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Abstract

Three-dimensional digital terrain models are of fundarakintportance in areas such as the geo-sciences
and outdoor robotics. Accurate modeling requires thetgtiiti deal with a varying data density and to
balance spatial smoothing against the preservation oftsirai features like discontinuities. The latter is
particularly important for robotics applications, as distinuities that arise, for example, at steps, stairs,
or building walls are important features for path plannimgesrain segmentation tasks. In this thesis,
we present an extension of the well-established Gauss@regs regression technique, that utilizes non-
stationary covariance functions to locally adapt to thedtire of the terrain data. In this way, we achieve
strong smoothing in flat areas and along edges while at the §am preserving edges and corners. The
derived model yields predictive distributions for terrailevations at arbitrary locations. This allows us
to fill gaps in the data and to perform conservative predigiof terrain elevations in occluded areas.
Our model is able to account for all types of occluded areas, highly non-linear heterogenous terrain
structures as well as linear discontinuities. An essegtiaiponent in our model are local kernels, that
capture the terrain properties of individual input locaiand enable us to achieve non-stationarity in an
interpretable and easy to visualize way. We investigateesatlate two different learning algorithms to
adapt the individual kernel parameters to terrain dataadignt ascent approach over the data-likelihood
and an approach based on local terrain gradients.






Zusammenfassung

Die Verarbeitung und Repréasentation raumlicher Daten inatzentrale Bedeutung in Bereichen wie den
Geowissenschaften und der Robotik. Digitale Geléndendellten mit variierender Datendichte umge-
hen kénnen, fehlerbehaftete Daten glatten und dabei gleitip Strukturmerkmale wie Ecken und Kanten
erhalten. Letzteres ist besonders wichtig im Falle von Ribowendungen, da dort Unstetigkeiten, wie
sie beispielsweise bei Stufen, Treppen oder Gebaudewandteeten, wichtige Merkmale fir die Pfadpla-
nung oder Terrainsegmentierung darstellen. In dieserifsballen wir eine Erweiterung des Gaufl3schen
Prozessansatzes fiir Regressionsprobleme vor, welcleseither nichtstationaren Kovarianzfunktion die
lokale Adaptierung an die Terrainstruktur ermdglicht. Diagth kdnnen raumliche Daten in flachen, homo-
genen Gebieten stark geglattet werden, wahrend Ecken unigiKarhalten bleiben. Das erlernte Modell
bietet pradiktive Verteilungen fir Gelandehdhen an béieb Stellen des Grundraumes. Dadurch wird
es moglich, Locher in den beobachteten Daten zu schlieBdriruaerdeckten Gebieten konservative
Vorhersagen fur die Terrainh6hen zu treffen. Das vorgksti®odell kann dabei alle Arten verdeckten
Terrains reprasentieren, d.h., sowohl hoch nicht-lineheterogene Gelandestrukturen als auch lineare
Unstetigkeiten und Kanten. Zentraler Bestandteil des Medst das Konzept lokaler Kernelstrukturen,
die die Terraineigenschaften an einzelnen Stitzstellgréisentieren und die anschauliche Darstellung des
nichtstationaren Charakters ermdglichen. Zur Adapatienkernelparameter an die zugrundeliegende
Gelandestruktur stellen wir zwei alternative Lernver&twor: einerseits die unmittelbare Optimierung der
Datenlikelihood mittels Gradientenaufstieg und andeiies®in schnelles, an die Bildverarbeitungslitera-
tur angelehntes Verfahren basierend auf lokalen Gelaadegiten. Die entwickelten Verfahren wurden
vollstéandig implementiert und in simulierten und realestSgenarien evaluiert.
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Chapter 1

Introduction

The modeling of three-dimensional terrain data has beeelwistudied across different research areas
such as the geo-sciences or outdoor robotics. Importariicapipns in outdoor robotics include mo-
bile robots for agriculture, search and rescue, surva#lamnd space missions (Figure 1.1). In these
domains, accurate and dense models of the three-dimehsioneture of the environment enable the
robot to estimate the traversability of locations, to plépath to a goal location, or to localize it-
self using range sensor measurements. Another applicatidior instance, seafloor mapping where
terrain models need to be built from high-precision ulttash measurements. Seafloor maps, as illus-
trated in Figure 1.2, help to identify areas of erosion on ¢batinental shelf and of geohazards, to
locate pathways for movement of sediment and pollutantduitd underwater constructions such as
pipelines or to retrieve sunken ships. Building a digitataam model means to transform a set of sen-
sory inputs, typically a three-dimensional point cloud awrrange sensor readings, to a function which
maps two-dimensional pose coordinates to elevation vaM#sle geological applications often operate
on a large spatial scale, where local terrain features arémpumortant, autonomous robots greatly rely
on distinct structural features like edges or corners ta@ui
navigation, localization, or terrain segmentation. Cdesi

for example, an autonomous car driving in urban terrain as
depicted in Figure 1.3(a). The street itself should be recon
structed as a smooth surface to enable the path planning al
gorithm to find a smooth trajectory while the step to the side-
walk should be as sharp as possible to robustly identify it
as a non-traversable obstacle. We therefore have two at firs
glance contradicting requirements for terrain modelsstFir =
raw sensory data needs to be smoothed in order to removes
noise and to be able to perform elevation predictions at all |
locations and, second, discontinuities need to be prederve
as they are important features for path planning, locatinat
and object recognition. Furthermore, uncertainty esisat
for predictions need to be incorporated to represent uncer-

tainty on all levels as required in the probabilistic robsti Fi9ure 1.1 Surface of planet Mars. In
approactThrunet al, 2005. This uncertainty is caused bySp"che MISsIons, robots need to cope with
two independent components, the noise in the data and YREOWN terrains autonomously. (Source:
uncertainty in the estimation of the target function. http:/lwww.nasa.gov/mission_pages/mer/)

