognition. results in city mapping applications, we compare its maodgli

In this paper, we present a novel terrain modeling approaahcuracy to our approach in Section IV.
based on an extended Gaussian process formulation. OuGaussian processes (GPs) have a long tradition in the geo-
model uses non-stationary covariance functions as prdposeiences and statistics literature [11]. Classical apgves for
by Pacioreket al. [7] to allow for local adaptation of the dealing with non-stationarity include input-space wagpjih?2,
regression kernels to the underlying structure. This adapil3] and hierarchical modeling using local kernels [7]. The
tion is achieved by iteratively fitting the local kernels tdatter approach provides the general framework for thiskwor

IIl. RELATED WORK



Recently, GPs have become popular in robotics, e.g., femmpled than areas farther away. Third, small gaps in the dat
learning measurement models [2] or model-based failure ddrould be filled with high confidence while more sparsely sam-
tection [9]. To deal with varying target function propestie pled locations should result in higher predictive uncettas.
in the context of perception problems, Williams [17] use%o illustrate the last point, consider an autonomous vehicl
mixtures of GPs for segmenting foreground and backgroundnavigating in off road terrain. Without filling small gapsen
images in order to extract disparity information from bintaz  single missing measurements may lead to the perception of
stereo images. Rasmussen and Ghahramani [10] extend ideasin-traversable obstacle and consequently the planribd pa
of Tresp [15] and present an infinite mixture of experts modatight differ significantly from the optimal one. On the other
where the individual experts are made up from different Gifand, the system should be aware of the increased uncgrtaint
models. A gating network assigns probabilities to the dififée  when filling larger gaps to avoid overconfidence at these
expert models based completely on the input. Discontiesiitilocations. As a last non-trivial requirement, the modelutio
in wind fields have been dealt with by Cornfoed al. [3]. preserve structural elements like edges and corners as they
They place auxiliary GPs along the edge on both sides of thee important features for various applications includiagh
discontinuity. These are then used to learn GPs repregentialanning or object recognition.
the process on either side of the discontinuity. In conttast In this paper, we propose a model to accommodate for all
our work, they assume a parameterized segmentation of tfehe above-mentioned requirements. We build on the well-
input space, which appears to be disadvantageous in sitisatiestablished framework of Gaussian processes, which is-a non
such as depicted in Figure 1 and on real-world terrain ddta separametric Bayesian approach to the regression problem. To

The problem of adapting to local structure has also beeeal with the preservation of structural features like sdge
studied in the computer vision community. Taketaal. [14] and corners, we employ non-stationary covariance funstion
perform non-parametric kernel regression on images. Thay introduced by Paciorek and Schervish [7] and present a
adapt kernels according to observed image intensitiesir Theovel approach to local kernel adaptation based on gradient
adaptation rule is thus based on a nonlinear combination fetures and the local marginal data likelihood.
both spatial and intensity distance of all data points in theIn the following, we restate the standard Gaussian process
local neighborhood. Based on singular value decompositioapproach to non-parametric regression before we introduce
of intensity gradient matrices, they determine kernel modéxtensions to local kernel adaptation.
fications. Middendorf and Nagel [6] propose an alternative _ )
kernel adaptation algorithm. They use estimates of grayevalA- Gaussian Process Regression
structure tensors to adapt smoothing kernels to gray valueAs stated in the previous section, the terrain modeling task
images. is to derive a model fop(y*|x*, D), which is the predictive
distribution of terrain elevationg*, called targets at input
locations x*, given a training setD = {(x;,y;)}", of

Data for building 3-dimensional models of an environmerflevation samples. The idea of Gaussian processes (GPs) is
can be acquired from various sources. In robotics, lasgyerano view any finite set of sampleg; from the sought after
finders are popular sensors as they provide precise, highstribution as being jointly normally distributed,
frequency measurements at a high spatial resolution. Other
sensors include on-board cameras, which are chosen because PY1s- o Yn [ X1, Xn) ~ N (p, K 1)

of their low weight and costs, o_r.satelhte imagery, whic ith meany € R” and covariance matri¥. s is typically
covers larger areas, e.g., for guiding unmanned areal ve sumedo and K is specified in terms of a parametric

cles (UAVs) or autonomous cars. After Various preproceSIfg ariance functiork and a global noise variance parameter
steps, the raw measurements are typically represented as 3D ;- ._ k(xi,%;) + 028,;. The covariance functiork
. i 15 %) n-vj:

