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Abstract

Three-dimensional digital terrain models are of fundamental importance in areas such as the geo-sciences
and outdoor robotics. Accurate modeling requires the ability to deal with a varying data density and to
balance spatial smoothing against the preservation of structural features like discontinuities. The latter is
particularly important for robotics applications, as discontinuities that arise, for example, at steps, stairs,
or building walls are important features for path planning or terrain segmentation tasks. In this thesis,
we present an extension of the well-established Gaussian process regression technique, that utilizes non-
stationary covariance functions to locally adapt to the structure of the terrain data. In this way, we achieve
strong smoothing in flat areas and along edges while at the same time preserving edges and corners. The
derived model yields predictive distributions for terrainelevations at arbitrary locations. This allows us
to fill gaps in the data and to perform conservative predictions of terrain elevations in occluded areas.
Our model is able to account for all types of occluded areas, i.e., highly non-linear heterogenous terrain
structures as well as linear discontinuities. An essentialcomponent in our model are local kernels, that
capture the terrain properties of individual input locations and enable us to achieve non-stationarity in an
interpretable and easy to visualize way. We investigate andevaluate two different learning algorithms to
adapt the individual kernel parameters to terrain data: a gradient ascent approach over the data-likelihood
and an approach based on local terrain gradients.
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Zusammenfassung

Die Verarbeitung und Repräsentation räumlicher Daten hat eine zentrale Bedeutung in Bereichen wie den
Geowissenschaften und der Robotik. Digitale Geländemodelle sollten mit variierender Datendichte umge-
hen können, fehlerbehaftete Daten glätten und dabei gleichzeitig Strukturmerkmale wie Ecken und Kanten
erhalten. Letzteres ist besonders wichtig im Falle von Robotikanwendungen, da dort Unstetigkeiten, wie
sie beispielsweise bei Stufen, Treppen oder Gebäudewändenauftreten, wichtige Merkmale für die Pfadpla-
nung oder Terrainsegmentierung darstellen. In dieser Arbeit stellen wir eine Erweiterung des Gaußschen
Prozessansatzes für Regressionsprobleme vor, welche mittels einer nichtstationären Kovarianzfunktion die
lokale Adaptierung an die Terrainstruktur ermöglicht. Dadurch können räumliche Daten in flachen, homo-
genen Gebieten stark geglättet werden, während Ecken und Kanten erhalten bleiben. Das erlernte Modell
bietet prädiktive Verteilungen für Geländehöhen an beliebigen Stellen des Grundraumes. Dadurch wird
es möglich, Löcher in den beobachteten Daten zu schließen und in verdeckten Gebieten konservative
Vorhersagen für die Terrainhöhen zu treffen. Das vorgestellte Modell kann dabei alle Arten verdeckten
Terrains repräsentieren, d.h., sowohl hoch nicht-lineare, heterogene Geländestrukturen als auch lineare
Unstetigkeiten und Kanten. Zentraler Bestandteil des Modells ist das Konzept lokaler Kernelstrukturen,
die die Terraineigenschaften an einzelnen Stützstellen repräsentieren und die anschauliche Darstellung des
nichtstationären Charakters ermöglichen. Zur Adapation der Kernelparameter an die zugrundeliegende
Geländestruktur stellen wir zwei alternative Lernverfahren vor: einerseits die unmittelbare Optimierung der
Datenlikelihood mittels Gradientenaufstieg und andererseits ein schnelles, an die Bildverarbeitungslitera-
tur angelehntes Verfahren basierend auf lokalen Geländegradienten. Die entwickelten Verfahren wurden
vollständig implementiert und in simulierten und realen Testszenarien evaluiert.
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Chapter 1

Introduction

The modeling of three-dimensional terrain data has been widely studied across different research areas
such as the geo-sciences or outdoor robotics. Important applications in outdoor robotics include mo-
bile robots for agriculture, search and rescue, surveillance, and space missions (Figure 1.1). In these
domains, accurate and dense models of the three-dimensional structure of the environment enable the
robot to estimate the traversability of locations, to plan its path to a goal location, or to localize it-
self using range sensor measurements. Another applicationis, for instance, seafloor mapping where
terrain models need to be built from high-precision ultrasound measurements. Seafloor maps, as illus-
trated in Figure 1.2, help to identify areas of erosion on thecontinental shelf and of geohazards, to
locate pathways for movement of sediment and pollutants, tobuild underwater constructions such as
pipelines or to retrieve sunken ships. Building a digital terrain model means to transform a set of sen-
sory inputs, typically a three-dimensional point cloud or raw range sensor readings, to a function which
maps two-dimensional pose coordinates to elevation values. While geological applications often operate
on a large spatial scale, where local terrain features are not important, autonomous robots greatly rely

Figure 1.1: Surface of planet Mars. In
space missions, robots need to cope with
unkown terrains autonomously. (Source:
http://www.nasa.gov/mission_pages/mer/)

on distinct structural features like edges or corners to guide
navigation, localization, or terrain segmentation. Consider,
for example, an autonomous car driving in urban terrain as
depicted in Figure 1.3(a). The street itself should be recon-
structed as a smooth surface to enable the path planning al-
gorithm to find a smooth trajectory while the step to the side-
walk should be as sharp as possible to robustly identify it
as a non-traversable obstacle. We therefore have two at first
glance contradicting requirements for terrain models: First,
raw sensory data needs to be smoothed in order to remove
noise and to be able to perform elevation predictions at all
locations and, second, discontinuities need to be preserved
as they are important features for path planning, localization
and object recognition. Furthermore, uncertainty estimates
for predictions need to be incorporated to represent uncer-
tainty on all levels as required in the probabilistic robotics
approach[Thrunet al., 2005]. This uncertainty is caused by
two independent components, the noise in the data and the
uncertainty in the estimation of the target function.
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2 CHAPTER 1. INTRODUCTION

1.1 The Terrain Modeling Problem

Our goal is to construct terrain models from sensory measurements. Data for building three-dimensional
models of an environment can be acquired from various sources. In robotics, laser range finders are popular
sensors as they provide precise, high-frequency measurements at a high spatial resolution. Other sensors
include on-board cameras, which are chosen because of theirlow weight and costs, or satellite imagery,
which covers larger areas, as needed, e.g., for unmanned areal vehicles (UAVs) or autonomous cars. After
various preprocessing steps, the raw measurements are typically represented as three-dimensional point
clouds or are transformed into three-dimensional occupancy grids or elevation maps[Bareset al., 1989].
In this work, we introduce a technique for constructing continuous, probabilistic elevation map models
from data points, that yield predictive distributions for terrain elevations at arbitrary input locations.

Figure 1.2: Seafloor map of
Lake Tahoe in California (Source:
http://walrus.wr.usgs.gov/pacmaps/)

The terrain modeling problem can be formalized as fol-
lows. Given a setD = {(xi, yi)}ni=1 of n location samples
xi ∈ R

2 and the corresponding terrain elevationsyi ∈ R,
the task is to build a model forp(y∗|x∗,D), i.e., the predic-
tive distribution of elevationsy∗ at new input locationsx∗.
This modeling task is a hard one for several reasons. First,
sensor measurements are inherently affected by noise, which
an intelligent model should be able to reduce. Second, the
distribution of available data points is typically far fromuni-
form. For example, the proximity of the sensor location is
usually more densely sampled than areas farther away. Third,
small gaps in the data should be filled with high confidence
while more sparsely sampled locations should result in higher
predictive uncertainties. To illustrate the last point, consider
an autonomous vehicle navigating in off-road terrain. With-
out completing small gaps by prediction, even single missing
measurements may lead to the perception of a non-traversable

obstacle (a hole in this case) and consequently the planned path might differ significantly from the optimal
one. On the other hand, the system should be aware of the increased uncertainty when filling larger gaps to
avoid higher risks at these locations. Finally, as a last non-trivial requirement, the model should preserve
structural elements like edges and corners as these are important features for various applications including
path planning or object recognition.

(a) Partially non-traversable road curb (Source:
http://www.pedestrians.org/images/)

(b) Occlusions within a surface map of the campus of
Freiburg University

Figure 1.3: 3D terrain models need to be able to represent discontinuities and occlusions.
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1.2 Related Work

Many important tasks in outdoor robotics such as planning and localization require data-structures for
representing dense terrain data stemming from 3D range measurements. An efficient representation are
elevation maps[Bareset al., 1989, Pfaff and Burgard, 2005] which consist of two-dimensional grids in
which each cell stores the elevation of the corresponding territory. Elevation maps have been extended to
multi-level probabilistic surface (MLS) maps[Triebelet al., 2006] which allow to store multiple surfaces
in each cell of the grid. In a typical MLS map, many cells are empty due to occlusions and faulty measure-
ments as visualized in Figure 1.3(b). One of the goals of thisthesis was to estimate the elevations for cells
where no measurements are available. In this regard, our approach can be viewed as orthogonal which can
be used to preprocess spatial data that has to be representedin a MLS map. Most importantly, to achieve
precise predictions we need to be able to cope with spatial inhomogeneity within terrains. Most studies
using spatial or spatio-temporal data make the assumption that the modeled terrain is homogenous, i.e., its
properties are the same over the complete input space. In other words, local characteristics are ignored.
As pointed out by Sampson and Guttorp[1992], in most natural scenarios, this assumption is clearly vio-
lated: local influences are significant for the covariance structure of the input space which necessitates a
heterogeneous model.

A straight-forward approach for filling gaps in three-dimensional models taking local properties into
account is presented by Frühet al. [2005] who build three-dimensional models of facade meshes of cities
from series of 2D scans. Due to faulty observations, e.g. caused by glass surfaces, and occlusions of the
desired buildings by foreground objects, the generation offacade models is difficult. Frühet al. propose
to fill local gaps based on local linear interpolation. They report promising results in several city mapping
scenarios. Wellingtonet al. [2005] use multiple Markov random fields which interact through a hidden
semi-Markov model to estimate terrain elevations and to enable classification for outdoor navigation. A
classical approach for modeling non-stationary and anisotropic terrain properties, i.e., the properties vary
with respect to different input locations and along different dimensions of the input space, is warping of
the input space. Input locations are non-linearly mapped into a latent space which is characterized by
a stationary covariance function. A classic reference for this approach is[Sampson and Guttorp, 1992].
They use two spaces, theG-space which is the geographical input space and theD-space measuring the
dispersion of the input space. In order to calculate covariances for two input locations, these locations are
mapped fromG to D. The spatial structure within theD space is homogenous. Thin-plate splines are
used there for estimation. The selection of the type of mapping function as well as using thin-plate splines
for interpolation are arbitrary choices. Also, this model fails to account for uncertainty in the predictions.
Schmidt and O’Hagan[2003] extended this approach to a fully Bayesian treatment. They represent the
mapping betweenG andD by an unkown functiond(·) for which they define a Gaussian process prior.
This makes it possible to account for the uncertainty resulting from the mapping. Their model, however,
has the drawback that the calculation of the posterior is notstraightforward and needs to be done by means
of computationally demanding Markov-Chain Monte-Carlo (MCMC) sampling.

The idea of using Gaussian processes (GPs) for modeling spatial data is a quite old one. GPs first ap-
peared in the field of geo-statistics. The mining engineer Daniel G. Krige explored the distance-weighted
average gold grades at the Witwatersrand reef complex in South Africa. He developed a geo-statistic proce-
dure for estimating the distribution of spatial data based on spatial dependencies[Krige, 1951]. His theory
was further developed by the French geo-statistician Georges Matheron[Matheron, 1963] who called this
procedure “Kriging” in honor of its inventor. GPs generalize the ideas of kriging to a wide range of re-
gression and classification problems. Rasmussen and Williams[2006] as well as MacKay[1998] provide
excellent introductions. GPs did not receive a greater popularity in other areas until the 1990s. Since then,
GPs have come to the fore in machine learning and are now a well-understood and established technique.
For instance, GPs have been applied successfully in different areas including positioning systems using
cellular networks[Schwaighoferet al., 2004], learning automatically generated music playlists[Platt et
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al., 2000], or in bio-genetics[Chu et al., 2005]. Recently, GPs have also become popular in the domain
of robotics. For example, Brookset al. [2006] use GPs to derive measurement models for mobile robot
localization from sparse and noisy observations taken by a sensor with an unknown geometric model. The
usage of GPs allows them to maintain an estimate of the uncertainty of the model over the entire map.
Plagemannet al. [2007] use GPs for model-based failure detection. They employ GP models to learn
poposal distributions for a particle filter which is appliedto track the state of the robot and thereby to
detect failure states such as collisions with unseen obstacles.

Most works on GP models assume stationary covariance structures over the input space. It is possible
in various ways, however, to derive GP models that are able toaccount for inhomogeneity of the input
space. For instance, one can partition the input space into segments and use mixtures of GPs where each
GP is responsible for a different segment of the modeled environment. This is akin to the idea of par-
tition models, which explain the data by fitting local distributions to local areas of the input space. For
example, Denisonet al. [2002] partition the input space by means of a Voronoi tessellationwhich is gen-
eralized by Blackwell and Moller[2003] to deformed tessellations. In the context of perception problems,
Williams [2006] uses a GP framework in order to extract disparity information from binocular stereo im-
ages. He splits up the images into foreground and backgroundimages. A latent segmentation function
assigns segment probabilities to pixels. Based on the segment, different covariance functions are employed
in this switchedGP which makes it possible to model both smooth regions and discontinuities. Another
possibility to explicitely incorporate discontinuities into a GP model based on terrain partitioning is pre-
sented by Cornfordet al.[1999]. They deal with straight discontinuities (fronts) in wind fields. They place
auxiliary GP models along both sides of the discontinuity. These are then used to derive a GP model that
represents the complete wind field by conditioning on the values along the front. The discontinuity takes a
parametric form. While its precise location is also learned, the authors note that the "parameters describing
the location of the front need to be initialized close to the correct values" (p. 6). In their approach one has
to specify a-priori the number of discontinuities as well astheir approximate locations. A discontinuity is
assumed to split the complete input space.