1



2 CHAPTER 1. INTRODUCTION

1.1 The Terrain Modeling Problem

Our goal is to construct terrain models from sensory measenés. Data for building three-dimensional
models of an environment can be acquired from various ssufneobotics, laser range finders are popular
sensors as they provide precise, high-frequency measutsmea high spatial resolution. Other sensors
include on-board cameras, which are chosen because ofdheweight and costs, or satellite imagery,
which covers larger areas, as needed, e.g., for unmannaldrahécles (UAVS) or autonomous cars. After
various preprocessing steps, the raw measurements acaltypiepresented as three-dimensional point
clouds or are transformed into three-dimensional occupgrids or elevation mapBareset al., 1989.
In this work, we introduce a technique for constructing amnus, probabilistic elevation map models
from data points, that yield predictive distributions ferrain elevations at arbitrary input locations.
The terrain modeling problem can be formalized as fol-
lows. Given a seD = {(x;,y;)}"_, of n location samples
x; € R? and the corresponding terrain elevatiopse R,
the task is to build a model for(y*|x*, D), i.e., the predic-
tive distribution of elevationg* at new input locations*.
This modeling task is a hard one for several reasons. First,
sensor measurements are inherently affected by noisehwhic
an intelligent model should be able to reduce. Second, the
distribution of available data points is typically far fraimi-
form. For example, the proximity of the sensor location is
usually more densely sampled than areas farther away. ,Third
- small gaps in the data should be filled with high confidence
Figure  1.2: Seafloor map Whilg more sparse_ly _sample(_j locations should re_sult i_ndm'gh
Lake Tahoe in California (Source:pred'cuve uncerta|nt_|es. To _|Ilus_trat_e the last pomhn_sder_
http://walrus.wr.usgs.govipacmaps/) an autonompus vehicle nawgatmg in off-road tgrram. Wlt_h
out completing small gaps by prediction, even single mgssin
measurements may lead to the perception of a non-traversabl
obstacle (a hole in this case) and consequently the plaratbdght differ significantly from the optimal
one. On the other hand, the system should be aware of thesede@incertainty when filling larger gaps to
avoid higher risks at these locations. Finally, as a lasttnieral requirement, the model should preserve
structural elements like edges and corners as these aretanpfeatures for various applications including
path planning or object recognition.

(a) Partially non-traversable road curb (Source: (b) Occlusions within a surface map of the campus of
http://www.pedestrians.org/images/) Freiburg University

Figure 1.3: 3D terrain models need to be able to represecdutisiuities and occlusions.
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1.2 Related Work

Many important tasks in outdoor robotics such as plannirg) lanalization require data-structures for
representing dense terrain data stemming from 3D rangeurezaents. An efficient representation are
elevation map¢$Bareset al, 1989, Pfaff and Burgard, 200%vhich consist of two-dimensional grids in
which each cell stores the elevation of the correspondimiidey. Elevation maps have been extended to
multi-level probabilistic surface (MLS) magp3riebelet al, 2004 which allow to store multiple surfaces
in each cell of the grid. In a typical MLS map, many cells argpgndue to occlusions and faulty measure-
ments as visualized in Figure 1.3(b). One of the goals ofthi@sis was to estimate the elevations for cells
where no measurements are available. In this regard, ouoagipcan be viewed as orthogonal which can
be used to preprocess spatial data that has to be represeat®l.S map. Most importantly, to achieve
precise predictions we need to be able to cope with spati@nigeneity within terrains. Most studies
using spatial or spatio-temporal data make the assumtairiie modeled terrain is homogenous, i.e., its
properties are the same over the complete input space. én wibrds, local characteristics are ignored.
As pointed out by Sampson and Gutt¢i®94, in most natural scenarios, this assumption is clearly vio-
lated: local influences are significant for the covariancacstire of the input space which necessitates a
heterogeneous model.

A straight-forward approach for filling gaps in three-dire&mal models taking local properties into
account is presented by Fréhal.[2005 who build three-dimensional models of facade meshes @sciti
from series of 2D scans. Due to faulty observations, e.gsedby glass surfaces, and occlusions of the
desired buildings by foreground objects, the generatidiacdde models is difficult. Friét al. propose
to fill local gaps based on local linear interpolation. Thegart promising results in several city mapping
scenarios. Wellingtoet al. [2005 use multiple Markov random fields which interact through ddein
semi-Markov model to estimate terrain elevations and tdkenaassification for outdoor navigation. A
classical approach for modeling non-stationary and arupat terrain properties, i.e., the properties vary
with respect to different input locations and along diffgrdimensions of the input space, is warping of
the input space. Input locations are non-linearly mappaal énlatent space which is characterized by
a stationary covariance function. A classic referencelits approach i§Sampson and Guttorp, 1992
They use two spaces, tlie-space which is the geographical input space andttepace measuring the
dispersion of the input space. In order to calculate comaga for two input locations, these locations are
mapped fromG to D. The spatial structure within th® space is homogenous. Thin-plate splines are
used there for estimation. The selection of the type of maphinction as well as using thin-plate splines
for interpolation are arbitrary choices. Also, this modsld to account for uncertainty in the predictions.
Schmidt and O’Hagaf2003 extended this approach to a fully Bayesian treatment. Thpyesent the
mapping betweed: and D by an unkown functioni(-) for which they define a Gaussian process prior.
This makes it possible to account for the uncertainty resyfrom the mapping. Their model, however,
has the drawback that the calculation of the posterior istraightforward and needs to be done by means
of computationally demanding Markov-Chain Monte-CarloGMC) sampling.

The idea of using Gaussian processes (GPs) for modelingbgata is a quite old one. GPs first ap-
peared in the field of geo-statistics. The mining engineeni®as. Krige explored the distance-weighted
average gold grades at the Witwatersrand reef complex ith@dtica. He developed a geo-statistic proce-
dure for estimating the distribution of spatial data basedmatial dependencigisrige, 1951. His theory
was further developed by the French geo-statistician GesokgatheroiMatheron, 196Bwho called this
procedure “Kriging” in honor of its inventor. GPs generalithe ideas of kriging to a wide range of re-
gression and classification problems. Rasmussen and M&i2006 as well as MacKay1994 provide
excellent introductions. GPs did not receive a greater [aojtyiin other areas until the 1990s. Since then,
GPs have come to the fore in machine learning and are now auwweérstood and established technique.
For instance, GPs have been applied successfully in diffeneas including positioning systems using
cellular networkd Schwaighoferet al, 2004, learning automatically generated music playlifatt et
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al., 200d, or in bio-genetic§Chuet al, 2004. Recently, GPs have also become popular in the domain
of robotics. For example, Broolet al.[2006 use GPs to derive measurement models for mobile robot
localization from sparse and noisy observations taken fgnaa with an unknown geometric model. The
usage of GPs allows them to maintain an estimate of the wingrtof the model over the entire map.
Plagemanret al. [2007 use GPs for model-based failure detection. They employ G&etado learn
poposal distributions for a particle filter which is appliedtrack the state of the robot and thereby to
detect failure states such as collisions with unseen dlestac