IlIl. DIGITAL TERRAIN MODELING

from data points, that yield predictive distributions ferrain
elevations at arbitrary input locations. ) 1 (Xig — Xj1)°

The terrain modeling problem can be formalized as follows. k(i X;) = ofexp { =5 > ] @
Given a setD = {(x;,v;)}"; of n location samplex; € R? k=1
and the corresponding terrain elevatiops= R, the task is to whereo s denotes the amplitude (or signal variance) §pdre
build a model forp(y*|x*, D), i.e., the predictive distribution the characteristic length-scales of the individual dinems
of elevationsy* at new input locations*. This modeling task (see [11]). These parameters plus the global noise variance
is a hard one for several reasons. First, sensor measuremarg called hyperparameters of the process. They are tipical
are inherently affected by noise, which an intelligent modélenoted a®® = (o¢,£,0,). Since any set of samples from
should be able to reduce. Second, the distribution of availa the process is jointly Gaussian distributed, the predictba
data points is typically far from uniform. For example, theew target value,/* at a given locationk* can be performed
proximity of the sensor location is usually more denselgy conditioning then + 1-dimensional joint Gaussian on the
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known target values of the training s@. This yields a and eigenvalues. Paciorek and Schervish build a hieraachic

predictive normal distribution* ~ N (u*,v*) defined by model by placing additional Gaussian process priors orethes
. . T g -1 kernel parameters and solve the integration using Markov-
pto= E{y")=k (K + UnI) Y () chain Monte Carlo sampling. While the model presented in [7]

vt o= V() =k 402 — kT (K + 0721])‘1 k, (4) provides a flexible and general framework, it is, as alsodote

by the authors, computationally demanding and clearly not
with K € R™*", K;; = k(x;,%x;), k € R", k; = k(x",%x;), feasible for the real world terrain data sets that we arergmi
k* = k(x*,x*) € R, and the training targety € R". for in this work. As a consequence, we propose to model
Learning in the Gaussian process framework means finding the kernel matrices in Equation (5) as independent random
parametersd of the covariance functiot. Throughout this variables that are initialized with the learned kernel of th
work we use a conjugate gradient based algorithm [11] thedrresponding stationary model and then iteratively asthpt
fixes the parameters by optimizing the marginal data likelth to the local structure of the given terrain data. Concretely
of the given training data set. Alternatively, the param®tewe assign to every input locatior; from the training set
could be integrated over using parameter-specific pridri€is p a local kernel matrixz;, which in turn is represented by
butions, which results in a fully Bayesian model but which igne orientation parameter and two scale parameters for the
also computationally more demanding as one has to empleygth of the axes. Given these parameters, the evaluation
Markov-Chain Monte Carlo sampling for approximating thef Equation (5) is straightforward. In the following sectjo

intractable integral. we will discuss in detail, how the kernel matricEs can be
The standard model introduced so far already accounts f@fapted to the local structure of the terrain.

three of the requirements discussed in the previous section .

namely de-noising, dealing with non-uniform data densitieC- Local Kernel Adaptation

and providing predictive uncertainties. As a major dravipac The problem of adapting smoothing kernels to local struc-
however, by using the stationary covariance function ofd=quture has been well studied in the computer vision community.
tion (2), which depends only on thifferencesetween input It is therefore not surprising that, although image procgss
locations, one basically assumes the same covariance stalgorithms are typically restricted to dense and uniformly
ture on the whole input space. In practice, this signifiganttistributed data, we can use findings from that field as an
weakens important features like edges or corners. The lefspiration for our terrain adaptation task. Indeed, Miade
diagram of Figure 1 depicts a synthetic data-set which aasitadorf and Nagel [6] present a technique for iterative kernel
homogenous regions which should be smoothed, but aksgaptation in the context of optical flow estimation in image
a sharp edge that has to be preserved. Our model, whigdguences. Their approach builds on the concept of the so
is detailed in the next section, addresses this problem b&glled grey-value structure tensor (GST), which captuhes t
adapting a non-stationary covariance function to the locical structure of an image or image sequence by building

terrain properties. the locally weighted outer product of grey-value gradients
] ] ) the neighborhood of the given image location. Analogously t
B. Non-Stationary Covariance Functions their work, we define the elevation structure tensor (EST) fo