Tresp[2000] provides a Gaussian process variant of the mixture of experts model of Jacobset al.[1991].
Based completely on the input, a gating network assigns probabilities to different GP expert models such
that the model with the most appropriate local characteristics as specified by a bandwidth is selected. Ras-
mussen and Ghahramani[2002] extend these ideas and present an infinite mixture of expertsmodel. Their
model infers the number of components required to capture the data and learns the hyperparameters of its
experts. In contrast to Tresp[2000], each GP expert predicts only on the basis of the training data it was
assigned which improves runtime and avoids problems in boundary regions. Meeds and Osindero[2006]
extend this model to a full generative model over input and output space. In a similar setting, Schwaighofer
et al.[2005] propose a hierarchical Bayesian framework in a recommendation system scenario. There, hier-
archical Bayesian modeling amounts to learning the mean andcovariance function of a GP model common
to all individual scenarios by means of an Expectation-Maximization-basedalgorithm. The resulting model
is then used in the prediction of the GP models of the individual scenarios.

There are certain scenarios that approaches based on input-space segmentation cannot solve satisfac-
torily. Consider, for example, the situation depicted in Figure 1.4(a) where a coherent region splits up
into different segments. There is no straight-forward way to partition this map and to assign segments to
different GP models. Alternative approaches avoid this by employing non-stationary covariance functions.
These allow to stick to only one GP model while being able to express different regression characteris-
tics, e.g. smoothness, in different regions of the input space. Higdonet al. [1999] introduce a covariance
formulation that achieves non-stationarity by assigning an individual kernel to each input location which
determines its covariance to other input locations. The covariance structure of the whole GP is thus defined
by these individual kernels, i.e., the individual kernel parameters specify the behavior and the smoothness
of the GP within the respective local area. Higdonet al. apply their method to a small example in toxic
waste remediation. Paciorek and Schervish[2004] extend this formulization to a class of non-stationary
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(a) Map (b) Kernels

Figure 1.4: A function whose smoothness varies across inputspace can be modeled by means of a non-
stationary covariance function based on individual kernels. The local kernels are visualized by means
of ellipses with semi-axis lengths chosen proportionally to the corresponding eigenvalues of the kernel
matrices.

covariance functions which provides a general framework toderive non-stationary variants of stationary co-
variance functions. They report promising results for two-and three-dimensional input spaces. They found
that their model readily generalizes to non-Gaussian data.As they use GP priors to model the structure
of individual kernels, their model, however, is computationally demanding and only feasible for data-sets
with less than 1,000 data-points. In order to derive an efficient model that is applicable to large data-sets
possibly in online applications, the most important challenge is thus how to represent and learn the local
kernels of the input locations. Stephensonet al. [2005] develop a similar formulation of non-stationary
covariance functions by spatially evolving the spectral density of a stationary GP model in the frequency
domain.

The problem of adapting kernels to local structure has also been studied in the computer vision com-
munity. Takedaet al. [2006] perform non-parametric kernel regression on images. They adapt kernels
according to observed image intensities. Their adaptationrule is thus based on a nonlinear combination
of both spatial and intensity distance of all data points in the local neighborhood. Based on singular
value decompositions of intensity gradient matrices, theydetermine kernel modifications. Middendorf and
Nagel[2002] propose an alternative kernel adaptation algorithm. They use estimates of gray value structure
tensors to adapt smoothing kernels to gray value images.

Terrain maps are often very large so that we need to find sparserepresentations. Guestrinet al. [2005]
present an algorithm for sensor-placements for monitoringspatial phenomena by means of GP models.
They derive a formulization based on mutual information as optimization criterion to choose the best
location of sensors such that the chosen sensor placements are most informative about unsensed locations.
Thereby the uncertainty of the posterior GP is decreased.

1.3 Contribution and Outline

This thesis presents a novel terrain modeling approach based on an extended Gaussian process formulation.
Our model addresses the following requirements, which are particularly important in application domains
like outdoor robotics:

1. Elevations need to be predicted at arbitrary locations.

2. Sensory data have to be smoothed to remove noise.
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3. Discontinuities need to be preserved.

4. Uncertainty estimates for the predictions are required.

5. Varying data densities have to be dealt with.

While other approaches as discussed in the section on related work accommodate for several of these re-
quirements, our aim in this thesis was to address them in one consistent framework. We build on the
well-established Gaussian processes framework, which is anon-parametric Bayesian approach to the re-
gression problem. To deal with the preservation of structural features like edges and corners, we employ
non-stationary covariance functions as introduced by Paciorek and Schervish[2004]. Non-stationarity is
achieved by introducing local regression kernels that model the local characteristics around an input loca-
tion. Kernels need to be locally adapted to the underlying structure. Figure 1.4 illustrates the effects of
local kernel adaptation. The left diagram of this figure depicts a simulated terrain surface which contains
a sharp edge that should not be smoothed over by the model. Theright diagram of the same figure depicts
the local kernels after adaptation by our approach, visualized by ellipses with semi-axis lengths chosen
proportionally to the corresponding eigenvalues of the kernel matrices. As can be seen from the diagram,
the kernels adapted to the local structure of the surface, allowing to smooth along the edge as well as
within the flat regions, but preventing to smooth perpendicular to the edge. The task of kernel adaptation is
a formidable optimization problem as it exhibits a high dimensionality. In this work, we have studied two
novel, alternative approaches for solving this optimization problem:

1. A maximum-likelihood approachbased on a gradient ascent algorithm over the pseudo-likelihood of
the observed data.

2. A terrain gradient approachthat adapts the kernels iteratively according to the gradients in the local
elevation structure.

The first approach is more principled from a theoretical point of view, but brings certain practical problems.
The second approach works well in practice as we demonstrateon several hard simulated and real-world
regression scenarios. Its idea is akin to the solutions to the adaptive image smoothing problem studied
in computer vision, where the task is to achieve de-noising of an image without reducing the contrast of
edges and corners[Takedaet al., 2006] [Middendorf and Nagel, 2002]. Although these approaches are not
designed for dealing with a varying density of data-points or with potential gaps to fill, they proved to be
applicable to our kernel adaptation problem.

This thesis is structured as follows. In Chapter 2, we present the technique of Gaussian process re-
gression and discuss its advantages. We illustrate the importance of the covariance function and highlight
the idea of kernels. In Chapter 3, we introduce the non-stationary formulation of Gaussian process regres-
sion. We present the non-stationary covariance function used in our models and analyze its properties.
We discuss the implications of these properties for the terrain modeling problem which has consequences
for the adaptation of the local kernels. In Chapter 4, we present our first approach to learning the local
kernels which is based on a gradient ascent optimization over the data-likelihood. In various experiments,
we visualize the advantages and difficulties of this approach. In Chapter 5, we introduce the alternative
approach to fit the kernels based on local terrain gradients.We discuss plenty of experiments on artificial
and real data. Finally, we present our conclusions and ideasfor future work in Chapter 6.



Chapter 2

Gaussian Process Regression

Regression is at the core of many problems in machine learning. Given a set ofn observationsD =
(xi, yi)

n
i=1 consisting of inputsxi ∈ R

D and of corresponding targetsyi ∈ R, the goal is to recover a
functionf such that

yi = f(xi) + ǫi with ǫi ∼ N (0, σ2
n), ǫ i.i.d. ∀i . (2.1)

The observed targetsyi are assumed to be affected by additive error termsǫi which are independently and
identically normally-distributed. Plenty of techniques for learning such regression functions have been pro-
posed. Gaussian process regression has a long history in thefield of geostatistics where the corresponding
method is known askriging. Nevertheless, Gaussian processes only recently became important in other
areas like machine learning and robotics.

Gaussian processes can be seen as a generalization of locally weighted nearest neighbor regression or
splines. A Gaussian process is a stochastic process that generates samples(Xt)t∈T for an arbitrary index
setT such that any finite set of samples is normally distributed. Gaussian processes are completely defined
by

• theirexpected valueT → R, t 7→ E(Xt) and

• theircovariance functionT ×T → R, (t, t′) 7→ cov(Xt, Xt′) = E((Xt−E(Xt))(Xt′ −E(Xt′))).

Thus, for all indicest1, . . . , tn ∈ T , the multivariate distribution of(Xt1 , . . . , Xtn
) is given by ann-

dimensional normal distribution. Gaussian processes can be used to define a prior probability distribution
over functions. Inference based on observations takes place directly in the space of functions. Within
the setting of terrain modeling, the indices correspond to two-dimensional input locationsxi ∈ R

2 and
the corresponding samples to terrain elevationsyi ∈ R. A set of samples is thus a set of observations
D = (xi, yi)

n

i=1. The regression goal is to learn a functionf as presented in Equation (2.1) which yields
elevations for arbitrary input locations. Viewing any finite set of samplesyi as being jointly normally
distributed, we get the predictive distribution for the observed targets

p(y1, . . . , yn | x1, . . . ,xn) ∼ N (µ, K) (2.2)

according to a meanµ ∈ R
n and a covariance matrixK. µ is typically assumed0. K is specified in terms

of a covariance functionk with a global noiseσn as

Kij = cov(yi, yj) = cov(f(xi), f(xj)) =: k(xi,xj) + σ2
nδij , (2.3)

whereδij is the Kronecker delta which is one ifi = j and zero otherwise. Note that the covariance function
is defined by the input locationsxi andxj and not the target values.

Gaussian process regression offers substantial advantages over other techniques:

7
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• Non-parametricity: No specific parametric form of the target functionf is assumed. This makes it
possible to learn any kind of target function.

• Bayesian framework: It is possible to specify a-priori assumptions over the target functions. In a
sound and well-founded mathematical framework, evidence from observations can then be combined
with these priors to yield a posterior over target functions– instead of yielding one single function
as a result.

• Non-linear regression: Complex non-linear dependencies can be modeled with straightforward lin-
ear algebra.

• Predictive distributions: GPs do not only provide predictions of the targets for arbitrary input loca-
tions, but also confidence estimates for these predictions which quantify the uncertainty stemming
from the model and the noise in the observations.

In the remainder of this chapter, we will describe in Section2.1 how prediction takes place in the GP
framework and present the idea of learning in GPs in Section 2.2. We will discuss why the covariance
function is the essential part of a GP model in Section 2.3 andintroduce the idea of local kernels which are
an important component in our terrain modeling approach in Section 2.4.

2.1 Prediction

Based on our set of observationsD = (xi, yi)
n

i=1, we want to predict the targetf∗ for an arbitrary input
locationx∗. As GPs are a non-parametric learning technique, the model structure for prediction is not
specified a-priori but is instead determined from the observationsD. In contrast, a parametric technique
would absorb the information of the training points into a model whose structure has been specified in
advance (e.g. linear regression or a neural network). Viewing any finite set of samples as being jointly
normally distributed, one can derive then + 1-dimensional joint Gaussian distribution for the observations
and the test locationp(y1, . . . , yn, f∗|x1, . . . ,xn,x∗) as

[

y

f∗

]

∼ N
(

0,

[

K + σ2
nI k

k
T k(x∗,x∗)

])

(2.4)

with K ∈ R
n×n, Kij = k(xi,xj), denoting the matrix containing the covariance values of the obser-

vations,k ∈ R
n, kj = k(x∗,xj), the vector of the covariances of the test location, the training targets

y ∈ R
n, and the identity matrixI. Conditioning this joint distribution on the observationsyields the

one-dimensional normal distribution for the test target defined by

f∗ ∼ N (µ∗, v∗) , (2.5)

µ∗ = E(f∗) = kT
(

K + σ2
nI
)−1

y , (2.6)

v∗ = V (f∗) = k(x∗,x∗) + σ2
n − kT

(

K + σ2
nI
)−1

k . (2.7)

Deriving the posterior means to restrict the joint prior distribution to contain only those functions which
agree with the observations. The central ingredient in thisformulation is the covariance functionk as it
specifies the influence that each training point(xi, yi) has in the prediction of the new targetf∗. Thereby,
k constrains the space of target functions and thus represents the prior knowledge about the target distri-
bution. k is usually a parametric function. Together with the global noise parameterσn, the parameters
of k are called thehyperparametersθ of the GP model. The term hyperparameters emphasizes the fact
that these are parameters of a non-parametric model making no assumptions about the target model – in
contrast to the parameters of a parameteric model whose structure is determined a-priori.
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2.2 Learning

Learning in the Gaussian process framework means finding theoptimal hyperparametersθ that determine
the parametric covariance function and the noise of the process. A possible optimization criterion is the
marginal data-likelihoodL which takes the form

L(θ) = p(y|X, θ) =

∫

p(y|f, X)p(f |X, θ)df . (2.8)

L is calledmarginalas it integrates over all possible target functionsf . Let f denote the vector of function
values of target functionf for the training inputsX . In the GP model, we have a Gaussian priorf |X ∼
N (0, K) and the likelihood is a factorized Gaussiany|f ∼ N (f , σ2

n I). Thus, one can derive[Rasmussen
and Williams, 2006]

log p(y|X) = −1

2
yT (K + σ2

n I)−1y − 1

2
log |(K + σ2

n I)| − n

2
log 2π . (2.9)

The three involved terms have natural interpretations.− 1
2y

T (K + σ2
n I)−1y is the only term containing

the targetsy and measures the data-fit of the observations.− 1
2 log |(K + σ2

n I)| is a complexity penalty.
−n

2 log 2π is a normalizing constant and independent of the hyperparameters. Thus, the data-likelihood
trades off data-fit and complexity penalty. The complexity penalty prevents overfitting when using the
data-likelihood as optimization criterion. It holds|K +σ2

n I| ≥ 0 asK +σ2
n I is a positive-definite matrix.

This determinant is large when the values on the main diagonal of the matrix dominate the other values.
This is for example the case when the covariance function yields large self-covariances (covariances with
respect to the points themselves), i.e.,k(xi, xi) ≫ k(xi, xj) ∀i 6= j. In this case, the GP model overfits
the observations.

The optimal hyperparametersθ can be found by gradient ascent methods that fix the parameters by
optimizing the marginal data-likelihoodL of the observed training data-set. Alternatively, the parameters
can be integrated over using prior distributions, which results in a fully Bayesian model. This is usually
computationally more demanding which might necessitate using Markov-Chain Monte Carlo sampling to
approximate intractable integrals (depending on the type of covariance function).