Most works on GP models assume stationary covariance stascbver the input space. It is possible
in various ways, however, to derive GP models that are ab&tount for inhomogeneity of the input
space. For instance, one can partition the input space égtments and use mixtures of GPs where each
GP is responsible for a different segment of the modeledrenment. This is akin to the idea of par-
tition models, which explain the data by fitting local dibtriions to local areas of the input space. For
example, Denisort al.[2007 partition the input space by means of a Voronoi tessellatibith is gen-
eralized by Blackwell and Mollel2003 to deformed tessellations. In the context of perceptioti@ms,
Williams [2006 uses a GP framework in order to extract disparity infornrafiom binocular stereo im-
ages. He splits up the images into foreground and backgrionades. A latent segmentation function
assigns segment probabilities to pixels. Based on the sagdiferent covariance functions are employed
in this switchedGP which makes it possible to model both smooth regions asmbdtinuities. Another
possibility to explicitely incorporate discontinuitiestdo a GP model based on terrain partitioning is pre-
sented by Cornforét al.[1999. They deal with straight discontinuitiedqnts) in wind fields. They place
auxiliary GP models along both sides of the discontinuitye3e are then used to derive a GP model that
represents the complete wind field by conditioning on theeshblong the front. The discontinuity takes a
parametric form. While its precise location is also learrikd authors note that the "parameters describing
the location of the front need to be initialized close to tberect values” (p. 6). In their approach one has
to specify a-priori the number of discontinuities as welttasir approximate locations. A discontinuity is
assumed to split the complete input space.

Tresp[2004 provides a Gaussian process variant of the mixture of expestiel of Jacobst al.[1991].
Based completely on the input, a gating network assignsatitities to different GP expert models such
that the model with the most appropriate local charactesists specified by a bandwidth is selected. Ras-
mussen and Ghahramd@007 extend these ideas and present an infinite mixture of expertel. Their
model infers the number of components required to capterédta and learns the hyperparameters of its
experts. In contrast to Tre$@00d, each GP expert predicts only on the basis of the training idatas
assigned which improves runtime and avoids problems in tayregions. Meeds and Osind¢2004
extend this model to a full generative model over input artpotspace. In a similar setting, Schwaighofer
et al.[200F propose a hierarchical Bayesian framework in a recommandsystem scenario. There, hier-
archical Bayesian modeling amounts to learning the meac@vatiance function of a GP model common
to all individual scenarios by means of an Expectation-Mazation-based algorithm. The resulting model
is then used in the prediction of the GP models of the ind@idaenarios.

There are certain scenarios that approaches based onsipacg-segmentation cannot solve satisfac-
torily. Consider, for example, the situation depicted igu¥e 1.4(a) where a coherent region splits up
into different segments. There is no straight-forward wapartition this map and to assign segments to
different GP models. Alternative approaches avoid thisropleying non-stationary covariance functions.
These allow to stick to only one GP model while being able tpregs different regression characteris-
tics, e.g. smoothness, in different regions of the inputspéligdonet al.[1999 introduce a covariance
formulation that achieves non-stationarity by assigningralividual kernel to each input location which
determines its covariance to other input locations. Thedawce structure of the whole GP is thus defined
by these individual kernels, i.e., the individual kernelgraeters specify the behavior and the smoothness
of the GP within the respective local area. Higdairal. apply their method to a small example in toxic
waste remediation. Paciorek and Schen{®D04 extend this formulization to a class of non-stationary
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Figure 1.4: A function whose smoothness varies across ispate can be modeled by means of a non-
stationary covariance function based on individual kesnélhe local kernels are visualized by means
of ellipses with semi-axis lengths chosen proportionallytte corresponding eigenvalues of the kernel
matrices.

covariance functions which provides a general framewodetive non-stationary variants of stationary co-
variance functions. They report promising results for tand three-dimensional input spaces. They found
that their model readily generalizes to non-Gaussian dasathey use GP priors to model the structure
of individual kernels, their model, however, is computattly demanding and only feasible for data-sets
with less than 1,000 data-points. In order to derive an eficmodel that is applicable to large data-sets
possibly in online applications, the most important chadke is thus how to represent and learn the local
kernels of the input locations. Stephensaral. [2005 develop a similar formulation of non-stationary

covariance functions by spatially evolving the spectraigiy of a stationary GP model in the frequency
domain.

The problem of adapting kernels to local structure has adsmtstudied in the computer vision com-
munity. Takedaet al. [2006 perform non-parametric kernel regression on images. Tdeptakernels
according to observed image intensities. Their adaptatitmis thus based on a nonlinear combination
of both spatial and intensity distance of all data pointsha Ibcal neighborhood. Based on singular
value decompositions of intensity gradient matrices, ttefgrmine kernel modifications. Middendorf and
Nagel[2009 propose an alternative kernel adaptation algorithm. Tiseyastimates of gray value structure
tensors to adapt smoothing kernels to gray value images.

Terrain maps are often very large so that we need to find spgpsesentations. Guestrt al.[2005
present an algorithm for sensor-placements for monitospatial phenomena by means of GP models.
They derive a formulization based on mutual information ptinoization criterion to choose the best
location of sensors such that the chosen sensor placementsat informative about unsensed locations.
Thereby the uncertainty of the posterior GP is decreased.

1.3 Contribution and Outline

This thesis presents a novel terrain modeling approaclilzasan extended Gaussian process formulation.
Our model addresses the following requirements, which arggoularly important in application domains
like outdoor robotics:

1. Elevations need to be predicted at arbitrary locations.

2. Sensory data have to be smoothed to remove noise.



6 CHAPTER 1. INTRODUCTION

3. Discontinuities need to be preserved.
4. Uncertainty estimates for the predictions are required.

5. Varying data densities have to be dealt with.

While other approaches as discussed in the section ondelatk accommodate for several of these re-
quirements, our aim in this thesis was to address them in onsistent framework. We build on the
well-established Gaussian processes framework, whicl@ngparametric Bayesian approach to the re-
gression problem. To deal with the preservation of stradtigatures like edges and corners, we employ
non-stationary covariance functions as introduced bydrakiand Schervisf2004. Non-stationarity is
achieved by introducing local regression kernels that mibdelocal characteristics around an input loca-
tion. Kernels need to be locally adapted to the underlyingcstire. Figure 1.4 illustrates the effects of
local kernel adaptation. The left diagram of this figure depa simulated terrain surface which contains
a sharp edge that should not be smoothed over by the modetigFtieliagram of the same figure depicts
the local kernels after adaptation by our approach, vigedlby ellipses with semi-axis lengths chosen
proportionally to the corresponding eigenvalues of the&kematrices. As can be seen from the diagram,
the kernels adapted to the local structure of the surfateyialg to smooth along the edge as well as
within the flat regions, but preventing to smooth perpenldicio the edge. The task of kernel adaptation is
a formidable optimization problem as it exhibits a high disienality. In this work, we have studied two
novel, alternative approaches for solving this optim@aaproblem:

1. Amaximume-likelihood approadiased on a gradient ascent algorithm over the pseudordadi of
the observed data.

2. Aterrain gradient approaclthat adapts the kernels iteratively according to the gradia the local
elevation structure.

The first approach is more principled from a theoretical pofview, but brings certain practical problems.
The second approach works well in practice as we demonstnaseveral hard simulated and real-world
regression scenarios. Its idea is akin to the solutionseaattaptive image smoothing problem studied
in computer vision, where the task is to achieve de-noisirgnamage without reducing the contrast of
edges and corne[Fakedaet al., 2004 [ Middendorf and Nagel, 2092Although these approaches are not
designed for dealing with a varying density of data-pointwith potential gaps to fill, they proved to be
applicable to our kernel adaptation problem.