Most Gaussian process based approaches found in #given locationx; as
literature use stationary covariance functions that depam —
the difference between input locatioss— x’ rather than on EST(x:) = Vy(Vy)T(xi) , ©)
the absolute values andx’. A powerful model for building where y(x) denotes the terrain elevation at a locatian
non-stationary covariance functions from arbitrary stairy and =~ stands for the operator that builds a locally weighted
ones has been proposed by Paciorek and Schervish [7]. kgérage of its argument according to the kerBgl For two-
the Gaussian kernel, their non-stationary covariancetiomc dimensionalx;, Equation (6) calculates the locally weighted

takes the simple form average of the outer product &y = (52, 54)T. This
—1 local elevation derivative can be estimated directly frdra t
k(xi,x;) = [%i|T |2j|% ity (5) raw elevation samples in the neighborhood of the given input
2 location x;. We cope with the noise stemming from the

9 neighborhood.

Equation (6) yields a tensor, representable &sxa2 real-
where each input locatior’ is assigned an individual Gaus-valued matrix, which describes how the terrain elevation
sian kernel matriX2’ and the covariance between two targetshanges in the local neighborhood of locatien To get an
y; andy; is calculated by averaging between the two individuahtuition, what £ST'(x;) encodes and how this can guide
kernels at the input locations; andx;. In this way, the local the adaptation of the local kern&l;, consider the following
characteristics at both locations influence the modeledrtov situations. Let\; and A2 denote the eigenvalues &fST(x;)
ance of the corresponding target values. In this model, eaaid 5 be the orientation angle of the first eigenvectorx|f
kernel matrixy; is internally represented by its eigenvectoris located in a flat part of the terrain, the elevation graidien

(S + % -1 raw data by averaging over the terrain gradients in the local
exp | —(x; — x;) (> (xi —x;) ],



Vy are small in the neighborhood &f;. This results in two correspondingy; from the training set relative to the current

equally small eigenvalues dfST(x;). In contrast, ifx; was predictive distribution (see Equation (llI-A)), and therkel

located in an ascending part of the terrain, the first eidemva complexity approximated as = 1/|3;|. Both quantities are

of EST(x;) would be clearly greater than the second one anted to form a learning rate parameter calculated by means

the orientation3 would point towards the strongest ascent. of a modified sigmoid functiony; = sigmoid —df(x;) - ¢;; 8),
Intuitively and as discussed in more detail by Middendokfthere the additional paramete¥sare determined empirically.

and Nagel [6], the kernell; describing the extent of the locallntuitively, we get a high adaptation speed when the data-fit

environment ofx; should be set to the inverse BIST(x;). In  relative to the kernel size is small. Algorithm 1 summarizes

this way, flat areas are populated by large, isotropic kernethe adaptation procedure.

while sharp edges have long, thin kernels oriented along the

edge directions. Corner structures, having strong elavatiAlgorithm 1 Local Kernel Adaptation

gradients in all dimensions, result in relatively smalldbc Learn global paramete® for the stationary squared expo-

kernels. To prevent unrealistically large kernels, Middfmnh nential covariance function.

and Nagel describe how this inversion can be bounded toinitialize all local kernels:; with ©.

yield kernels, whose standard deviations lie between givenwhile not convergedio

valueso,,;, ando,,.... Based on their findings, we give three for all ¥; do

concrete local adaptation rules that have been comparadin o Estimate the local learning raig
experimental evaluation. To simplify notation, we intredu Estimate ESTx;) according toX;
Ak = A/(A1 + A2), k = 1,2 and the re-parameterization ¥ — ADAPT(EST(x;))
Si=RT (al 0 ) R ) end for
0 (6%} .
end while

where «; and « scale in orthogonal directions and is a
rotation matrix specified by the orientation angle

1) Direct Inverse Adaptatiany; = EST(x;)* IV. EXPERIMENTAL EVALUATION
2) Bounded Linear Adaptation The goals of the experimental evaluation presented in this
k=M o2 4 (1= od. k=12 ;ection are _(a) to show that our terrain modeling apprqach is
indeed applicable to real data sets, (b) that our model is abl
3) Bounded Inverse Adaptation to remove noise while at the same time preserving important
o2 g2 structural features, and (c) that our model yields more rateu
ag Tt Jk=1,2 and robust elevation predictions at sparsely sampled input

Ak Oinac +.(1 k) Oinin ~ locations than an alternative approach to this problem.