2.3 Covariance Functions

An important component of GP models are the covariance functions. As described above, GPs use the
training points directly for predicting a target for a new input location. Visually speaking, the covariance
functionk determines the influence that each training point has. Within the GP framework, the assumption
is made that this dependency is based solely on the inputs andindependent of the targets,

cov(yi, yj) = k(xi,xj) + σ2δij . (2.10)

The covariance defines the dependencies between targets. Therefore, it represents our prior knowledge
about the target distribution. For instance, it incorporates assumptions about the smoothness of the target
function. Learning a covariance function means finding a measure for target similarity based on the input
locations. The goal is to assign high covariances to points exhibiting the same terrain structure, while giving
small covariances to points of different terrain structures. Learning the covariance function corresponds to
finding the optimal parameter values for the parametric function k such that this requirement is fulfilled.

2.3.1 Theoretical Background

This subsection describes how the choice of covariance function constitutes the prior within the GP frame-
work. The predictive distribution over target values for aninput locationx,
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(a) Training data

(b) ℓ = 0.1 (c) ℓ = 0.5

(d) ℓ = 1.0 (e) ℓ = 2.0

Figure 2.1: The lengthscale parameterℓ of kSE determines the smoothness of the learned function. Given
the training data in (a), different functions (b)-(e) are learned depending onℓ.

p(y|x) =

∫

p(y|x, f)p(f) df , (2.11)

necessitates a priorp(f) over target functions. The question is how to specify the space of hypothesis
functions constituting the prior. This prior shall impose constraints on the set of admissible target functions,
e.g. smoothness assumptions. Within the GP setting, this hypothesis space can be specified by means of
the covariance functions as the theory ofReproducing Kernel Hilbert Spaces(RKHS) shows. LetH be
a Hilbert space of real functions defined on an index setX . The norm is induced by the inner product:
‖ f ‖= √< f, f >. H is called an RKHS with an inner product< ·, · >H if there exists a function
k : X ×X 7→ R with the following properties[Rasmussen and Williams, 2006]:

• For everyx, k(x,x′) as a function ofx′ belongs toH .

• k has the reproducing property< f(·), k(·,x) >H= f(x).

The norm‖ · ‖ encodes complexity assumptions which determine the smoothness of the target functions.
There is a direct relation between kernel functions and RKHSs as the Moore-Aronszjan theorem[Aron-
szajn, 1950] states: For every positive-definite functionk(·, ·) onX ×X , there exists a unique RKHS, and
vice versa. A kernel functionk is positive-definite if

n
∑

i,j=1

cicjk(xi,xj) ≥ 0, ∀n ∈ N, ∀ ci, cj ∈ R . (2.12)

The covariance functions used in GPs are positive-definite and can be understood as kernel functions. Thus,
they implicitely define the hypothesis space and therefore form the prior within the GP framework. This
shows that a careful choice and adaptation of the covariancefunction is crucial.



2.4. KERNELS 11

2.3.2 Squared Exponential

A common and convenient choice for the covariance function is the squared exponential,

kSE(xi,xj) = σ2
f exp

(

−1

2
(xi − xj)

T Σ (xi − xj))

)

, (2.13)

wherexi,xj ∈ R
d, the symmetricd× d matrixΣ encodes the dependencies among thed dimensions and

σf denotes the amplitude (or signal variance).kSE is a stationary covariance function as it depends only on
the difference|xi−xj |. Σ might, for instance, be a diagonal matrixΣ = diag(ℓ)−2 whereℓ = (ℓ1, . . . , ℓd)
contains the characteristic length-scales of the individual dimensions,

kSEdiag(xi,xj) = σ2
f exp

(

−1

2

d
∑

k=1

(xi,k − xj,k)2

ℓ2
k

)

. (2.14)

The parameters of the squared exponential have an intuitiveinterpretation. The length-scalesℓk in Equation
(2.14) determine how far one needs to move along a particularaxisk in input space for the function values
to become uncorrelated. Large valuesℓk will make the function become almost independent of that input
since it assigns similar covariance values along the complete axis. In contrast, smallℓk leads to overfitting,
as close input locations receive much larger weight than more distant locations. Figure 2.1 illustrates an
example of the influence of the lengthscale in a one-dimensional input space. A diagonalΣ makes it
possible to describe the influence structure along the individual dimensions of the input space. If one uses
a non-diagonal matrixΣ instead, it is possible to rotate the axes and thus describe the covariance structure
along oriented dimensions. This yields a more general understanding of Equation 2.13:Σ corresponds to
a kernel matrix which is the covariance matrix of a Gaussian kernel. This is further exposed in the next
section.

2.4 Kernels

The interesting parameter ofkSE is the kernelΣ specifying the covariance structure of an input location.Σ
corresponds to the covariance matrix of a normal distribution with mean0. The difference vectorxi − xj

is weighted according to this distribution which yields thecovariance of the two input locations. Learning
a GP model amounts to fitting the covariance function to the observations. In the case ofkSE , we need
to find a way to adapt the kernelΣ according to some optimization criterion. In the following, we will
focus on2× 2 real-valued matrices as used in the terrain modeling problem where we are concerned with
two-dimensional input data.

Fitting kernels is based on an adequate parameterization ofkernels. Any symmetric, positive semi-
definite matrix is a valid kernel as the kernel corresponds tothe covariance matrix of a multivariate normal
distribution. The spectral theorem says that for a matrixA that is normal1 there exists a unitarian2 matrix
R such thatA = R Λ RT whereΛ is the diagonal matrix the entries of which are the eigenvalues ofA.
The column vectors ofR are the eigenvectors ofA and thus are orthonormal. As the kernelΣ of kSE is
symmetric it is also normal. Thus, one can represent the kernel as a combination of a rotational matrixR
and a diagonal eigenvalue matrixΛ. This gives the parameterization of kernels

Σ = R

(

ℓ2
1 0
0 ℓ2

2

)

R−1 . (2.15)

whereℓi are the square-roots of the eigenvalues ofΣ.

1A real-valued matrixA is normal if it satisfiesAAT = AT A.
2A real-valued matrixA is unitarian if it satisifiesAT A = I whereI is the identity matrix.
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Figure 2.2: In case of a two-dimensional input space, the kernelΣ with lengthscalesℓi and orientationα
used inkSE can be visualized as ellipse.

There is a one-to-one correspondence between kernel matrices und ellipses which can be exploited for
visualization. Kernels are specified by their eigenvalues and their eigenvectors. The eigenvalues determine
the lengths along the semi-axes of the ellipse while the eigenvectors specify the orientation. The square-
roots of the eigenvalues are the standard deviations of the corresponding normal distribution. This is
visualized in Figure 2.2. The ellipse with semi-axis lengths of a standard deviation of one covers about
39.35% of randomly drawn values of the corresponding normaldistribution. The ellipse drawn with two
standard deviations covers about 86.47% randomly drawn values. The standard deviation along a semi-axis
corresponds to the lengthscale hyperparameterℓi in this direction as used in Equation (2.14).

The orientation matrixR and thus the eigenvectors ofΣ can be specified by an angleα as

R =

(

cosα − sin α
sinα cosα

)

. (2.16)

This parameterization has the drawback thatα has the range[0, 2π). Thus, it is cylindrical which is not
compatible with the range of a GP. This is particularly a problem in the case of gradient ascent tech-
niques where one assumes that the influence of a single parameter with respect to the resulting kernel is
monotonous. To avoid this problem, one can overparameterize the orientation matrix by two parametersu
andv as

R =

(

u
luv

−v
luv

v
luv

u
luv

)

. (2.17)

whereluv =
√

u2 + v2. The range ofu andv is R. This leads to entries inR in the range[−1, 1].
To sum up, the kernelΣ which parameterizeskSE is specified by parameter setsθ = {ℓ1, ℓ2, α} or

θ = {ℓ1, ℓ2, u, v}. In order to learn a suitable covariance function, these parameter sets need to be fitted to
the training setD.



Chapter 3

Non-Stationary Gaussian Process
Regression

Most existing applications of Gaussian process regressionuse stationary covariance functions which as-
sume the same covariance structure over the whole input space. In the case of terrain modeling, however,
it is one of our most important requirements to take local structure into account. This is necessary to derive
a regression function that achieves de-noising in homogenous areas while preserving discontinuities in re-
gions of large structural change. Therefore, we need a modelthat is able to adapt the covariance structure to
local terrain properties. This can be achieved by means of non-stationary covariance functions as described
in this chapter. Section 3.1 formalizes the idea of non-stationarity. Section 3.2 presents the non-stationary
variant of the squared exponential covariance function which we apply in our terrain models. In Section
3.3, we thoroughly analyze this function to get a deep understanding of the resulting covariances. This
is needed to derive adequate terrain models. Section 3.4 describes how prediction takes place in the non-
stationary setting. In Section 3.5, we highlight the implications that the chosen covariance function and
different ways of prediction have on the terrain modeling problem. Finally, Section 3.6 introduces different
learning approaches in the non-stationary framework whichare then described in detail in the following
chapters.

3.1 Non-Stationarity

Stationary covariance functionsk depend only on the differencedij = |xi − xj | of their input values, i.e.,
k(xi,xj) = k(dij). By ignoring the absolute values of the inputs, they fail to adapt to a varying smooth-
ness in the target function. Figure 3.1, for instance, depicts a one-dimensional target function whose
characteristics change significantly atx = 0.2. It is impossible to specify a global lengthscale parameterto
fit this function: the left part of the function demands for a large lengthscale while the right part is wiggly
which necessitates a small lengthscale. Non-stationary covariance functions take the absolute values or
local properties of the input locations into account. This makes it possible to adapt to functions whose
smoothness varies with the inputs. For example, depending on the input location we might choose a differ-
ent lengthscale in the example of Figure 3.1. In the setting of terrain modeling, non-stationary covariance
functions enable us to capture local terrain properties. Therefore, we apply this type of covariance function
in our framework.

13
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Figure 3.1: Function whose smoothness varies across input space. This necessitates a non-stationary
covariance function.

3.2 Non-Stationary Squared Exponential

Paciorek and Schervish[2004] introduced the following family of non-stationary covariance functions. Let
Qij be a quadratic form for the inputsxi andxj defined by

Qij = (xi − xj)
T (

(Σi + Σj)

2
)−1(xi − xj) . (3.1)

Then, one can derive a family of non-stationary covariance functions using the following theorem.

Theorem 3.2.1 Let Qij be defined as in Equation (3.1). If a stationary correlation function,RS(τ), is
positive-definite onRD for everyD = 1, 2, . . . , then

RNS(xi,xj) = |Σi|
1

4 |Σj |
1

4 |(Σi + Σi)/2|− 1

2 RS(
√

Qij) (3.2)

is a non-stationary covariance function, positive-definite onR
D for everyD = 1, 2, . . . .

The central idea of this family of covariance functions is the usage of kernels. Each input locationxi is
assigned its individual kernelΣi. This kernelΣi captures the local properties of the target function at input
locationxi. In areas of wiggly behavior of the target function, for instance, the kernel might incorporate
small lengthscales while in smooth areas it might use large lengthscales. By using different kernels at
different input locations, it becomes possible to account for varying local function properties. Stephenson
et al. [2005] derive a similar formulation of non-stationary covariancefunctions by spatially evolving the
spectral density of a stationary GP model in the frequency domain.

If using the squared exponential covariance functionkSE for RS(τ), one gets the non-stationary
squared exponential covariance function,

kNSE(xi,xj) = σ2
f |Σi|

1

4 |Σj |
1

4

∣

∣

∣

Σi+Σj

2

∣

∣

∣

− 1

2

(3.3)

exp

[

−(xi − xj)
T
(

Σi+Σj

2

)−1

(xi − xj)

]

.

Note that this is the generalized form of the stationary squared exponential given in Equation (2.13). If
one places the same kernel at all input locations, i.e.,Σi = Σj ∀i, j, one gets the stationary squared
exponential. Figure (3.2) illustrates the idea of using local kernels. It depicts a small artificial terrain
containing a simple step. In the stationary case, we place the same kernels at all input locations. This
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(a) Ground truth (b) Prediction with station-
ary GP model

(c) Prediction with non-
stationary GP model

(d) Stationary kernels (e) Non-stationary ker-
nels

Figure 3.2: The stationary squared exponentialkSE uses the same kernel for all input locations which
makes it impossible to adapt to local structures. In this example, this leads to oversmoothing of the step.
The non-stationary squared exponentialkNSE places different kernels at individual input locations consid-
ering the local terrain properties. This makes it possible to preserve the edge while still using large kernels
in the flat areas.

has the effect of oversmoothing the step. In the non-stationary case, we use different kernels to represent
the discontinuity. These kernels have a large lengthscale in the direction along the step, but a very small
one in the direction perpendicular to the step. This makes itpossible to preserve the discontinuity. Figure
3.3 illustrates the covariance structure when kernels are used to represent a discontinuity, in this case a
diagonal step. The covariance function is supposed to assign high covariances among the points of the
same terrain level and small covariances for points that belong to different levels. This is achieved by using
the long and thin kernels oriented along the step as seen in the previous example. The right side of the
figure depicts the resulting covariances with respect to input location(2, 0). Covariances are high in the
area right along the diagonal step which contains points of the upper step-level of which also(2, 0) is part.
In contrast, covariances are small with respect to all points of the lower level.

3.3 Analyzing the Non-Stationary Model

Besides the signal varianceσ2
f , the non-stationary covariance functionkNSE introduced in the last section

consists of two parts, the prefactorp and the exponential parte:

kNSE(xi, xj) = σ2
f · p · e (3.4)

p = |Σi|
1

4 |Σj |
1

4

∣

∣

∣

∣

Σi + Σj

2

∣

∣

∣

∣

− 1

2

(3.5)

e = exp

[

−(xi − xj)
T

(

Σi + Σj

2

)−1

(xi − xj)

]

(3.6)

The exponential parte measures the Mahalanobis distance between the two input locations, i.e., the dis-
tance between the two locations is weigthed according to a kernel which is the average of the individual
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(a) A terrain map containing a discontinuity
(a step)

(b) Suitable covariance structure for the lo-
cation(2, 0) (blue cross) for the problem de-
picted in (a).