This thesis is structured as follows. In Chapter 2, we preentechnique of Gaussian process re-
gression and discuss its advantages. We illustrate thertampze of the covariance function and highlight
the idea of kernels. In Chapter 3, we introduce the nonestaty formulation of Gaussian process regres-
sion. We present the non-stationary covariance functi@ud uis our models and analyze its properties.
We discuss the implications of these properties for thetemodeling problem which has consequences
for the adaptation of the local kernels. In Chapter 4, we gmesur first approach to learning the local
kernels which is based on a gradient ascent optimizationtbeedata-likelihood. In various experiments,
we visualize the advantages and difficulties of this appgrodaan Chapter 5, we introduce the alternative
approach to fit the kernels based on local terrain gradigiésdiscuss plenty of experiments on artificial
and real data. Finally, we present our conclusions and ifbedsture work in Chapter 6.



Chapter 2

Gaussian Process Regression

Regression is at the core of many problems in machine legurn@iven a set of. observationsD =
(xi,y:)", consisting of inputsy; € RP and of corresponding targets € R, the goal is to recover a
function f such that

yi = f(xi) + ¢ with € ~N(0,02), eiid.Vi. (2.1)

The observed targeis are assumed to be affected by additive error termghich are independently and
identically normally-distributed. Plenty of techniques kearning such regression functions have been pro-
posed. Gaussian process regression has a long historyfielthef geostatistics where the corresponding
method is known agriging. Nevertheless, Gaussian processes only recently becapogtant in other
areas like machine learning and robotics.

Gaussian processes can be seen as a generalization of lweahted nearest neighbor regression or
splines. A Gaussian process is a stochastic process thatages samplesX, )< for an arbitrary index
setT such that any finite set of samples is normally distributealugsian processes are completely defined

by
o theirexpected valuel’ — R, t — E(X;) and

e theircovariance functionl’ x T' — R, (t,t') — cov( Xy, Xp) = E((X: —E(Xy)) (X —E(Xw))).

Thus, for all indiced,...,t, € T, the multivariate distribution of X, ,..., X, ) is given by ann-
dimensional normal distribution. Gaussian processes earsed to define a prior probability distribution
over functions. Inference based on observations take® mlaectly in the space of functions. Within
the setting of terrain modeling, the indices correspondmo-dimensional input locations; € R? and
the corresponding samples to terrain elevatigns R. A set of samples is thus a set of observations
D = (x,y:);—,. The regression goal is to learn a functipras presented in Equation (2.1) which yields
elevations for arbitrary input locations. Viewing any faniset of sampleg; as being jointly normally
distributed, we get the predictive distribution for the eh&d targets

p(yla"'ayn|X17"'7XH)NN(”’7K) (22)

according to a meap € R™ and a covariance matrik. p is typically assume@. K is specified in terms
of a covariance functiok with a global noiser,, as

Kij = cov(ys,y;) = cov(f(xi), f(x5)) = k(xi,X;) + 02045 , (2.3)

whered;; is the Kronecker delta which is oneiif= j and zero otherwise. Note that the covariance function
is defined by the input locations andx; and not the target values.
Gaussian process regression offers substantial advarageother techniques:

7
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e Non-parametricity No specific parametric form of the target functigns assumed. This makes it
possible to learn any kind of target function.

e Bayesian frameworklt is possible to specify a-priori assumptions over thgeafunctions. In a
sound and well-founded mathematical framework, eviderara bbservations can then be combined
with these priors to yield a posterior over target functierinstead of yielding one single function
as a result.

e Non-linear regressionComplex non-linear dependencies can be modeled wittgstifarward lin-
ear algebra.

o Predictive distributionsGPs do not only provide predictions of the targets for aajtinput loca-
tions, but also confidence estimates for these predictidnishaquantify the uncertainty stemming
from the model and the noise in the observations.

In the remainder of this chapter, we will describe in Seciadhhow prediction takes place in the GP
framework and present the idea of learning in GPs in Secti@gn @/e will discuss why the covariance
function is the essential part of a GP model in Section 2.3iatndduce the idea of local kernels which are
an important component in our terrain modeling approacteictisn 2.4.

2.1 Prediction

Based on our set of observatiofs= (x;,y;);_,, we want to predict the targgt* for an arbitrary input
locationx*. As GPs are a non-parametric learning technique, the madmitsre for prediction is not
specified a-priori but is instead determined from the olm@xsD. In contrast, a parametric technique
would absorb the information of the training points into adabwhose structure has been specified in
advance (e.g. linear regression or a neural network). Vigwainy finite set of samples as being jointly
normally distributed, one can derive the- 1-dimensional joint Gaussian distribution for the obsdorat
and the test locatiop(y1, - - -, Yn, f*[X1, ..., Xn, X*) @S

[ 2 ] NN(”’ [ AR k(x}:x*) D (2.4)

with K € R™*", K;; = k(x;,x;), denoting the matrix containing the covariance values efdhser-
vations,k € R", k; = k(x*,x;), the vector of the covariances of the test location, thaniingitargets
y € R”, and the identity matri¥. Conditioning this joint distribution on the observatioyields the
one-dimensional normal distribution for the test targdirasl by

o~ N, (2.5)
pto= E(f) =K (K+02I) 'y, (2.6)
v o= V() = k(x"x) 02 — kT (K +021) k. 2.7)

Deriving the posterior means to restrict the joint priortdigition to contain only those functions which
agree with the observations. The central ingredient infrisiulation is the covariance functignas it
specifies the influence that each training pgiat y; ) has in the prediction of the new targét. Thereby,

k constrains the space of target functions and thus repseenprior knowledge about the target distri-
bution. k is usually a parametric function. Together with the globaike parametes,,, the parameters

of k are called thényperparameterg of the GP model. The term hyperparameters emphasizes the fac
that these are parameters of a non-parametric model makiagsumptions about the target model — in
contrast to the parameters of a parameteric model whos#stelus determined a-priori.
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2.2 Learning