The two boundedadaptation procedures prevent unrealisti- As an evaluation metric, we use the mean squared error
cally small and large kernels. THgounded Inversetrongly MSE(X) = %221 (ys _y;)Q of predicted elevationg;
favors the larger eigenvalue dimension and produces me@gative to ground truth elevations on a set of input locations
pronounced kernels (larger difference between semiaxeig w x = {x;17 ..

the Bounded LinearLinear tends to produce more balanced ) o )
and larger kernels. This is whBounded Linearperforms A. Evaluation on Artificial Terrain Data
better in the presence of sparse data as it is less vulna@ble The first set of experiments was designed to quantify the
overfitting. In this work, the bounds,,;,, ando,,.. are esti- benefits of local kernel adaptation and to compare the three
mated empirically. We are currently working on determiningdifferent adaptation rules. As a test scenario, we took the
optimal values with respect to the marginal data likelihood artificial terrain data set depicted in Figure 2 consistirig o
So far, we have described how to perform one locd4l data points, which contains uniform regions as well as
adaptation step for an arbitrary kerng}. As the complete sharp edges and corners, which are hard to adapt to locally.
learning and adaptation procedure, which is summarized Note, for example, that the edge between the lowest and the
Algorithm 1, we propose to assign to each input locatign second lowest plateau has a curvature and that three differe
of the training setD a kernel matrix3;, which is initialized height levels can be found in the local neighborhood of the
with a global parameter vect®, that in turn has been learnedcorner in the middle of the diagram. We segt,;,, = 0.001
using standard GP learning with the corresponding statjonando,,., = 5.0 for the bounded adaptation rules.
covariance function. The local kernels are then iterafivel To generate training data sets for the different experiment
adapted to the elevation structure of the given terrain datgported on here, we added white noise of a varying stan-
set until their parameters have converged. To quickly adagdrd deviations to the true terrain elevations and randomly
the kernels at locations where the regression error is higgmoved a portion of the samples to be able to assess the
(relative to the given training data set), we propose to nth&e model’s predictive abilities.
adaptation speed for each, dependent on the local data fit Figure 4 visualizes a complete adaptation process for the
df(x;), which is the normalized observation likelihood of thease of a data set generated using a noise rate 6f0.3.
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Fig. 3. Prediction accuracy for the scenario depicted irufeigd with (a) all data points available, (b) 15% of the dadas randomly removed and (c)
30% randomly removed. Each figure plots the mean squared eredewdtion predictions for a varying level of added whiteseoiThe values are averaged
over 10 independent runs per configuration. (In the case)pthe error ofDirect Inversewas always greater than 4.0).

09 e mean squared prediction error for different amounts of {goin
orf\ removed from the noisy data set. After at mésiterations,
g o \\ the errors have settled close to their final value.
oaf N\ In a different set of experiments, we investigated the pre-
o 2'""'\;—7—6 — diction performance of our approach for all three adaptatio
Herators rules presented in Section IlI-C. For this experiment, weead
(a) Terrain (b) Convergence white noise of a varying noise level to the artificial terrain

Fig. 2. An artificial terrain data set used in the experimeetaluation, that glven_ in Figure 2. The dlagrams in Figure 3 give the_ resulits

exhibits several local features that are hard to adapt toTést data sets are for different amounts of points removed from the noisy data

geheratTeﬁebr)T/1 22?29;;?&3 Qﬂff&”sd Er)aggogldyi éfergogllglgagomrmei ?Naliﬁ set. When no ppints are removed from the test setBtjunded

ggl?rtlf:.reasing numk?er of adaptation stepsp(b). Iteratigives the I%]/ISE for Inverseadaptgtlon rule performs b_eSt for smgll noise values.

the learned standard GP. Values are averaged over ten impteruns. For large noise valuesBounded Linearand Direct Inverse
achieve better results. In the case of 15% and 30% data
points removedDirect Inverseand Bounded Inversare not
competitive. In contrastBounded Linearstill achieves very

On average, a single iteration per run took 44 seconds on thisod results for all noise levels.