Figure 3.3: The covariance function is supposed to assign high covariances among data-points of the same
terrain region.

kernels at both input locations. This kernel gives different weight to the individual dimensions of the
difference vector. Thus, the resulting value ofe is influenced by(i) the Euclidean distance of the two
locations, and(ii) the averaged kernel. This corresponds to the intuition thatthe more distant two input
locations are, the smaller the resulting value becomes. On the other hand, the larger the averaged kernel is,
the less important is the Euclidean distance between both input locations. Averaging has the effect that it
does not matter with respect to the exponential parte whether we combine two medium-sized kernels or a
large with a small kernel. Also, as expected, two large kernels produce significantly higher values than the
combination of a small and a large kernel.

In contrast to the easy to interpret factore, the prefactorp is harder to understand. In fact, under certain
conditions it leads to unexpected effects that are well worth analyzing in detail. This was already noted
by Paciorek as a sidemark in his PhD thesis[Paciorek, 2003] noting "this effect seems to be restricted to
situations in which the kernel sizes change very quickly, soit may not be material in practice" (p. 28).
We, however, experienced that the prefactor has a strong effect on the resulting terrain model. Thus, it
is worthwhile to get a deeper understanding of this prefactor. Intuitively, the prefactor is needed to make
the covariance function positive-definite. It basically introduces a penalty if the shape of the two involved
kernels significantly differs. In the case of equal shape of both kernels, it attains its largest value,p = 1.
Otherwise, the prefactor decreases towards 0 the more different the two kernels are. The effects ofp can be
demonstrated best in the one-dimensional case where the kernelsΣ are one-dimensional “matrices”. Thus,
their determinant corresponds to their only entry. Assuming two kernel matricesA = (a) andB = (b),
the prefactor takes the form

p = (a)
1

4 (b)
1

4 (
a + b

2
)−

1

2 =

( √
ab

1
2 (a + b)

)
1

2

. (3.7)

This corresponds to the square-root of the fraction of the geometric mean and the arithmetic mean which is
always less than or equal 1. Thus, independent of their size,if a andb are equal this will yield a value of1.
In contrast, the larger the difference betweena andb is the smaller is the resulting prefactor. This may lead
to the following unexpected effect. Assume we are given two pairs of kernels,A1 = (a1) andB1 = (b1) as
well asA2 = (a2) andB2 = (b1). The kernels of the first pair have equal size, i.e.,a1 = b1. The kernels
of the second pair differ in size, i.e.,a2 6= b2, but both are significantly larger than the corresponding
kernels of the first pair, i.e.,a2 ≫ a1 andb2 ≫ b1. In this case, the prefactor will be larger for the first pair
(namely1) than for the second pair where it is smaller than 1. This may lead to the effect that large kernels
yield smaller covariance values than small kernels – even ifthe distance between the respective kernels
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(a) Two kernels. The left one is fixed
while we search the optimal right
one.

(b) Covariance as function of
ℓ
right
x of the right kernel

(c) ℓ
right
x = 2.5 (d) ℓ

right
x = 5.7 (e) ℓ

right
x = 10.0

ℓright
x Covariance Prefactor Exponential

2.5 0.275 0.830 0.332
5.7 0.459 0.583 0.788
10.0 0.411 0.445 0.924

(f) Covariance calculation

Figure 3.4: The covariance ofkNSE is not monotonous in the kernel parameters as exemplified fortwo
kernels. The lengthscales of the left kernel (ℓleft

x = 1.0, ℓleft
y = 1.5) and the lengthscale along they-axis

of the right kernel (ℓright
y = 1.5) are fixed, while we test different values forℓright

x .

is the same. The prefactor cannot simply be omitted since it is needed to achieve positive-definiteness of
the covariance matrix. Therefore, one needs to be aware of its behavior when fitting a GP model with the
covariance functionkNSE . In the following, some exemplary two-dimensional situations are presented
which deepen the understanding of the covariance function and thus of our non-stationary model.

Dependency of the Covariance on the Kernel SizeFigure 3.4 illustrates the effects of the different
termsp ande of kNSE for a pair of two kernels. While the first kernel is fixed, the lengthscaleℓx of the
second kernel along thex-axis is scaled inx-direction. Figure 3.4(b) depicts the covariance as a function
of this lengthscale. The corresponding curve is not monotonous. It has its maximum atℓx = 5.7 while
it yields smaller values for smaller and larger lengthscales. Figures 3.4(c) - 3.4(e) visualize exemplary
kernels for the optimal lengthscale and for a smaller and a larger lengthscale. Note that a larger kernel
leads to a smaller covariance value. As the table in Figure 3.4(f) shows, this is due to the prefactor of
kNSE as already noted above. The non-monotonicity of the covariance function with respect to a single
kernel parameter shows that the learning task for a completedata-set where each observation is assigned
its individual kernel may be prone to local extrema – for the covariance function is an essential component
in determining the model structure and thus directly influences the data-likelihood. Without additional
constraints on the kernels, it is extremely difficult to find aglobal optimum.
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(a) Terrain (blue square at input location (2,1))

-1

 0

 1

 2

 3

 4

 5

 6

-2  0  2  4  6
-1

 0

 1

 2

 3

 4

 5

 6

-2  0  2  4  6
-1

 0

 1

 2

 3

 4

 5

 6

-2  0  2  4  6
-1

 0

 1

 2

 3

 4

 5

 6

-2  0  2  4  6
-1

 0

 1

 2

 3

 4

 5

 6

-2  0  2  4  6
-1

 0

 1

 2

 3

 4

 5

 6

-2  0  2  4  6
-1

 0

 1

 2

 3

 4

 5

 6

-2  0  2  4  6
-1

 0

 1

 2

 3

 4

 5

 6

-2  0  2  4  6
-1

 0

 1

 2

 3

 4

 5

 6

-2  0  2  4  6
-1

 0

 1

 2

 3

 4

 5

 6

-2  0  2  4  6
-1

 0

 1

 2

 3

 4

 5

 6

-2  0  2  4  6
-1

 0

 1

 2

 3

 4

 5

 6

-2  0  2  4  6
-1

 0

 1

 2

 3

 4

 5

 6

-2  0  2  4  6
-1

 0

 1

 2

 3

 4

 5

 6

-2  0  2  4  6
-1

 0

 1

 2

 3

 4

 5

 6

-2  0  2  4  6
-1

 0

 1

 2

 3

 4

 5

 6

-2  0  2  4  6
-1

 0

 1

 2

 3

 4

 5

 6

-2  0  2  4  6  8

(b) Kernels

(c) Covariances w.r.t. input
location (2,1)

(d) Prefactors w.r.t. input
location (2,1)

(e) Exponential parts w.r.t.
input location (2,1)

Figure 3.5: Counter-intuitive effect ofkNSE due to the prefactor: the covariances of the input location at
x = 2, y = 1 are larger with respect to some locations across the step than to some neighboring points.

Non-monotonous Covariance across a StepFigure 3.5 illustrates the same effect by means of a small
simulated terrain example. This elevation map consists of four rows with four data-points each. We set
the outer two rows to have long thin kernels oriented along the row. This kernel type is typically used at
discontinuities, i.e., when the influence shall only be along thex-axis. The middle two rows employ small
kernels which are used in the case of rapidly changing environments. This kernel constellation could well
be used at a discontinuity such as the one illustrated in Figure 3.5(a): the kernels close to the discontinuity
are small while the outer kernels try to avoid smoothing across the discontinuity. The bottom three diagrams
of Figure 3.5 visualize the covariances with respect to the input location (2,1), i.e.,x = 2, y = 1. Formally,
the diagrams illustrate the values for

kNSE(

(

x
y

)

,

(

2
1

)

) . (3.8)

As expected, the covariances are largest along the same row.Counter to intuition, however, they are also
comparably large for the outer row (y = 4) which might be part of the other side of the discontinuity. In
contrast, the covariances with respect to the input locations of the inner two rows are small. This effect
is due to the prefactorp which is one for the two outer rows where the same kernel type is employed.p
is significantly smaller for the two inner rows which have a completely different kernel type. In contrast,
the exponential partse follow intuition and yield smaller values the farther a row is away. However,
the prefactor dominates the overall covariance values. This effect might lead to oversmoothing of the
discontinuity as the covariance across the step is large. The solution to avoid such effects is the usage of
smoothly varying kernels. If the kernels of the two inner rows were more similar to those of the outer rows,
the covariance structure would be changed such that the upper row would have least covariance to the input
location(2, 1) as needed for preserving the discontinuity.

Scaled vs. Orthogonal Kernels An analytic example of how different kernel combinations can lead to
the same covariance structure is presented in the following. First, consider the two scaled kernels illustrated
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(a) Scaled kernels (b) Orthogonal kernels

Figure 3.6: Scaled and orthogonal kernels may produce the same values for the covariance function.

in Figure 3.6(a),
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Second, consider the two orthogonal kernels visualized in Figure 3.6(b),

B1 =

(

x 0
0 λ x

)

, B2 =

(

λ x 0
0 x

)

. (3.13)

The resulting prefactor is
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Thus, the prefactors are the same in both kernel constellations. Also the exponential part is the same for
arbitraryx andλ as the averaged kernels are

1

2
(A1 + A2) =

1

2

(

(1 + λ) x 0
0 (1 + λ) x

)

=
1

2
(B1 + B2) .

This example points out the difficulty to find an optimal kernel constellation. In the case of a large ob-
servation set this problem becomes even more severe as different kernel combinations may lead to similar
data-fits. Therefore, additional constraints are needed tomake the optimal solution unique and suitable for
generalization.
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3.4 Prediction for New Input Locations

Our terrain modeling approach builds on the concept of localkernelsΣ. These are used in the calculation
of the non-stationary covariance functionkNSE . In the adaptation procedure of our model, we learn a local
kernelΣi for each input locationxi of the training setD. However, we face a problem when predicting a
new input locationx∗: there is no kernelΣ∗ which is needed to calculate the covarianceskNSE(x∗,xi) of
x∗ with respect to the training locationsxi. There are different possibilities to cope with this problem.

First, one might renounce on calculating an averaged kernel and use only the kernelΣi of the training
location instead. This has the disadvantage that the penalty introduced by the prefactor in the covariance
function gets lost (cf. section 3.3). This may lead to serious side-effects as this penalty has been effective
in calculating the covariance matrixK for the training locations which is also used for prediction.

A secondpossibility is to determine the best stationary kernel for the training set and use this kernel
for input locations that lack a kernel. This has the disadvantage that this counteracts the idea of using
non-stationary kernels. In particular, this will lead to very low covariance values in terrain areas where
the training locations have kernels with shapes strongly adapted to the local properties. The difference in
shape with respect to the stationary kernel will decrease the prefactorp. In turn, the predicted targety∗

will tend to the mean of the GP as all covariances are rather low.
The third and probably best solution appears the usage of a second level learning process over kernel

parameters. Based on the kernels of the training locations,this top-level process predictsΣ∗ which is
used for the prediction ofy∗. This has the advantage that it constrainsΣ∗ to be similar to the training
kernels of the local neighborhood. A natural choice for thistop-level model is a Gaussian process. A
top-level process over kernels, however, introduces the burden of a second optimization problem. Also, a
fully Bayesian treatment has to account for the dependencies among the two levels to optimize the overall
model. A hierarchical approach that employs two GP levels[Paciorek and Schervish, 2004] is described
in Section 3.6. This approach, however, is only feasible forsmall data-sets and thus not applicable in the
domain of terrain modeling. As an approximation, one might therefore simply use a weighted average
over the local neighborhood to estimateΣ∗. This mimics the use of an isotropic, stationary GP model as
top-level process.

3.5 Implications for Terrain Modeling

When fitting a non-stationary GP model to a regression problem such as a terrain data-set, care has to be
taken to avoid overfitting as in any learning problem. As described above, overfitting takes place if the
covariance function assigns very high covariance values topoints in the close neighborhood and small
values to points further apart. In the case of usingkNSE , overfitting may be caused by both of its two
subfunctions, the prefactorp and the exponential parte: (i) Very small kernels lead to small covariance
values with respect to almost all points due toe. (ii) Kernels with different shapes, no matter which
orientation and size, lead to small covariance values as thedifferent shapes decreasep. Even if two kernels
are large, but of different shape, this might yield a small covariance due top. Therefore, overfitting is also
possible with large kernels. To avoid overfitting, one thus needs to ensure two requirements:

1. Kernels should not become too small.This avoids overfitting by means of the exponential part.

2. Kernels should vary smoothly across input space.This avoids overfitting by means of the prefactor.

The second requirement also makes sense from an intuitive point of view. The kernel structure never needs
to change rapidly across input space – in contrast to the terrain itself which may exhibit sudden changes.
Note that also at a discontinuity the kernels vary smoothly as illustrated in Figure 1.4. On both sides of
the discontinuity the same specialized kernel types (thin kernels elongated along the discontinuity) can be
applied.
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3.6 Adapting Kernels

Learning a GP model means to optimize the hyperparameters ofthe process according to some optimiza-
tion criterion such as the marginal data-likelihood given in Equation (2.9). Besides the global noise rateσn

and the signal varianceσf , the parameters of the local kernels used bykNSE form our set of hyperparam-
eters. Optimizing these kernel parameters corresponds to adapting the kernels to the local terrain structure.
Depending on the parameterization, we have three or four parameters per kernel (cf. Section 2.4). Givenn
observations, we get3n + 2 or 4n + 2 hyperparameters in total. Obviously, this is a hard high-dimensional
optimization problem vulnerable to local optima. Depending on the optimization criterion, the optimiza-
tion problem isill-posed, i.e., there exists no unique solution. Different kernel combinations may lead
to similar data-fits due to the nature ofkNSE . In order to make this problem well-posed, we need to
introduce additional constraints on the parameter space. As discussed in Section 3.5, one such criterion
is to constrain the kernels to vary smoothly across input space. There are different ways to incorporate
this requirement. Paciorek and Schervish[2004] who introduced the family of non-stationary covariance
functions used in this thesis employ a hierarchical model for this purpose. They introduce a top-level GP
model on the kernels as follows. They define a multivariate process for the matrix-valued functionΣ(·).
To model this process, they use an independent univariate process for each kernel parameter. To make
the kernels vary smoothly across input space, all single processes are given a GP prior with a common
stationary covariance function. Straightforward optimization, e.g., by means of gradient ascent, however,
is precluded by the additional GP models for the kernel parameters. Therefore, Pacioreket al. employ
Markov-Chain Monte-Carlo (MCMC) sampling. Unfortunately, due to the large number of parameters this
results in slow computation, "limiting the feasibility of the model to approximatelyn < 1000" (p. 7). In
terrain modeling we are dealing with large numbers of training observations. Thus, this hierarchical model
is not applicable to our problem setting and we need to explore alternatives for adapting the kernels of the
covariance function. This thesis studies two possibilities: a gradient ascent approach over the pseudo data-
likelihood introduced in Chapter 4 and an approach based on local terrain gradients presented in Chapter
5. By means of both procedures, it is possible to fulfill the requirements that the kernels vary smoothly
across input space and do not become too small.
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Chapter 4

Gradient Ascent

Our first approach to learn the optimal local kernelsΣi of the non-stationary covariance functionkNSE is
to maximize the marginal data-likelihood restated here forconvenience,

L = log p(y|X) = −1

2
yT K−1

y y − 1

2
log |Ky| −

n

2
log 2π (4.1)

where we use the shorthandKy = K + I σ2
n. A popular optimization technique is gradient ascent. Due to

the interdependencies among the many kernel parameters involved inkNSE , however, the gradient of this
formula cannot be derived analytically. As an approximation, we follow the common practice to optimize
the pseudo-likelihood[Besag, 1977]. We do not view the kernel parameters as random variables in our
optimization process, but assume them all as fixed except theone we are optimizing. This is described in
Section 4.1 which enables us to find analytic forms for the gradients. In contrast to hybrid approaches that
use gradient ascent to derive a proposal distribution for MCMC [Paciorek, 2003], the approach proposed in
this chapter is fully based on gradient ascent. Section 4.2 describes our learning procedure. In Section 4.3,
we propose a method to incorporate smoothness priors over the kernel parameters. Section 4.4 presents
our experimental evaluations and results. In Section 4.5, we discuss this approach.