Learning in the Gaussian process framework means findinggtiemal hyperparameteésthat determine
the parametric covariance function and the noise of thega®cA possible optimization criterion is the
marginal data-likelihoodC which takes the form

£(6) = p(y|X.0) = / p(yIf, X)p(F1X. 0)df (2.8)

L is calledmarginalas it integrates over all possible target functign& et f denote the vector of function
values of target functiorf for the training inputsX. In the GP model, we have a Gaussian pfioY ~
N (0, K) and the likelihood is a factorized Gaussigfi ~ N (f, o2 I). Thus, one can deridRasmussen
and Williams, 2006

1 _ 1 n
logp(y|X) = —in(K—i-U,QL 7ty — §1og|(K—|—a721[)| — §1og27r ) (2.9)

The three involved terms have natural interpretation%yT(K + 02 I)~ly is the only term containing
the targetsy and measures the data-fit of the observati(}n§.log |(K + o2 1)| is a complexity penalty.
—4 log 27 is a normalizing constant and independent of the hyperpetent Thus, the data-likelihood
trades off data-fit and complexity penalty. The complexignalty prevents overfitting when using the
data-likelihood as optimization criterion. It holgs + o2 I| > 0 asK + o2 [ is a positive-definite matrix.
This determinant is large when the values on the main didgdrthe matrix dominate the other values.
This is for example the case when the covariance functiddyiarge self-covariances (covariances with
respect to the points themselves), ilfx;, z;) > k(x;,x;) Vi # j. In this case, the GP model overfits
the observations.

The optimal hyperparametefiscan be found by gradient ascent methods that fix the parasneyer
optimizing the marginal data-likelihoofl of the observed training data-set. Alternatively, the peeters
can be integrated over using prior distributions, whichultssin a fully Bayesian model. This is usually
computationally more demanding which might necessitaiteguglarkov-Chain Monte Carlo sampling to
approximate intractable integrals (depending on the tfmewariance function).

2.3 Covariance Functions

An important component of GP models are the covariance ifum&t As described above, GPs use the
training points directly for predicting a target for a nevpir location. Visually speaking, the covariance
functionk determines the influence that each training point has. Witieé GP framework, the assumption

is made that this dependency is based solely on the inputidegendent of the targets,

cov(ys, y;) = k(xi,%;) + 020y . (2.10)

The covariance defines the dependencies between targetsefdite, it represents our prior knowledge
about the target distribution. For instance, it incorpesaissumptions about the smoothness of the target
function. Learning a covariance function means finding asueafor target similarity based on the input
locations. The goal is to assign high covariances to poxitibéing the same terrain structure, while giving
small covariances to points of different terrain strucsuteearning the covariance function corresponds to
finding the optimal parameter values for the parametrictiond: such that this requirementis fulfilled.

2.3.1 Theoretical Background

This subsection describes how the choice of covariancdibtmconstitutes the prior within the GP frame-
work. The predictive distribution over target values foriaput locationx,
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Figure 2.1: The lengthscale parameterf ksz determines the smoothness of the learned function. Given
the training data in (a), different functions (b)-(e) ararleed depending ofi

p(ylx) = /p(ylx, Hp(f) df (2.11)

necessitates a prigr( f) over target functions. The question is how to specify thecspz hypothesis
functions constituting the prior. This prior shall imposmstraints on the set of admissible target functions,
e.g. smoothness assumptions. Within the GP setting, tigsthgsis space can be specified by means of
the covariance functions as the theoryRéproducing Kernel Hilbert SpacéBKHS) shows. LetH be

a Hilbert space of real functions defined on an index)etThe norm is induced by the inner product:

| f = V<[, f> H iscalledan RKHS with an inner produet -,- >y if there exists a function

k: X x X — R with the following propertie§Rasmussen and Williams, 2006

e For everyx, k(x,x’) as a function ok’ belongs taH .
e k has the reproducing property f(-), k(-,x) >g= f(x).

The norm|| - || encodes complexity assumptions which determine the smesthof the target functions.
There is a direct relation between kernel functions and RKESthe Moore-Aronszjan theorddron-
szajn, 195states: For every positive-definite functibf, -) on X x X, there exists a unique RKHS, and
vice versa. A kernel functioh is positive-definite if

Z cicik(xi,x;) >0, VneN, Ve,c; eR. (2.12)

4,j=1

The covariance functions used in GPs are positive-defindecan be understood as kernel functions. Thus,
they implicitely define the hypothesis space and therefone fthe prior within the GP framework. This
shows that a careful choice and adaptation of the covarimotion is crucial.
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2.3.2 Squared Exponential
A common and convenient choice for the covariance functdhe squared exponential,

ksp(xi,x;) = U? exp (—%(xi — xj)T Y (x; — xj))) , (2.13)

wherex;, x; € R?, the symmetriel x d matrix > encodes the dependencies amongtidénensions and

o denotes the amplitude (or signal variande)g is a stationary covariance function as it depends only on
the differencéx; —x;|. ¥ might, for instance, be a diagonal matkix= diag(€) =2 wherel = (¢4, ..., ;)
contains the characteristic length-scales of the indaidimensions,

d
1 Xik — Xig)?
kSEdmg(XhXj):O'JQ: exp <—5 E %%) . (214)
k=1 k

The parameters of the squared exponential have an intiriteroretation. The length-scalésin Equation
(2.14) determine how far one needs to move along a partiexlak in input space for the function values
to become uncorrelated. Large valdgswill make the function become almost independent of thatiinp
since it assigns similar covariance values along the campbds. In contrast, smal}. leads to overfitting,
as close input locations receive much larger weight tharemdetant locations. Figure 2.1 illustrates an
example of the influence of the lengthscale in a one-dimeasimput space. A diagonal makes it
possible to describe the influence structure along the ishgial dimensions of the input space. If one uses
a non-diagonal matriX instead, it is possible to rotate the axes and thus des¢rébeavariance structure
along oriented dimensions. This yields a more general whaieding of Equation 2.13 corresponds to
a kernel matrix which is the covariance matrix of a Gaussiam&l. This is further exposed in the next
section.

2.4 Kernels

The interesting parameter bf g is the kerneb specifying the covariance structure of an input locatin.
corresponds to the covariance matrix of a normal distrisuivith mear0. The difference vectax; — x;;

is weighted according to this distribution which yields ttevariance of the two input locations. Learning
a GP model amounts to fitting the covariance function to theeolations. In the case &k g, we need
to find a way to adapt the kern&l according to some optimization criterion. In the followjnge will
focus on2 x 2 real-valued matrices as used in the terrain modeling pnollbere we are concerned with
two-dimensional input data.