data-set using a PC with a 2.8 GHz CPU and 2 GB of RAM. Thus, Bounded Linearproduces reliable predictions for

Figures 4(c)-4(f) show the results of standard GP regrassigll tested noise rates and data densities. This finding was

which places the same kernels at all input locations. Whitgipported by experiments on other real data sets not pegsent
this leads to good smoothing performance in homogenedysre.

regions, the discontinuities within the map are also smenbth
as can be seen from the absolute errors in the third colunth. Evaluation on Real Terrain Data
Consequently, those locations get assigned a high learaieg | order to demonstrate the usefulness of our approach on
see right column, used for local kernel adaption. real data sets, we acquired a set of 3D scans of a scene
The first adaptation step leads to the results depicted ugmg a mobile robot equipped with a laser range finder,
Figures 4(g)-4()). Itis clearly visible, that the steps aotners see Figure 5(a). We compared our prediction results to an
are now better represented by the regression model. This Baproach from the robotics literature [4] that has beeniegpl
been achieved by adapting the kernels to the local structusgiccessfully to the problem of 3-dimensionally mappingaarb
see the first column of this row. Note, how the kernel sizegeas. We employed tH#ounded Lineamdaptation procedure
and orientations reflect the corresponding terrain pr@gert for our learning algorithm where we set,;, = 0.25 and
Kernels are oriented along discontinuities and are small i) .. = 4.0. Figure 5 gives the results of this experiment. An
areas of strongly varying elevation. In contrast, they habstacle, in this case a person, is placed in front of thetrobo
been kept relatively large in homogeneous regions. Afteeth and thus occludes the sloped terrain behind.
iterations, the regression model has adapted to the discent e evaluated our approach for the situation depicted in
ities accurately while still de-noising the homogeneogsa®s the figure as well as for three similar ones and compared
(Figures 4(k)-4(n)). Note, that after this iteration, theedl jts prediction accuracy to the approach ofuFret al. [4],
learning rates have all settled at low values. who perform horizontal linear interpolation orthogonatty
Figure 2 gives the convergence behavior of our approatife robot’s view. These scenarios used are actually ratisr e
using theBounded Linearadaptation rule in terms of theones for [4], as the large gaps can all be filled orthogonally t
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Fig. 4. The local kernel adaptation process on an artifieigbin data set: the original data set, depicted in FiguexBibits several local features that are
hard to adapt to. The test data set (a) was generated by adtitgnoise, resulting in the errors shown in (b). The seaandof diagrams gives information
about the initialization state of our adaptation process,the results of standard GP learning and regression. dllving two rows depict the results of
our approach after the first and after the third adaptatieraiton respectively. In the first column of this figure, weusdiize the kernel dimensions and
orientations after the corresponding iteration. The séamiumn depicts the predicted means of the regression. Tha ¢blumn gives the absolute errors
to the known ground truth elevations and the right-most colgias the resulting learning rates for the next adaptation step resulting from the estimated
data likelihoods.



the robot’s view, which is not the case in general. To estmat f %ﬁ%arg Lmearol_rltfép' [4] Adag tggoep 'mp‘r‘%\fggem
the kernels at unseen locations, we built a weighted average 2 0.058 0.040 31.0%

over the local neighborhood with an isotropic two-dimensio 3 0.074 0.023 69.9%
Gaussian with a standard deviation of 3 which we had found 4 0.079 0.038 51.9%

to produce the best results. Table | gives the results. In all TABLE |

four cases, our approach aChieved h|gher prediction aciﬂsr,a PREDICTION PERFORMANCE IN TERMS ORMMSE RELATIVE TO A SECOND,
reducing the errors by 30% to 70%. Figure 5(b) depicts the NOT OCCLUDED SCAN

predictions of our approach in one of the situations. In @sit
to Frih et al, our model is able to also give the predictive

L . . Adaptation procedure | MSE
uncertainties. These variances are largest in the centéreof Standard GP 0.071
occluded area as can be seen in Figure 5(c). Direct Inverse 0.103

; ; ; ; Bounded Linear 0.062
In_ a se_cond real-wor.I(_j experiment |I.Iustrated in Figure 6, Bounded Inverse 0.059
we investigated the ability of our terrain model approach to TABLE I

preserve and predict sharp discontinuities in real terdaita.