4.1 Partial Derivatives

We optimize the likelihoodL by taking the gradient with respect to thepseudo-likelihood. This means
we assume all parameters fixed except the one for which we are calculating the derivative. The partial
derivative of parameterp of kernelΣi belonging to input locationxi takes the form

∂

∂θip

log p(y|X, Θ) =
1

2
yT K−1 ∂K

∂θip

K−1y − 1

2
tr(K−1 ∂K

∂θip

) (4.2)

=
1

2
tr((ααT −K−1)

∂K

∂θip

) where α = K−1y . (4.3)

23
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The proof is given in the appendix in Section A.3. To compute (4.3) we need to calculate the derivative of
the covariance matrix

∂K

∂θip

=


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


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. (4.4)

This matrix has non-zero entries only for thei-th row and column which contain the covariances of input
locationxi. Thus, we need to calculate the derivatives of all covariance functions for the input locationxi

since only these incorporateΣi and thusθip. These derivations require lengthy algebraic manipulations,
but can be derived analytically. They are described in the appendix in Section A.4. The resulting functions
can be evaluated in constant time.

4.2 Learning Procedure

As described in Section 3.3, the data-likelihood given in Equation (4.1) contains many local extrema since
it is not monotonous in the kernel parameters and different kernel combinations may lead to similar data-
fits. In order to avoid bad local optima, we need a suitable learning procedure. This problem is akin
to the problem of weight optimization in neural networks. Inthis area, the adaptation procedureRProp
[Riedmiller and Braun, 1993] is state-of-the-art. The idea ofRProp is to perform gradient ascent, but to
ignore the length of the gradient because it has no general intuitive interpretation that might be used for
adaptation. In contrast, learning is based only on the temporal behavior of the sign of the derivative.

We propose to take up these ideas and adaptRProp to our needs. Our learning algorithm is given in
Algorithm 1. First, we learn the optimal stationary kernel parameters by standard gradient ascent and use
them as initialization for the individual kernelsΣi. In an iterative procedure, we optimize each kernelΣi

by means of partial derivatives as follows. Each kernel parameterθip maintains its individual update-value
αip which completely defines the length of the update step.αip is adapted according to the direction of
the derivative. If the derivative retains its sign in subsequent iterations,αip is increased by a factorη+

in order to speed up convergence (else if-part in Algorithm 1). If the sign changes (else-part), indicating
that the last update was too big,αip is decreased by a factorη−. Also, the previous step is completely
retracted. Because of this backtracking step, the derivative is supposed to change its sign once again. To
avoid double punishment ofαip, the backtracking flagβip indicates that no adaptation ofαip shall take
place in the following step (if -part). In our experiments, we foundη+ = 1.1 andη− = 0.5 to produce
the best results. We set the adaptation maximum∆max = 3.0 and the minimum∆min = 0.00001. The
time complexity of this algorithm is as follows. Assume we needm iterations until convergence. In one
iteration, we adapt all parameters of each kernel. Givenn observations, we havec · n adaptations per
iteration (c = 3, 4 depending on kernel parameterization). A single adaptation requires the calculation of
the partial derivative with respect to this parameter. Thisnecessitates the derivation of the covariance matrix
given in Equation (4.4) which requires calculatingn covariance functions, namely those that incorporate
the respective kernel. The derivative of a single covariance function with respect to a specific kernel
parameter is calculated in constant time. Thus, we get a total complexity ofO(m · c n · n) = O(m n2).
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Algorithm 1 Gradient Ascent Kernel Adaptation

Input: observation setD, η+, η−, ∆max, ∆min

Output: optimal kernelsΣi

Learn global parametersΘstat for kSE .
Initialize all local kernelsΣi with Θi = Θstat.
while not convergeddo

for all Σi do
for all θip ∈ Θi do

if βip then // Backtracking in iteration before
αip(t) = αip(t− 1)
∆θip(t) = sign( ∂L

∂θip
(t)) ∗ αip(t)

θip(t + 1) = θip(t) + ∆θip(t)
βip = false

else if ∂L
∂θip

(t− 1) ∗ ∂L
∂θip

(t) > 0 then // Derivative retains sign

αip(t) = min(αip(t− 1) ∗ η+, ∆max) // → Increase convergence speed
∆θip(t) = sign( ∂L

∂θip
(t)) ∗ αip(t)

θip(t + 1) = θip(t) + ∆θip(t)
else // Derivative changes sign

αip(t) = max(αip(t− 1) ∗ η−, ∆min) // → Decrease convergence speed
θip(t + 1) = θip(t)−∆θip(t− 1)
βip = true

end if
end for

end for
end while

4.3 Regularization

Taking the gradient with respect to only one single parameter, as proposed in the previous section, has
severe practical limitations. As described in the last chapter, the covariance functionkNSE is strongly
influenced by the shapes of the kernels of the two input locations. Even if these kernels vary only slightly,
the covariance might decrease quickly. This has the effect that the gradient can only moderately indicate
kernel modifications if it wants to retain a high covariance value with respect to an input location with a
kernel of similar shape. On the other side, decreasing the covariance between two input locations can be
achieved simply by choosing different kernel shapes. This easily leads to overfitting. As many different
kernel combinations may lead to similar data-fits, the optimization problem is ill-posed. To achieve a
model with robust generalization performance, we need to impose the constraint that kernels vary smoothly
across input space (cf. Section 3.5). One way to achieve thisis by introducing a further constraint into
the optimization criterion, i.e., the marginal data-likelihood in our case. This is described by the theory of
Tikhonov regression[Tikhonov, 1943], also known as ridge regression[Hoerl, 1962], which explains how
to derive a well-posed problem by additional assumptions. In the ridge regression formulation, we want to
minimize the functional

J [f ] = λ ‖ f ‖2H + Q(y, f ) (4.5)

wherey are the observed training targets andf are the values predicted by functionf . The first term is
the regularizer which encodes the smoothness assumptions of the hypothesis spaceH . The second term
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assesses the quality of the data-fit. This might be, for instance, the squared error which corresponds to the
negative log-likelihood of a Gaussian noise model.λ trades off both terms. The regularization method
yields a minimizerf∗ of this functional. This minimizer can be viewed as the maximum a-posteriori
(MAP) function under the posterior distribution over functions of the GP[Rasmussen and Williams, 2006].
In contrast, the GP model represents a posterior distribution over functions (and not only a single estimated
function).

Using the regularizer as defined in Equation (4.5) has no advantage over the GP procedures as it yields
the same MAP function. It points out, however, how we can impose on our model the constraint that
the kernels vary smoothly across input space. We derive a constrained likelihoodLC by introducing a
regularizer for each kernel parameter typeθp (θp ∈ {ℓ1, ℓ2, α} or {ℓ1, ℓ2, u, v})

Rθp
=
∑

i

∑

j

‖ θip − θjp ‖
‖ xi − xj ‖

(4.6)

which we combine with the original likelihoodL to a new maximization criterion

LC = L −
∑

θp

λθp
Rθp

. (4.7)

Rθp
quantifies the difference of the kernel parametersθp for neighboring input locations. Since this penalty

term does not depend on the targets, it is conceptually equivalent to a prior on the hyperparameters, i.e.
the kernel parameters. We use the standard norm‖ a ‖=

√
a2. The regularization term enforces the

constraint that the closer two input locations are the more similar are their kernels. The coefficientλθp

defines the importance each kernel parameter type has. It is difficult to derive this coefficient analytically,
so it should be estimated by means of cross-validation. The derivative of the regularization term is given
in the appendix in Section A.4.1.

4.4 Experiments

To investigate the modeling capabilities of our gradient ascent approach, we applied it to different synthetic
data-sets. In a first experiment, we learned the kernels for adifficult terrain structure. Then, we performed
experiments where we adapted lengthscales and orientationseparately to assess the general ability of this
approach to fit kernel parameters to local properties. We evaluated the following variants of the algorithm:

• With and without a regularization term that constrains the kernels to vary smoothly across input
space (cf. Section 4.3).

• With and without removal of observation points to assess thegeneralization capabilities.

• Different approaches for setting kernel matrices on locations where no latent kernel structure has
been adapted (e.g., at the gap locations that are not contained in the training set; cf. Section 3.4).

4.4.1 Adapting All Parameters

In our first experiment, depicted in Figure 4.1, we applied our learning procedure to a difficult terrain data-
set consisting of 225 data-points (Figure 4.1(a)). This setcontains uniform regions as well as sharp edges
and corners, which are hard to adapt to locally. Note, for example, that the edge between the lowest and
the second lowest plateau has a curvature and that three different height levels can be found in the local
neighborhood of the corner approximately in the middle of the diagram. To initialize the kernels at the
input locations, we learned the best stationary kernels forthis map. Prediction with this stationary GP is



4.4. EXPERIMENTS 27

(a) Ground truth and observation (b) Optimal stationary
kernels

(c) Prediction with stationary GP

(d) Kernels without
regularization (0%
gaps)

(e) Kernels without
regularization (15%
gaps)

(f) Kernels without
regularization (15%
gaps; kernel-averaging
for gaps)

(g) Predictionwithout regularization
(0% gaps)

(h) Predictionwithout regularization
(15% gaps)

(i) Predictionwithout regularization
(15% gaps; kernel-averaging for
gaps)

(j) Kernels with regu-
larization (0% gaps)

(k) Kernels with regu-
larization (15% gaps)

(l) Kernels with regu-
larization (15% gaps;
kernel-averaging for
gaps)

(m) Prediction with regularization
(0% gaps)

(n) Prediction with regularization
(15% gaps)

(o) Prediction with regularization
(15% gaps; kernel-averaging for
gaps)

Figure 4.1: Results of gradient ascent adaptation without and with regularization on a difficult artificial
map.
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poor as it largely oversmoothes the discontinuities in the map. We applied the gradient ascent procedure
described in Algorithm 1 to learn individual kernels for theinput locations. Convergence was achieved
after about 50 iterations.

Without regularizationterm, the learned kernel map looks chaotic: small kernels can be found next
to very large kernels and kernel orientations change abruptly. While many of the learned kernels meet
expectation, e.g. the long thin kernels at the border of the upper-left plateau, other kernels do not at all
correspond to intuition, e.g. the very long, thin kernels atthe bottom-left step which are oriented not along,
but perpendicular to the step. Nevertheless, the corresponding prediction fits the data very well. This is,
however, deceiving as for many parts of the map this is due to severe overfitting. As the kernel shapes
vary significantly, the covariances among the input locations get small. This problem becomes evident
when we remove data-points in the training set to measure thegeneralization capabilities of the model.
We removed 15% of the data-points and repeated the experiment. The prediction for the gaps is poor as
expected. First, we did not assign kernels to the unseen input locations (cf. Section 3.4). In this case, we
only make use of the kernel of the other data-point with respect to which we are calculating the covariance.
As an alternative, we averaged kernels by means of an isotropic two-dimensional Gaussian with a standard
deviation of 2 and set the resulting kernel estimates at the unseen locations which mimics a hierarchical
top-model for the kernels. This, however, improved the prediction performance only slightly.

With regularizationterm, the learned kernel map is much more structured. In mostparts of the input
space, kernels vary smoothly. In case of 15% of the data-points removed, the prediction quality is still un-
satisfactory when one does not assign individual kernels tothe unseen locations. If we use neighborhood
averages, however, the prediction quality improves. The effect of regularization is clearly visible here.
Though still being far from perfect, the resulting predictive map reliably closes the gaps. Close inspection
of the filled kernel map reveals that in spite of regularization some kernels still have shapes that differ sig-
nificantly in comparison to their neighborhood. These outliers might be accounted for by using a quadratic
penalty for the regularizer.

This experiment reveals that finding an optimal kernel map isa hard problem. Due to the many pa-
rameters involved, it is prone to local extrema. Nevertheless, the results indicate that our gradient ascent
procedure is in principle capable of learning an adequate kernel structure and that regularization is crucial.
In order to study this approach in more detail, we simplified the problem-setting to problems where only
some of the kernel parameters are adapted.