Fitting kernels is based on an adequate parameterizatiGarokls. Any symmetric, positive semi-
definite matrix is a valid kernel as the kernel correspondkeaovariance matrix of a multivariate normal
distribution. The spectral theorem says that for a matrikat is normal there exists a unitaridrmatrix
Rsuch thatd = R A RT whereA is the diagonal matrix the entries of which are the eigeraslf A.
The column vectors oR are the eigenvectors of and thus are orthonormal. As the kerdebf kgg is
symmetric it is also normal. Thus, one can represent theckasia combination of a rotational matiik
and a diagonal eigenvalue matrix This gives the parameterization of kernels

2
Y= R( % gO% ) R7'. (2.15)

where/; are the square-roots of the eigenvalues of

1A real-valued matrixA is normal if it satisfiesA A7 = AT A.
2A real-valued matrix4 is unitarian if it satisifiesA” A = I whereI is the identity matrix.
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Figure 2.2: In case of a two-dimensional input space, theeiét with lengthscaleg; and orientationy
used inksg can be visualized as ellipse.

There is a one-to-one correspondence between kernel ematni ellipses which can be exploited for
visualization. Kernels are specified by their eigenvalungktheir eigenvectors. The eigenvalues determine
the lengths along the semi-axes of the ellipse while thersggtors specify the orientation. The square-
roots of the eigenvalues are the standard deviations of ahesponding normal distribution. This is
visualized in Figure 2.2. The ellipse with semi-axis lersgtif a standard deviation of one covers about
39.35% of randomly drawn values of the corresponding nodisatibution. The ellipse drawn with two
standard deviations covers about 86.47% randomly drawresall he standard deviation along a semi-axis
corresponds to the lengthscale hyperparanteterthis direction as used in Equation (2.14).

The orientation matri2 and thus the eigenvectors Bfcan be specified by an angleas

R— ( CoOsax —SsIn« ) . (216)

sinoe  cos«

This parameterization has the drawback thdtas the rang@), 27). Thus, it is cylindrical which is not
compatible with the range of a GP. This is particularly a peabin the case of gradient ascent tech-
niques where one assumes that the influence of a single pirawith respect to the resulting kernel is
monotonous. To avoid this problem, one can overparametgrezorientation matrix by two parameters
andv as

R:(@ T) (2.17)

lUU m

wherel,,, = vu? + v2. The range ofi andv is R. This leads to entries iR in the rangd—1, 1].

To sum up, the kernel which parameterizebgsy is specified by parameter séls= {¢1, {2, a} or
6 = {1, ¢5,u,v}. In order to learn a suitable covariance function, thesarpater sets need to be fitted to
the training setD.



Chapter 3

Non-Stationary Gaussian Process
Regression

Most existing applications of Gaussian process regressierstationary covariance functions which as-
sume the same covariance structure over the whole inpu¢sprathe case of terrain modeling, however,
it is one of our most important requirements to take locaicstrre into account. This is necessary to derive
a regression function that achieves de-noising in homogeaceas while preserving discontinuities in re-
gions of large structural change. Therefore, we need a ntloalgk able to adapt the covariance structure to
local terrain properties. This can be achieved by meansmfstationary covariance functions as described
in this chapter. Section 3.1 formalizes the idea of noniestatity. Section 3.2 presents the non-stationary
variant of the squared exponential covariance functiorctvinie apply in our terrain models. In Section
3.3, we thoroughly analyze this function to get a deep undedéng of the resulting covariances. This
is needed to derive adequate terrain models. Section 3dfiloles how prediction takes place in the non-
stationary setting. In Section 3.5, we highlight the imations that the chosen covariance function and
different ways of prediction have on the terrain modelingigdem. Finally, Section 3.6 introduces different
learning approaches in the non-stationary framework whiehthen described in detail in the following
chapters.

3.1 Non-Stationarity

Stationary covariance functiofsdepend only on the differenek; = |x; — x;| of their input values, i.e.,
k(x;,x;) = k(d;;). By ignoring the absolute values of the inputs, they faildat to a varying smooth-
ness in the target function. Figure 3.1, for instance, depcone-dimensional target function whose
characteristics change significantlyxat= 0.2. It is impossible to specify a global lengthscale paraneter
fit this function: the left part of the function demands foaage lengthscale while the right part is wiggly
which necessitates a small lengthscale. Non-stationargrince functions take the absolute values or
local properties of the input locations into account. Thiskes it possible to adapt to functions whose
smoothness varies with the inputs. For example, dependitigeoinput location we might choose a differ-
ent lengthscale in the example of Figure 3.1. In the settfrigroain modeling, non-stationary covariance
functions enable us to capture local terrain propertiegréfore, we apply this type of covariance function
in our framework.

13
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A NA O R N A

Figure 3.1: Function whose smoothness varies across imates This necessitates a non-stationary
covariance function.

3.2 Non-Stationary Squared Exponential

Paciorek and Schervig8004 introduced the following family of non-stationary covari functions. Let
(Q);; be a quadratic form for the inpuks andx; defined by

T((Zi+2j)

5 ) Hxi = x;) (3.1)

Qij = (xi —%;)
Then, one can derive a family of non-stationary covarianoetions using the following theorem.

Theorem 3.2.1Let Q;; be defined as in Equation (3.1). If a stationary correlationdtion, RS (7), is
positive-definite oiR” for everyD = 1,2, ..., then

RN (xi,%5) = |Sil 15515 |(S: + 50)/2| 2 R (\/Qyy) (3.2)
is a non-stationary covariance function, positive-deéiminR” for everyD =1,2,....

The central idea of this family of covariance functions is tisage of kernels. Each input locationis
assigned its individual kern&l;. This kernel:; captures the local properties of the target function attinpu
locationx;. In areas of wiggly behavior of the target function, for arste, the kernel might incorporate
small lengthscales while in smooth areas it might use laeggthscales. By using different kernels at
different input locations, it becomes possible to accoanvarying local function properties. Stephenson
et al.[2009 derive a similar formulation of non-stationary covariafcections by spatially evolving the
spectral density of a stationary GP model in the frequencyaio.