We positioned the robot in front of a rectangular stone block
such that the straight edges of the block run diagonally to
the robot’s line of view. A person stood in between the robot

and the block, thereby occluding parts of the block and @he results of this experiment for the different adaptation
the area in front of it. This scenario is depicted in 6(a). Th§les. TheBounded Lineaand theBounded Inversadaptation
task is to recover the linear structure of the discontinaityl rocedures outperform tretandard GPmodel where kernels
fill the occluded area consistent with the surrounding 1Brragre not adapted, whiledirect Inverseis not competitive.
elevation levels. The adaptation procedure converge@dfre Together with the results of the other experiments, thisdea

Figure 6(c), enables the model to correctly represent eest 55 an adaptation rule in synthetic and real-world scenarios
blocks as can be seen from the predicted elevations vigahaliz

in 6(d). This figure also illustrates the uncertainties afs V. CONCLUSIONS
predictions, corresponding to the variances of the prisgict |n this paper, we propose an adaptive terrain modeling
distributions, by means of two contour lines. This indisateapproach that balances smoothing against the preservation
that a mobile robot would be relatively certain about thef structural features. Our method uses Gaussian processes
block structure within the gap although not having obseivedwith non-stationary covariance functions to locally adapt
directly. In contrast, it would be aware that it cannot reyon  the structure of the terrain data. In experiments on syiathet
its terrain model in the occluded areas beyond the blocksethand real data, we demonstrated that our adaptation progedur
are no observations within a reasonable distance and theis, groduces reliable predictions in the presence of noise and
predictive variances are large. is able to fill gaps of different sizes. Compared to a state-
To show that our approach is applicable to large, real-wortf-the-art approach from the robotics literature we achiav
problems, we have tested it on a large data-set recordedpegdiction error reduced by approximately 30%-70%.
the University of Freiburg camptisThe raw terrain data was In the future, we intend to evaluate our approach in
preprocessed, corrected, and then represented in a ewdti-l online path planning applications for mobile robots. Since
surface map with a cell size of 10cm 10cm. The scanned our approach retrieves terrain properties in terms of Keyne
area spans approximately 299 by 147 meters. For simpliciits application to terrain segmentation is promising. Aot
we only considered the lowest data-points per location, i.@irection of further research are SLAM techniques where the
we removed overhanging structures like tree tops or celingrajectory of the robot is also unknown and the model has to be
The resulting test set consists of 531,920 data-pointsp&ed updated sequentially. We also intend to evaluate our approa
up computations, we split this map into 542 overlappingn typical test cases in computer vision and to compare it
sub-maps. This is possible without loss of accuracy as wéth the algorithms of this community. Finally, we work on
can assume compact support for the local kernels involvad analytical derivation for optimal kernels based solaly o
in our calculations (as the kernel sizes in our model adata likelihoods and model complexity.
bounded). We randomly removed 20% of the data-points per
sub-map. A full run over the complete data-set took about 50
hours. Note that the computational complexity can be redluce The authors would like to thank Kristian Kersting for the
substantially by exploiting the sparsity of our model (doe tstimulating discussion as well as Rudolph Triebel and Elatri
the bounded kernels) and by introducing additional sparsifaff for providing the campus data-set and their sourcescod
using approximative methods, e.g., sparse GPs. Table ¢sgifor multi-level surface maps. This work has been supported b
the EC under contract number FP6-004250-CoSy and by the
1Additional material for the campus experiment can be found ag’erman Federal Ministry of Education and Research (BMBF)
http:/Aww.informatik.uni-freiburg.de/ plagem/rssOReg under contract number 01IMEO1F (project DESIRE).
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(a) The first test scenario (b) Observations (points) and predicted means (lines)  (c) Predictive uncertain-
ties (white: zero)

Fig. 5. A real-world scenario, where a person blocks the tshdew on an inhomogeneous and sloped terrain (a). Figurgi(es the raw data points as
well as the predicted means of our adapted non-stationargssign model. Importantly, our model also yields the predictincertainties for the predicted

elevations as depicted in Figure (c).
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Fig. 6. A real-world scenario where a person blocks the rehd¢w on a stone block, i.e., a sharp linear discontinuity Figure (b) visualizes the kernels
that have adapted to the observed block edges illustratéc).ifrigure (d) illustrates the predicted terrain elevasi@nd two contour lines for two different
predictive uncertainty thresholds.
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