4.4.2 Adapting Lengthscales I (qualitatively)

In this experiment, we investigated the capability of our model to reliably adapt the lengthscales of the
kernels when their orientations are fixed. Figure 4.2 presents our adaptation results for a small data-set
consisting of 81 data-points. 9 points, at least two rows distant from the map border, were randomly
removed. The set represents a straight step along they dimension. A stationary model oversmoothes the
step as visualized in Figure 3.2. Our gradient ascent procedure needs to find adequate kernels to preserve
the step. Without regularizationterm, a significantly larger data-likelihood is achieved. This is due to
the large kernels the model is allowed to produce in this case. Using large kernels results in a smaller
complexity penalty which boosts the data-likelihood. Despite of the large kernels, the model is still able
to fit the data well by exploiting the prefactor of the covariance function. The model uses two different
kernel types to preserve the discontinuity, one for each side of the step. Although both types are large,
the covariance across the step is small since the types differ significantly in shape which decreases the
prefactor ofkNSE . A third completely different kernel type is used along the step. This avoids influence
of any of the two step sides which thus corresponds to overfitting. Therefore, the learned model is not able
to generalize well and to reliably fill the gaps. In particular, the gaps along the step are filled poorly. These
problems are only slightly improved if one places neighborhood average kernels at the unseen locations.
In contrast, gradient ascentwith regularizationterm is able to predict the discontinuity correctly. The
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Figure 4.2: Results of gradient ascent adaptation after convergence on artificial terrain with 10% of the
data-points removed. Only kernel lengthscales are adapted. For kernel-averaging, the missing kernels
of the unseen locations were calculated as an average over the local neighborhood based on an isotropic
Gaussian with a standard deviation of 2.
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(a) Noiseσ = 0.0 (b) Noiseσ = 0.1 (c) Noiseσ = 0.2

Figure 4.3: Performance of gradient ascent in terms of MSE onmap depicted in Figure 4.2(b) with respect
to different noise levels and fractions of missing observations (20 runs per configuration).

regularization effect can be observed easily: the kernels vary smoothly in input space and are similar. As
the discontinuity needs to be modeled by thin, elongated kernels in the center structure, this model is not
able to improve on the penalty term of the likelihood by extending the kernel size. This has the desired
effect that overfitting is avoided. While all other unseen locations are almost perfectly predicted, two
outliers can be observed. If one places averaged kernels at the unseen locations, this problem disappears.
This has the minor disadvantage, however, that the discontinuity becomes less sharply represented at some
other unseen locations.

4.4.3 Adapting Lengthscales II (quantitatively)

We repeated the previous experiment on the small simulated terrain, which represents a simple step and
is depicted in Figure 4.2(b), for different combinations ofnoise distortion and fractions of missing data.
We applied our gradient ascent procedure to learn the lengthscales of the kernels while we left the angles
fixed. In particular, we explored noise levels ofσ = 0.0, 0.1, 0.2. As the step has an elevation of 1, it
does not make sense to consider larger noise values. The fractions of removed points were 0%, 10%, 20%,
30%, 40%, and 50%. Each combination was repeated 20 times with different random seeds. As evaluation
metric, we used the mean squared error

MSE(X ) =
1

m

m
∑

i=1

(yi − y∗
i )

2 (4.8)

of predicted elevationsy∗
i relative to ground truth elevationsyi on the set of input locationsX = {xi}81i=1.

We used the regularization weightsλx = 0.5 andλy = 10.0 which we found to produce best results.
Kernel-averaging for the unseen locations was done by meansof an isotropic Gaussian with a standard
deviation of 2. Figure 4.3 presents our results. In all combinations of noise and gap fraction, the gradient
ascent adaptation clearly performs better in case of involving a regularization term. Prediction also signifi-
cantly improves when we place averaged kernels estimated from the local neighborhood at the unseen input
locations (instead of using only the other kernel when calculating kNSE with respect to an observation).
The baseline corresponds to a simple hyperplane-fit. Using gradient ascent with kernel-averaging always
leads to a better performance than the baseline. This provesthe capability of our non-stationary GP model
to adequatly adapt to and preserve discontinuities.



4.4. EXPERIMENTS 31

(a) Ground truth and observation (b) Initial kernels (c) Prediction with initial kernels
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(f) Kernels without
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Figure 4.4: Results of adapting kernel orientations by means of gradient ascent
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4.4.4 Adapting Orientation

In this experiment, which is presented in Figure 4.4, we investigated learning the optimal kernel orientation
by gradient ascent. While keeping the lengthscales of the kernels fixed, their angles were adapted to the
terrain structure. Again, we used the terrain with the simple step. We applied the same kernel shape for
the whole input space: a thin and elongated kernel initialized at an orientation of 45◦ with respect to the
discontinuity. The optimal orientation is 0◦ so that the kernels are oriented along the step. In the case of0%
gaps, including a regularization term does not show a benefit. While not all kernels get optimally rotated,
the important kernels next to the step receive the correct orientation which leads to a good data-fit. Thus,
the learning procedures stops adapting the kernels. Some kernels at the map border, however, get rotated
wrongly even when using a regularization term. This seems tobe an artifact of their special location. Also
if 15% of the data-points are removed, using a regularization term yields only a slight improvement. The
same holds for kernel-averaging for unseen locations whichleads only to a minor prediction improvement.
The discontinuity is well represented which substantiatesthe claim that gradient ascent optimization is a
promising procedure also for learning kernel orientation.

4.5 Discussion of Experimental Results

Gradient ascent optimization is a promising way to learn thelocal kernels for a non-stationary GP model.
It is prone, however, to get trapped by one of the many local optima. We were able to show on a simulated
terrain that gradient ascent is able to learn almost optimallengthscales and angles in separate adaptation
procedures. This can be seen as a proof of concept for our approach in a limited problem setting. In
our experiments, we did not focus on optimization of the parameters of the learning procedure itself.
In order to make this approach work in more complex, real terrains, the learning procedure based on
gradient ascent needs more sophistication to avoid local optima. A first step in this direction is the use of
a regularization term which constrains kernel parameters to vary smoothly across input space. We have
qualitatively and quantitatively illustrated the benefit of such a regularization term. Furthermore, we found
that in the prediction for unseen areas it is most useful to estimate the corresponding kernels based on
the kernels of the local neighborhood. Already a simple averaging over the neighborhood results in major
improvements in prediction quality.



Chapter 5

Terrain Gradient Adaptation

The gradient ascent model presented in the previous chapterprovides a flexible and general framework for
learning the kernels used bykNSE . It is, however, prone to the many local optima of our terrainmodeling
problem. As an alternative approach to fitting the non-stationary GP model, we propose to learn the optimal
kernels by means of adaptation to the local terrain gradientstructure. We model the kernel matrices as
independent random variables that are initialized with thelearned kernel of the corresponding stationary
model and then iteratively adapted to the local structure ofthe given terrain data. This approach is inspired
by work in the computer vision community where the problem ofadapting smoothing kernels to local
structure has been well studied. It is therefore not surprising that, although image processing algorithms
are typically restricted to dense and uniformly distributed data, we can use findings from that field as an
inspiration for our terrain adaptation task. Section 5.1 introduces the concept of elevation structure tensors.
These tensors guide the adaptation of the local kernels as described in Section 5.2. Section 5.3 presents the
complete learning algorithm based on terrain gradients. Section 5.4 describes our experiments. In Section
5.5, we discuss the experimental results.

5.1 Elevation Structure Tensors

Middendorf and Nagel[2002] present a technique for iterative kernel adaptation in the context of optical
flow estimation in image sequences. Their approach builds onthe concept of the so called grey-value
structure tensor (GST), which captures the local structureof an image or image sequence by building the
locally weighted outer product of grey-value gradients in the neighborhood of the given image location.
Analogously to their work, we define theelevation structure tensor(EST) for a given locationxi as

EST (xi) := ∇y(∇y)T (xi) , (5.1)

wherey(x) denotes the terrain elevation at a locationx and · stands for the operator that builds a locally
weighted average of its argument according to the kernelΣi. For two-dimensionalxi, Equation (5.1)
calculates the locally weighted average of the outer product of ∇y = ( ∂y

∂x1

, ∂y
∂x2

)T . This local elevation
gradient can be estimated directly from the raw elevation samples in the neighborhood of the given input
locationxi.

Equation (5.1) yields a tensor, representable as a2 × 2 real-valued matrix, which describes how the
terrain elevation changes in the local neighborhood of location xi. The first eigenvector of this matrix
points into the direction of the strongest ascent. The corresponding eigenvalue measures this ascent, while
the second eigenvalue measures the ascent in the perpendicular direction. Thus, small eigenvalues denote
flat areas while large eigenvalues are typical for regions ofsteep ascent, e.g. at discontinuities.

33
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(a) Artificial data-set (b) Tensors

Figure 5.1: Elevation structure tensors (EST) capture local terrain properties.

To get an intuition, how this can guide the adaptation of the local kernelΣi, consider the following
situations. Letλ1 andλ2 denote the eigenvalues ofEST (xi) andβ be the orientation angle of the first
eigenvector. Ifxi is located in a flat part of the terrain, the elevation gradients∇y are small in the neigh-
borhood ofxi. This results in two equally small eigenvalues ofEST (xi). In contrast, ifxi was located in
an ascending part of the terrain, the first eigenvalue ofEST (xi) would be clearly greater than the second
one and the orientationβ would point towards the strongest ascent. Figure 5.1 illustrates the tensors of
an artificial map. The most prominent structural change is the steep step in the bottom-left corner which
is reflected by the long thin tensors oriented perpendicularto this step. Smaller tensors of similar shape
dominate at the other smaller steps. In contrast, the homogenous terrain areas in the upper right and upper
left corner are represented by very small tensors without a significant elongation.

5.2 Adapting Kernels

As discussed by Middendorf and Nagel[2002], the kernelΣi describing the extent of the local environment
of xi should be set to the inverse ofEST (xi). This corresponds to intuition: In regions of low structural
change such as flat areas, the eigenvalues of the tensors are small. These regions have homogenous local
properties, so the covariance is large also with respect to distant input locations. Thus, the kernels should be
large. In contrast, the eigenvalues of tensor eigenvectorspointing into directions of rapid structural change
are large. Along these directions, covariances should quickly decrease. Therefore, the corresponding
kernel eigenvalues should be small. Since the kernel eigenvalues are adapted according to the eigenvector
directions of the tensors, the kernel orientation is set corresponding to the orientation of the tensor. By
means of this adaptation strategy, flat areas are populated by large, isotropic kernels, while sharp edges
have long, thin kernels oriented along the edge directions.Corner structures, having strong elevation
gradients in all dimensions, result in relatively small local kernels.

To prevent unrealistically large kernels, Middendorf and Nagel describe how this inversion can be
bounded to yield kernels, whose standard deviations lie between given valuesσmin andσmax. Based on
their findings, we give three concrete local adaptation rules that have been compared in our experimental
evaluation. Letλ1 andλ2 denote the eigenvalues of the EST andα its orientation. To simplify notation, we
introduceλk = λk/(λ1 + λ2), k = 1, 2, and use the kernel parameterization of Equation (2.15) restated
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(a) σmax = 1.0 (b) σmax = 3.0 (c) σmax = 5.0

Figure 5.2: Curves for adaptingℓ2 based on the normalized eigenvalueλ (σmin = 0.5)

here,

Σ = R

(

ℓ2
1 0
0 ℓ2

2

)

R−1 , (5.2)

where the lengthscalesℓ1 andℓ2 scale in orthogonal directions andR is a rotation matrix specified by the
orientation angleα.

1. Direct Inverseadaptation:

Σi = EST (xi)
−1

2. Bounded Linearadaptation:

ℓ2
k = λk σ2

min + (1− λk) σ2
max , k = 1, 2

3. Bounded Inverseadaptation:

ℓ2
k =

σ2
maxσ2

min

λk σ2
max + (1 − λk) σ2

min

, k = 1, 2

Figure 5.2 presents curves forℓ2
k for differentσmin andσmax. TheDirect Inverseadaptation procedure

has the disadvantage that the resultingℓk are unbounded. If the EST is very small, the resulting kernelcan
become unrealistically large which disrupts the complete adaptation procedure. TheBounded Linearadap-
tation procedure leads to rather balanced kernels without astrong bias for one dimension as the resulting
eigenvalues are of similar order. In contrast,Bounded Inversestrongly favors the smaller eigenvalue. This
has the effect that it is more suitable to closely fit the data,but is more prone to overfitting, whileBounded
Linear copes better with sparse data and gaps.

5.3 Learning Procedure

So far, we have described how to perform one local adaptationstep for an arbitrary kernelΣi. As the com-
plete learning and adaptation procedure, which is also summarized in Algorithm 2, we propose to assign
to each input locationxi of the training setD a kernel matrixΣi which is initialized with a global pa-
rameter vectorΘ. Θ has been learned using standard GP learning with the stationary squared exponential
covariance functionkSE . The local kernels are then iteratively adapted to the elevation structure of the
given terrain data-set until their parameters have converged. The local weights in the tensor computation
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of the average· are chosen according to the current estimate ofΣi. In order to speed up the adaptation,
we introduce a learning rateηi to make the adaptation speed for eachΣi depend on the local data-fit, given
by

df(xi) =
p(yi|xi)

maxy p(y|xi)
. (5.3)

This data-fit quantifies the regression error and corresponds to the normalized observation likelihood, i.e.,
the likelihood of the observationyi divided by the maximum of the predictive distribution forxi. We
also take the kernel complexity into account to avoid overfitting which we approximate byci = 1/|Σi| =
1/(l21l

2
2) (see Appendix section A.1). Both components are used to forma learning rate parameter cal-

culated by means of a modified sigmoid function,ηi = sigmoid(−df(xi) · ci; δ), where the additional
parametersδ are tuned empirically.ηi defines how quickly the current kernel estimate is adapted tothe
local structure. Intuitively, we get a high adaptation speed when the data-fit relative to the kernel size is
small. Algorithm 2 summarizes the adaptation procedure.