If using the squared exponential covariance functign; for R%(7), one gets the non-stationary
squared exponential covariance function,

1
1 1y, |—3
knse(Xi,xj) = R Bkl

exp [—(xi —x;)T (%)7

Note that this is the generalized form of the stationary sgghi@xponential given in Equation (2.13). If
one places the same kernel at all input locations, Xe.= ¥; Vi, j, one gets the stationary squared
exponential. Figure (3.2) illustrates the idea of usingaldernels. It depicts a small artificial terrain
containing a simple step. In the stationary case, we plagesdéime kernels at all input locations. This

(3.3)

1

(x; — Xj)] :
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(a) Ground truth (b) Prediction with station- (c) Prediction with non-
ary GP model stationary GP model
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Figure 3.2: The stationary squared exponeritjat uses the same kernel for all input locations which
makes it impossible to adapt to local structures. In thisyga, this leads to oversmoothing of the step.
The non-stationary squared exponentigk s places different kernels at individual input locations sidr
ering the local terrain properties. This makes it possiblgreserve the edge while still using large kernels
in the flat areas.

has the effect of oversmoothing the step. In the non-statiocase, we use different kernels to represent
the discontinuity. These kernels have a large lengthsoalee direction along the step, but a very small
one in the direction perpendicular to the step. This makpsssible to preserve the discontinuity. Figure
3.3 illustrates the covariance structure when kernels se€l to represent a discontinuity, in this case a
diagonal step. The covariance function is supposed to m$sgh covariances among the points of the
same terrain level and small covariances for points thairtagto different levels. This is achieved by using
the long and thin kernels oriented along the step as seereiprévious example. The right side of the
figure depicts the resulting covariances with respect tatifgration(2,0). Covariances are high in the
area right along the diagonal step which contains pointe®tipper step-level of which al$p, 0) is part.

In contrast, covariances are small with respect to all gahthe lower level.

3.3 Analyzing the Non-Stationary Model

Besides the signal varianeé, the non-stationary covariance functibg s introduced in the last section
consists of two parts, the prefactoand the exponential past

knsp(zi,z;) = oF-p-e (3.4)
1
1 1|8 4+52
p o= m B 35)
2+ 2\
e = exp [—(:Ci—:vj)T (TJ) (:vi—xj)] (3.6)

The exponential pai measures the Mahalanobis distance between the two inpatidas, i.e., the dis-
tance between the two locations is weigthed according taekevhich is the average of the individual
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4202 4
X
(a) A terrain map containing a discontinuity (b) Suitable covariance structure for the lo-
(a step) cation (2, 0) (blue cross) for the problem de-

picted in (a).

Figure 3.3: The covariance function is supposed to assigimd¢ovariances among data-points of the same
terrain region.

kernels at both input locations. This kernel gives différemight to the individual dimensions of the
difference vector. Thus, the resulting valuecofs influenced by(i) the Euclidean distance of the two
locations, andii) the averaged kernel. This corresponds to the intuitiontti®imore distant two input
locations are, the smaller the resulting value becomesh®nther hand, the larger the averaged kernel is,
the less important is the Euclidean distance between bptlt Incations. Averaging has the effect that it
does not matter with respect to the exponential parhether we combine two medium-sized kernels or a
large with a small kernel. Also, as expected, two large Kermpduce significantly higher values than the
combination of a small and a large kernel.

In contrast to the easy to interpret factothe prefactop is harder to understand. In fact, under certain
conditions it leads to unexpected effects that are well vartalyzing in detail. This was already noted
by Paciorek as a sidemark in his PhD thd$laciorek, 200Bnoting "this effect seems to be restricted to
situations in which the kernel sizes change very quicklyitsnay not be material in practice" (p. 28).
We, however, experienced that the prefactor has a stroegtedh the resulting terrain model. Thus, it
is worthwhile to get a deeper understanding of this prefadtauitively, the prefactor is needed to make
the covariance function positive-definite. It basicallfraduces a penalty if the shape of the two involved
kernels significantly differs. In the case of equal shapeatii likernels, it attains its largest valye= 1.
Otherwise, the prefactor decreases towards 0 the moredtiffthe two kernels are. The effectgpofan be
demonstrated best in the one-dimensional case where thelgErare one-dimensional “matrices”. Thus,
their determinant corresponds to their only entry. Assgntimo kernel matricest = (a) andB = (b),
the prefactor takes the form

- % %CL-FZ) 7%7 \/E %
p= @ B () —<—%(a+b)> . (3.7)

This corresponds to the square-root of the fraction of theegetric mean and the arithmetic mean which is
always less than or equal 1. Thus, independent of theirisizegndb are equal this will yield a value df.

In contrast, the larger the difference betwaeandb is the smaller is the resulting prefactor. This may lead
to the following unexpected effect. Assume we are given taiogof kernelsA; = (a,) andB; = (b1) as
well asA; = (a2) andBs = (b1). The kernels of the first pair have equal size, iig.= b;. The kernels

of the second pair differ in size, i.eap # b2, but both are significantly larger than the corresponding
kernels of the first pair, i.eas > a1 andby > b;. In this case, the prefactor will be larger for the first pair
(namelyl) than for the second pair where it is smaller than 1. This reay ko the effect that large kernels
yield smaller covariance values than small kernels — evémeifdistance between the respective kernels
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Figure 3.4: The covariance @&fysg is not monotonous in the kernel parameters as exemplifietivior
kernels. The lengthscales of the left kern@{* = 1.0, ¢/*/* = 1.5) and the lengthscale along theaxis
of the right kernel(;ig’” = 1.5) are fixed, while we test different values fjf9"*.

is the same. The prefactor cannot simply be omitted sinceneeded to achieve positive-definiteness of
the covariance matrix. Therefore, one needs to be awars b&havior when fitting a GP model with the
covariance functiork ysg. In the following, some exemplary two-dimensional sitaat are presented
which deepen the understanding of the covariance functidriteus of our non-stationary model.

Dependency of the Covariance on the Kernel SizeFigure 3.4 illustrates the effects of the different
termsp ande of kg for a pair of two kernels. While the first kernel is fixed, thad¢hscale/,, of the
second kernel along theaxis is scaled ix-direction. Figure 3.4(b) depicts the covariance as a fanct
of this lengthscale. The corresponding curve is not mormien It has its maximum &, = 5.7 while

it yields smaller values for smaller and larger lengthssalBigures 3.4(c) - 3.4(e) visualize exemplary
kernels for the optimal lengthscale and for a smaller andgetdengthscale. Note that a larger kernel
leads to a smaller covariance value. As the table in Figut€)3shows, this is due to the prefactor of
knse as already noted above. The non-monotonicity of the covegidunction with respect to a single
kernel parameter shows that the learning task for a comghdteset where each observation is assigned
its individual kernel may be prone to local extrema — for theariance function is an essential component
in determining the model structure and thus directly infeemnthe data-likelihood. Without additional
constraints on the kernels, it is extremely difficult to findlabal optimum.
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(c) Covariances w.r.t. input  (d) Prefactors w.r.t. input (e) Exponential parts w.r.t.
location (2,1) location (2,1) input location (2,1)

Figure 3.5: Counter-intuitive effect dfy sz due to the prefactor: the covariances of the input locatton a
x = 2,y = 1 are larger with respect to some locations across the stegdlsme neighboring points.