Algorithm 2 Local Kernel Adaptation Based on Terrain Gradients
Input: observation setD, σmin, σmax

Output: optimal kernelsΣi

Learn global parametersΘstat for kSE .
Initialize all local kernelsΣi with Θi = Θstat.
while not convergeddo

for all Σi do
Estimate the local learning rateηi.
Estimate EST(xi) according toΣi.
Σ∗

i ← ADAPT(EST(xi))
Σi ← ηiΣ

∗
i + (1− ηi)Σi

end for
end while

5.4 Experiments

To evaluate the terrain gradient adaptation approach, we performed several experiments on synthetic and
real data. First, we tested our approach on a small, though difficult artificial terrain data-set. Then, we
investigated two real-world scenarios to prove the capability of our approach to predict terrain elevations
in occluded areas. In a final experiment, we applied our approach to a large real-world environment. For
the real-world data-sets, we acquired sets of 3D scans of a scene using a mobile robot equipped with a laser
range finder and a pan-tilt unit. To evaluate our predictions, we use the mean squared error (MSE) as given
in Equation (4.8).

5.4.1 Artificial Terrain Data

The first set of experiments was designed to illustrate the terrain gradient adaptation approach, to quantify
the benefits of local kernel adaptation, and to compare the three different adaptation rules. As a test
scenario, we took the artificial terrain data-set depicted in Figure 5.3 consisting of 441 data-points, which
contains uniform regions as well as sharp edges and corners,which are hard to adapt to locally. Note, for
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Figure 5.3: An artificial scenario used in the experimental evaluation, that exhibits several local features
that are hard to adapt to. Test data-sets are generated by adding white noise and then randomly removing
a portion of the data-points.

example, that the edge between the lowest and the second lowest plateau has a curvature and that three
different height levels are present in the vicinity of the corner approximately in the middle of the diagram.
To generate training data-sets for the different experiments reported on here, we added white noise of a
varying standard deviationσ to the true terrain elevations and randomly removed a portion of the samples
to be able to assess the model’s predictive abilities.

Figure 5.4 visualizes a complete adaptation process using the Bounded Inverseadaptation procedure
for a data-set generated with a noise rate ofσ = 0.3. Figures 5.4(c)-5.4(e) give the results of standard GP
regression which places the same kernels at all input locations. While this leads to good smoothing perfor-
mance in homogeneous regions, the discontinuities within the map are also smoothed as also quantified by
the absolute errors in the third column. Consequently, those locations get assigned a high learning rate, see
right column, for the first local kernel adaption step.

The first adaptation step leads to the results depicted in Figures 5.4(g)-5.4(i). It is clearly visible, that
the steps and corners are now better represented by the regression model. This has been achieved by
adapting the kernels to the local structure, see the first column of this row. Note, how the kernel sizes
and orientations reflect the corresponding terrain properties. Kernels are oriented along discontinuities
and are small in areas of strongly varying elevation. In contrast, they have been kept relatively large
in homogeneous regions. After three iterations, the regression model has adapted to the discontinuities
accurately while still de-noising the homogeneous regions(Figures 5.4(k)-5.4(m)). After this iteration,
the local learning rates, see Figure 5.4(n), have all settled to low values. It is important to note that the
local error distribution is non-uniform over the terrain ascan be seen from Figure 5.4(m). In homogenous
areas such as the upper right plateau, denoising has been successful so errors are small there. Along the
discontinuities already minor prediction errors may lead to high error measures. Thus, local errors are
larger there although they have drastically been reduced incomparison to the standard GP model.

In a second experiment, we investigated the prediction performance of our approach for all three adap-
tation rules presented in Section 5.2. We added white noise of a varying noise level to the artificial terrain
depicted in Figure 5.3. The diagrams in Figure 5.5 give the results for different amounts of points removed
from the noisy data-set. When no points are removed from the test set, theBounded Inverseadaptation rule
performs best for small noise values. For large noise values, Bounded LinearandDirect Inverseachieve
better results. In the case of 15% and 30% of the data-points removed,Direct InverseandBounded Inverse
are not competitive. In contrast,Bounded Linearstill achieves good results for all noise levels. Overall,
Bounded Linearproduces reliable predictions for all tested noise rates and data densities and we therefore
employed this adaptation rule in all subsequent experiments. Figure 5.6 depicts the convergence behavior
of our approach using theBounded Linearadaptation rule in terms of the mean squared prediction error
for different amounts of points removed from the noisy data-set. After at most6 iterations, the errors have
settled close to their final value. Concerning the computational efficiency, a single iteration per run takes
in average about 44 seconds on this data-set on a PC with a 2.8 GHz processor and a 2 GB CPU.
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(a) Test data-set (Noise:σ = 0.3) (b) Local absolute errors

(c) Local kernels (iter. 0) (d) Regression without kernel adap-
tation (standard GP)

(e) Local absolute errors (f) Learning rate

(g) Local kernels (iter. 1) (h) Regression after first iteration (i) Local absolute errors (j) Learning rate

(k) Local kernels (iter. 3) (l) Regression after third iteration (m) Local absolute errors (n) Learning rate

Figure 5.4: The local kernel adaptation process on an artificial terrain data-set: the original data-set, de-
picted in Figure 5.3, exhibits several local features that are hard to adapt to. The test data-set (a) was
generated by adding white noise, resulting in the absolute errors shown in (b). The second row of diagrams
depicts the initialization state of our adaptation process, i.e. the results of standard GP learning and regres-
sion. The following two rows depict the results of our approach after the first and after the third adaptation
iteration respectively. In the first column in this figure, wevisualize the kernel dimensions and orientations
after the corresponding iteration. The second column depicts the predicted means of the regression. The
third column gives the absolute errors to the known ground truth elevations and the right-most column
gives the resulting local learning ratesηi for the next adaptation step.
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(a) All data-points given. (b) 15% of the data-points removed. (c) 30% of the data-points removed.

Figure 5.5: Prediction accuracy for the scenario depicted in Figure 5.3 with (a) all data-points available,
(b) 15% of the data-points removed randomly, and (c) 30% removed randomly. Each figure plots the mean
squared error of elevation predictions for a varying level of added white noise. The values are averaged
over 10 independent runs per configuration. (In the case of (c), the error ofDirect Inversewas always
greater than 4.0).

(a)

Iteration 0 1 2 3 4 5
Gaps 0% 0.900 0.525 0.313 0.290 0.235 0.229
Gaps 15% 0.933 0.654 0.651 0.676 0.691 0.686
Gaps 30% 0.985 0.757 0.726 0.720 0.761 0.778

(b)

Figure 5.6: The mean squared error (MSE) of predicted elevations for the scenario depicted in Figure 5.3
converges with an increasing number of adaptation steps. Iteration0 gives the MSE for the learned standard
GP. Values are averages over ten independent runs.
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5.4.2 Real Scenario I: Occluded Stone Block

In this experiment, we investigated the ability of our terrain model approach to preserve and predict sharp
discontinuities in real terrain data. We positioned the robot in front of a rectangular stone block such that
the straight edges of the block run diagonally to the robot’sline of view. A person stood inbetween the
robot and the block, thereby occluding parts of the block andof the area in front of it. This scenario is
depicted in Figure 5.7(a). The task is to recover the linear structure of the discontinuity and fill the occluded
area consistent with the surrounding terrain elevation levels.

To simplify the calculations and to enhance the visibility of the results, we manually removed the person
from the data-set in this scenario. Although this is a simplification giving an advantage to our model, it is
not unrealistic: it corresponds to a pre-classification of the scence where data-points that differ significantly
in height are assigned different class label. A more advanced algorithm could also directly recognize the
human-being as such and deduce that it is a dynamic object which should not be used in the adaptation
of the terrain model. To derive a ground truth map, we repeated the laser scan without the person. Figure
5.8(a) depicts the resulting elevation levels of the groundtruth while Figure 5.8(b) illustrates the observed
elevations within the occluded terrain. The observed data-set consists of 2,219 data-points.

We applied our learning algorithm with theBounded Linearadaptation procedure where we setσmin =
0.25 andσmax = 4.0. The adaptation procedure converged already after two iterations. One iteration took
about 22 minutes on a standard PC of which only 7 seconds are needed for adapting the kernels. The
remaining time is used to calculate the new covariance matrix and the likelihoods of the training points.
The resulting kernels are visualized in Figure 5.8(e). To estimate the kernels of the unseen locations, we
built a weighted average over the local neighborhood with anisotropic two-dimensional Gaussian with
a standard deviation of 3 which we had found to produce the best results. The adapted kernels reflect
the terrain structure very well. They are oriented along thediscontinuities of the stone blocks. Note in
particular the curve structure at the bottom-left of the main block. In contrast, the initial isotropic kernels
have been kept in the homogenous areas, i.e., on the ground terrain and on top of the blocks. They are
also used in the slowly ascending area next to the main stone block. Note that although the kernels in the
occluded area of the strong discontinuity are rather isotropic, the covariance structure at these locations
has a significant orientation as it is constructed by averaging over the neighboring kernels (cf. Equation
(3.3) for the non-stationary covariance functionkNSE). The learned kernel structure enables the model to
correctly adapt to the stone blocks as can be seen from the predicted elevations visualized in Figure 5.8(c)
and the predicted map in Figure 5.7(c). In particular, the area occluded by the person is correctly filled:
due to the long, diagonally oriented kernels, the discontinuities of the stone blocks are predicted sharply
while the tops of the blocks and the areas in front of them are correctly estimated as flat terrain.

The uncertainties of these predictions, corresponding to the variances of the predictive distributions,
are illustrated in Figure 5.8(d). They are large in the areasbehind the stone blocks where no observations
are available. The corresponding predictions tend to the mean of the GP model which is0, i.e., the height
of the ground terrain. In contrast, the predictive variances are almost zero at the observed input locations.
Most importantly, they are also small at those occluded locations that are in reasonable distance of some
observations. This holds in particular for the area occluded by the person. This is also visualized in Figure
5.8(c) where the contour lines for predictive variances of 0.005 and 0.05 are given. Within the area occluded
by the person, the model is certain about its prediction in a range of±14cm (this range covers 95.5% of
the density mass of the predictive distribution). This is animpressive result given the large discontinuity in
this area. A mobile robot would thus be relatively certain about the block structure within the gap although
not having observed it directly. In contrast, it would be aware that it cannot rely upon its terrain model in
the occluded areas beyond the blocks: there are no observations within a reasonable distance and thus, the
predictive variances are large.
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(a) Photo of the scenario

(b) Raw observations

(c) Prediction

Figure 5.7: A real-world scenario where a person blocks the robot’s view on a stone block. The edges of
the stone run diagonally to the robot’s line of view. Figure (c) depicts the prediction of the terrain model
which was learned from the observations visualized in (b). The sharp edges of the stone are preserved
and the stone structure is correctly retrieved in the occluded area. This is due to the adapted kernels as
visualized in Figure 5.8.



42 CHAPTER 5. TERRAIN GRADIENT ADAPTATION

(a) Ground truth elevations (b) Observed elevations

(c) Predicted elevations (d) Predictive uncertainties

(e) Kernels

Figure 5.8: Results for the occluded stone block scenario presented in Figure 5.7. Figures (a)-(c) visualize
the elevations of the ground-truth (obtained from a second scan without the obstacle), of the observations,
and of the prediction. Figure (c) also contains two contour lines for the predictive variances given in (d).
Figure (e) depicts the kernels which have been adapted alongthe block edges.



5.4. EXPERIMENTS 43

Scenario Linear Interpolation Our model Improvement
1 0.116 0.060 48.3%
2 0.058 0.040 31.0%
3 0.074 0.023 69.9%
4 0.079 0.038 51.9%

Table 5.1: Prediction performance for occluded hill structures as illustrated in Figure 5.9 in terms of MSE
relative to a second, not occluded scan.

5.4.3 Real Scenario II: Inhomogenous Hill Structure

The previous experiment demonstrated the usefulness of ourapproach for preserving and estimating sharp
linear discontinuities. To prove that our approach is also able to predict non-linear structures in unseen ar-
eas, we investigated a second occlusion scenario. Again, a person stood in front of the robot and shadowed
some parts of the terrain. The occluded area contains varying structures, flat areas as well as an ascending
slope of a small hill. A photo of this scenario is given in Figure 5.9(a). We applied our learning algorithm
with theBounded Linearadaptation procedure where we setσmin = 0.25 andσmax = 4.0. Figure 5.9
illustrates the results of this experiment.

We compared our prediction results to an approach from the robotics literature[Frühet al., 2005] that
has been applied successfully to the problem of three-dimensional mapping of urban areas. Frühet al.
perform horizontal linear interpolation orthogonally to the robot’s view. We evaluated our approach on
the situation depicted in the figure as well as three similar ones. Note that the scenarios used are actually
rather easy ones for Frühet al., as the large gaps can all be filled orthogonally to the robot’s view, which
is not the case in general. Table 5.1 gives the obtained results. In all four cases, our approach achieved
higher prediction accuracies, reducing the errors by 30% to70%. Figure 5.9(d) depicts the predictions
of our approach in one of the situations. In contrast to Frühet al., our model is able to also estimate its
predictive uncertainties. These are largest in the center of the occluded area as can be seen in Figure 5.9(e).
Figure 5.9(f) depicts the predictive distribution for terrain elevations along a cut through the map. The
estimated means are close to the true terrain structures while the corresponding variances indicate that the
regression model is aware of its predictive uncertainties.
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(a) Photo of the scenario (b) Raw observations

(c) Ground truth (d) Prediction

(e) Predictive uncertainties (white: zero
predictive variance)
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(f) Predictive distribution forx = 3

Figure 5.9: A real-world scenario, where a person blocks therobot’s view on an inhomogeneous and sloped
terrain (a). Figure (b) depicts the raw data-points. Figure(d) gives the predicted means of our adapted non-
stationary regression model. Figure (c) depicts the true terrain elevations as aquired by recording a second
3D scan without the person in the scene. Importantly, our model also yields the predictive uncertainties for
the predicted elevations as depicted in Figure (e). Figure (f) visualizes the full predictive distribution as a
cut through the terrain atx = 3m.
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5.4.4 Real Scenario III: Large Campus Environment

To evaluate our approach on a large-scale environment, we applied it to a real-world data-set recorded
on the campus site of the University of Freiburg. Figure 5.10(a) illustrates this scenario. The data is
represented by means of a multi-level surface map with a cellsize of 10cm× 10cm. The scanned area
spans approximately 299 by 147 meters. For simplicity, we only considered the lowest data-points per
location, i.e., we removed overhanging structures like tree tops or ceilings. Our resulting data-set consisted
of 531,920 data-points. To speed up computations, we split this map into 542 overlapping submaps such
that at least 80% of the cells of the resulting submaps are occupied. This is possible without loss of accuracy
as we can assume compact support for the local kernels involved in our calculations (as the kernel sizes in
our model are bounded). We randomly removed about 20% of the data-points per submap. A full run over
the complete data-set took about 50 hours.

We compared the prediction performance of the three different adaptation rules with respect to a stan-
dard stationary GP model where the local kernels are not adapted. The table in Figure 5.10(h) gives the
results of this experiment. TheBounded LinearandBounded Inverseadaptation rules clearly outperform
the standard GP model, whileDirect Inverseis not competitive. Figures 5.10(b)-5.10(g) illustrate the model
predictions and kernels learned by means ofBounded Linearfor three submaps. Figure 5.10(b) depicts a
submap whose terrain structure is simple and easy to model. Kernels do not need to be adapted as the
data-likelihoods of the training points are sufficiently high using the initial stationary GP. The terrain of
the submap visualized in Figure 5.10(c) is of medium complexity. It contains a long wall next to a flat area
which is reflected by the elongated kernels. Figure 5.10(d) presents a challenging terrain with a complex
structure. This submap has been the one with the worst prediction performance which is also due to the
comparatively large elevation differences (which have been scaled in the figure due to space constraints)
which punish already minor prediction errors. This varietyof submaps shows that our model is able to
cope with real terrain types of varying complexity. As the comparison to the stationary GP model shows,
our approach gains its predictive power from the adapted local kernels.
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(a) Large campus map of University of Freiburg (Figure courtesy of
Patrick Pfaff and Rudolph Triebel)

(b) Submap containing simple struc-
ture only (MSE = 0.000001)

(c) Submap containing structure of
medium complexity (MSE = 0.0103)

(d) Submap containing difficult struc-
ture (MSE = 3.1685)

(e) Adapted kernels of submap con-
taining simple structure only

(f) Adapted kernels of submap con-
taining structure of medium com-
plexity

(g) Adapted kernels of submap con-
taining difficult structure

Adaptation procedure MSE
No adaptation 0.071
Direct Inverse 0.103
Bounded Linear 0.062
Bounded Inverse 0.059

(h) Prediction performance

Figure 5.10: Experiment on a large campus environment. We compare our three adaptation procedures
with a standard GP. Figures (b)-(g) illustrate the predictions and learned kernels for three submaps of
varying terrain structure complexity. In (b)-(d), the green points depict the observations while the red lines
illustrate the prediction. In (e)-(f), the learned kernelsfor the observed locations are given in red, while the
estimated kernels for the unseen locations are drawn in green.
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5.5 Discussion of Experimental Results

Adaptation based on terrain gradients is an effective way oflearning the local kernels of our non-stationary
terrain model. We use learning rates based on the local data-fits and kernel complexities to speed up
computations. Various experiments on synthetic and real data demonstrate that this iterative procedure
converges. We have shown on a difficult artificial terrain data-set that our model successfully balances
smoothing against the preservation of local structure suchas sharp discontinuities. In several real-world
scenarios, we have shown that our model is able to recover occluded terrains of different structures, sharp
linear discontinuities as well as inhomogenous non-linearterrain structure. In an experiment on a large,
heterogenous real terrain, we proved the applicability of our approach to complex large-scale data-sets.
More work needs to be done with respect to the computational complexity of our approach. While our
kernel adaptation procedure is comparibly efficient, the standard GP calculations (building and inverting
the covariance matrix based on the new kernels) have cubic time complexity. Established techniques like
sparse GP models and approximative algorithms should be able to significantly reduce the computation
times.
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Chapter 6

Conclusions

In this thesis, we have proposed an adaptive terrain modeling approach that balances smoothing against
the preservation of discontinuities. The latter is particularly important in the area of outdoor robotics
where, for example, steps, stairs, or building walls provide important features for path planning or terrain
segmentation tasks. Our model uses Gaussian process regression with non-stationary covariance functions
to locally adapt to the structure of the terrain data. This makes it possible to account for discontinuities such
as edges and corners while at the same time being able to achieve strong smoothing in flat areas and along
edges. The learned model yields predictive height distributions for arbitrary locations of the terrain. This
enables us to fill gaps in the data stemming from occlusions and faulty observations as well as to assign
uncertainty estimates to our predictions. Our model is ableto account for all types of occluded terrains,
highly non-linear inhomogenous terrain structures as wellas sharp linear discontinuities.

We achieve non-stationarity in our model by assigning localkernels to input locations. These kernels
capture the local terrain properties. The covariance between two elevation variables is calculated by aver-
aging the two individual kernels involved. In this way, the local characteristics at both locations influence
the covariance of the corresponding target elevations. Themain task in learning an adequate terrain model
consists of adapting these kernels to the local terrain properties. We have shown in a detailed analysis
of our non-stationary covariance function that different kernel combinations may lead to similar data-fits.
Without additional constraints, the problem of finding optimal kernels is clearly ill-posed due to the many
local optima caused by the non-stationary covariance function. We have argued that it is sensible to require
the kernel parameters to vary smoothly across input space. Using a full hierarchical model to achieve this
by placing additional GP priors on the kernels is only feasible for small data-sets. As terrain models typi-
cally contain huge numbers of data-points, we have introduced two different learning algorithms. First, we
have investigated a gradient ascent approach over the data-likelihood. We adopt the kernel parameters in
a fashion similar to theRPropalgorithm used in neural networks. We have demonstrated that inserting a
regularization term into the optimization criterion is a suitable means to achieve smoothness of the kernels
across input space. This improves the generalization performance of the learned model which makes it
possible to better fill gaps. We have shown that this approachis applicable to limited problem settings and
yields acceptable results there. If applied to real data, however, it is prone to be trapped by one of the many
local optima. To overcome this problem, more work needs to bedone with respect to the learning proce-
dure, in particular the way the kernel parameters are modified according to their gradients. In our second
approach to learning the local kernels, we adapt the kernel parameters based on the local gradients in the
terrain structure. We employ adaptation rules that have proven successful in problem domains studied by
the computer vision community. In experiments on syntheticand real data, we have demonstrated that
this learning method produces accurate and reliable predictions in the presence of noise and is able to fill
gaps stemming from occlusions. The time complexity of our approach is dominated by the standard GP
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model calculations, in particular the inversion of the covariance matrix, while the adaptation of the kernels
requires only a small fraction of the overall runtime.

6.1 Outlook

A main objective of future work is to strengthen the connection between our terrain modeling approach
and the concept of multi-level surface maps. In particular,it should be investigated how predictions of our
model can be best incorporated into such representations. In this work, we have focused on single-leveled
elevation maps only. In natural scenarios, however, we haveto deal with several levels, for example in
the case of bridges and trees. The difficulty is how to assign individual terrain models to the different
elevation levels found in the multi-level surface map and how to exploit the relations among the individual
models. Furthermore, for real-world applications it is important to explore how large environments can
be processed most efficiently while keeping prediction quality high. In our work, we split up the map
of a large campus environment into several submaps to be ableto compute terrain models in reasonable
time. It would be interesting to investigate the optimal submap size that balances model learning speed
with the quality of the resulting predictions. Also, other ways to improve the efficiency of our learning
algorithms are worth exploring, for example by using approximations for the linear algebra involved and
by the use of sparse GPs. This might significantly speed-up the process of rebuilding the GP model with
the new kernels, i.e., calculating and inverting the covariance matrices, which is the most expensive part
in our formulation. We have used preprocessed surface maps as data-structures for our terrain models. It
might be advantageous to work directly on the sensory inputs, typically point clouds, and thereafter build a
surface map based on the learned terrain model. Another requirement is how to cope with dynamic objects
and new observations. One should investigate how the kernels of new training points are most efficiently
adapted in an incremental, online fashion. One could restrict oneself only to the local neighborhood which
makes it possible to apply a full hierarchical model with MCMC.

Although the terrain gradient approach produces good results, it would be desirable to have an ana-
lytical derivation for optimal kernels based solely on data-likelihoods and model complexity. We have
proposed a gradient ascent technique which yields good results in small artificial data-sets. In order to be
able to apply this approach in real-world scenarios, this learning technique needs to become more robust
against local optima. There are many possibilities to improve our proposed gradient ascent procedure, in
particular in the way the parameter values are modified and infurther exploring the idea of using a regu-
larization term to achieve smoothness of the kernels acrossinput space. Alternatively, one could continue
the work on Paciorek’s hierarchical model which uses MCMC tolearn the local kernels. In particular,
its efficiency needs to be improved in order to become applicable to larger data-sets. Similarly, variational
methods for covariance adaptation appear promising. The learned kernel structure is an interesting interme-
diate representation level by itself. As we retrieve terrain properties in terms of the kernels, its application
to terrain segmentation and classification is promising. Another interesting problem is how to represent
this structure more efficiently which would lead to a dense model of the underlying terrain. For example,
in a flat area all input locations share approximately the same kernel type and could thus be represented
sparsely by a single kernel. Using a sparse hierarchical model in this way might lead to more effective
ways to estimate the kernels of unseen locations.

Various applications of our model are worth exploring. Manytypes of autonomous agents need to build
terrain models from their sensor measurements in order plantheir pathes. Autonomous cars, for instance,
collect sensory data while driving. This leads to serious gaps in the reconstructed map which need to be
filled. In the RoboCup Rescue scenario, autonomous robots need to deal with varying terrain structures
and to reliably recognize the forms of obstacles in order to find the best paths and behaviors to reach their
goal. There is increasing research in using helicopters andblimps for landscape mapping. Based on stereo
recordings, our model might provide reliable estimates of the scanned area. A further promising application
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is seebed mapping where coping with varying data densities and the preservation of discontinuties are key
requirements. Furthermore, as our terrain gradient approach uses ideas from computer vision, it might be
inspiring to evaluate it on typical test cases in computer vision and to compare it with the algorithms of
this community.



52 CHAPTER 6. CONCLUSIONS



Appendix A

Mathematical Background

A.1 Kernel Matrices

A.1.1 Standard Parameterization

Using the standard parameterization of the rotational matrix with rotation angleα, a kernel matrix takes
the form

Σ =

(

cosα − sin α
sinα cosα

)(

ℓ2
1 0
0 ℓ2

2

)(

cosα sin α
− sinα cosα

)
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Its determinant is
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A.1.2 Overparameterization

Let luv =
√

u2 + v2. When using an overparameterized rotational matrix, a kernel matrix has the form
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Let ū := u
luv

, v̄ := v
luv

. Then, its determinant is
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1 + ū2ℓ2
2)− (ūv̄ℓ2
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As we have
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we get
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A.2 Identities

We present some basic identities which are used in the proofsof the following sections[Petersen and
Pedersen, 2006]. A denotes an × n-matrix, whose entries are functionsAij = aij(x). v is a constant
vector of sizen. Let |A| denote the determinant ofA.

|rA| = rn|A| (A-8)

|A−1| = |A|−1 (A-9)

|A| = |AT | (A-10)
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Proof of Equation (A-13):
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A.3 Marginal Data-Likelihood

We prove Equation (4.3) which yields the derivative of the marginal data-likelihood.
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where α = K−1y

This proof uses the identityvT Mv = tr(vvT M), wherev = K−1y andM = ∂K
∂θj

. This equality holds
as on the one side, we have:
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A.4 Derivative of the Covariance Function

To calculate the derivative of the covariance matrixK, we need to compute the derivatives of the covariance
functions which are parameterized over the input locations. In other words, for input locationsxi andxj

we calculate the derivative ofkNSE with respect to thep-th parameter of the kernelΣi belonging to input
locationxi (p thus denotes a lengthscale or the angle), namely

(

∂K

∂θip
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. (A-16)

To repeat, the covariance function is
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To simplify notation, we define the variables
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so that we get

kNSE(xi,xj) = ai · bi · ci .

By means of the product rule, we get the derivative of the covariance function
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The derivative ofai is
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which is0 for the angle parameters and for the lengthscales it is
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The derivative ofbi is
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and the derivative ofci is
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∂
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Thus, in order to calculate the derivatives ofbi andci, we need to calculate the derivative of the sum of two
kernels

∂ (Σi + Σj)

∂θip

.

The derivation of this term depends on the parameterizationof the kernel, either by using the standard
rotational matrix with angleα or by using the overparameterized rotational matrix with parametersu and
v.

Standard parameterization

Using the standard parameterization (cf. section A.1.1), the sum of two individual kernel matrices is (where
we use the shorthandssk = sin αk andck = cosαk for k = 1, 2)
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Now, we can calulate the derivative of the sum of two kernel matrices with respect to the different kernel
parametersθip. Forθip = li1, the resulting matrix is

∂(Σi + Σj)

∂ℓi1
=

(

2 · c2
i ℓi1 2 · cisiℓi1

2 · siciℓi1 2 · s2
i ℓi1

)

, (A-31)

while for θip = li2 we get

∂(Σi + Σj)

∂ℓi2
=

(

2s2
i ℓi2 −2siciℓi2
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Forθip = αi the matrix entries are

∂(c2
i ℓ

2
i1 + s2

i ℓ
2
i2 + c2

jℓ
2
j1 + s2

jℓ
2
j2)

∂αi

= 2 · ci(−si)ℓ
2
i1 + 2 · siciℓ

2
i2 = 2sici(−ℓ2

i1 + ℓ2
i2) , (A-33)
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so that we get
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Overparameterization

When using an overparameterized rotational matrix (cf. section A.1.2), the sum of two kernels takes a
different form. Letlukvk

=
√

u2
k + v2

k, uk = uk

lukvk

andvk = vk
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.
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Now, we can calulate the derivative of the sum of two kernel matrices with respect to the different kernel
parametersθip. Forθip = li1, the resulting matrix is
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while for θip = li2, we get
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Forθip = ui, the derivation is more complicated:
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To compute this matrix, we derive the following derivatives:
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Forθip = vi, the derivation is analogous:
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To compute this matrix, we derive the following derivatives:
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A.4.1 Derivative of the Regularization Term

We want to determine the derivative of the regularization term
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We have
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and
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so that in casesi = k andi = l the derivative is zero and otherwise we have∂‖θip−θkp‖
∂θip

=
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.

Therefore, the derivative has the form
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