Non-monotonous Covariance across a StepFigure 3.5 illustrates the same effect by means of a small
simulated terrain example. This elevation map consist®of fows with four data-points each. We set
the outer two rows to have long thin kernels oriented alomgrdw. This kernel type is typically used at
discontinuities, i.e., when the influence shall only be gltrex-axis. The middle two rows employ small
kernels which are used in the case of rapidly changing enmemnts. This kernel constellation could well
be used at a discontinuity such as the one illustrated inr€igib(a): the kernels close to the discontinuity
are small while the outer kernels try to avoid smoothing s&tbe discontinuity. The bottom three diagrams
of Figure 3.5 visualize the covariances with respect toripet location (2,1), i.ex = 2,y = 1. Formally,

the diagrams illustrate the values for

wse((5) (T ) (3.8)

As expected, the covariances are largest along the sameCmmter to intuition, however, they are also
comparably large for the outer row & 4) which might be part of the other side of the discontinuity. |
contrast, the covariances with respect to the input lonatif the inner two rows are small. This effect
is due to the prefactgr which is one for the two outer rows where the same kernel typariployed.p

is significantly smaller for the two inner rows which have angetely different kernel type. In contrast,
the exponential parts follow intuition and yield smaller values the farther a rosvaway. However,
the prefactor dominates the overall covariance valuess &fiect might lead to oversmoothing of the
discontinuity as the covariance across the step is large.sohution to avoid such effects is the usage of
smoothly varying kernels. If the kernels of the two inner somere more similar to those of the outer rows,
the covariance structure would be changed such that the uppevould have least covariance to the input
location(2, 1) as needed for preserving the discontinuity.

Scaled vs. Orthogonal Kernels An analytic example of how different kernel combinations ¢ead to
the same covariance structure is presented in the follaviingt, consider the two scaled kernels illustrated
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Figure 3.6: Scaled and orthogonal kernels may produce the salues for the covariance function.

in Figure 3.6(a),

Al_(g 2>,A2_<A0$ on). (3.9)
The resulting prefactor is
N LT )l eo
= (227 (A2 2)%((x'+4*x)2)—% (3.11)
_ g A (3.12)

Second, consider the two orthogonal kernels visualizedguorg 3.6(b),

r 0 Ax 0
n(5 ) me (). @13
The resulting prefactor is
0 \[T|( Az 0\|T[{ = 0 |
0 Az 0 = 0 %
L oanioani @tAe)?i A2
- (‘T /\)4(‘T )‘)4( 4 ) _2(1+A) .

Thus, the prefactors are the same in both kernel constaikatiAlso the exponential part is the same for
arbitraryz and\ as the averaged kernels are

1 1/ 1+Nz 0 1
§(A1+A2)_§( 0 (1+A)x)_§

This example points out the difficulty to find an optimal kdroenstellation. In the case of a large ob-
servation set this problem becomes even more severe aediff@rnel combinations may lead to similar
data-fits. Therefore, additional constraints are needethice the optimal solution unique and suitable for
generalization.

(B + B2) .
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3.4 Prediction for New Input Locations

Our terrain modeling approach builds on the concept of Ikeahelsy. These are used in the calculation
of the non-stationary covariance functibg s z. In the adaptation procedure of our model, we learn a local
kernel:; for each input locatior; of the training sefD. However, we face a problem when predicting a
new input locatiorx*: there is no kernel* which is needed to calculate the covariancgs g (x*, x;) of
x* with respect to the training locatioss. There are different possibilities to cope with this prable

First, one might renounce on calculating an averaged kernel andnlg the kernel; of the training
location instead. This has the disadvantage that the gein&dbduced by the prefactor in the covariance
function gets lost (cf. section 3.3). This may lead to sesiside-effects as this penalty has been effective
in calculating the covariance matrix for the training locations which is also used for prediction

A secondpossibility is to determine the best stationary kernel far training set and use this kernel
for input locations that lack a kernel. This has the disathg@ that this counteracts the idea of using
non-stationary kernels. In particular, this will lead taywéow covariance values in terrain areas where
the training locations have kernels with shapes strongiptet! to the local properties. The difference in
shape with respect to the stationary kernel will decreasegtkfactorp. In turn, the predicted target*
will tend to the mean of the GP as all covariances are rather lo

Thethird and probably best solution appears the usage of a secoriddawmsng process over kernel
parameters. Based on the kernels of the training locatidiis top-level process predicts* which is
used for the prediction of*. This has the advantage that it constrailisto be similar to the training
kernels of the local neighborhood. A natural choice for tioig-level model is a Gaussian process. A
top-level process over kernels, however, introduces thedsuof a second optimization problem. Also, a
fully Bayesian treatment has to account for the dependsiaci®ng the two levels to optimize the overall
model. A hierarchical approach that employs two GP le{ftiorek and Schervish, 2004 described
in Section 3.6. This approach, however, is only feasiblesfoall data-sets and thus not applicable in the
domain of terrain modeling. As an approximation, one midieréfore simply use a weighted average
over the local neighborhood to estimaté. This mimics the use of an isotropic, stationary GP model as
top-level process.

3.5 Implications for Terrain Modeling

When fitting a non-stationary GP model to a regression prolslech as a terrain data-set, care has to be
taken to avoid overfitting as in any learning problem. As désd above, overfitting takes place if the
covariance function assigns very high covariance valugsotots in the close neighborhood and small
values to points further apart. In the case of using; g, overfitting may be caused by both of its two
subfunctions, the prefacterand the exponential paet (i) Very small kernels lead to small covariance
values with respect to almost all points duecto (i) Kernels with different shapes, no matter which
orientation and size, lead to small covariance values adiffezent shapes decreagseEven if two kernels
are large, but of different shape, this might yield a smallac@nce due tp. Therefore, overfitting is also
possible with large kernels. To avoid overfitting, one thesds to ensure two requirements:

1. Kernels should not become too smdlhis avoids overfitting by means of the exponential part.
2. Kernels should vary smoothly across input spald@s avoids overfitting by means of the prefactor.

The second requirement also makes sense from an intuitimeqfoview. The kernel structure never needs
to change rapidly across input space — in contrast to thaiteitself which may exhibit sudden changes.

Note that also at a discontinuity the kernels vary smootklyllastrated in Figure 1.4. On both sides of

the discontinuity the same specialized kernel types (tbiméls elongated along the discontinuity) can be
applied.
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3.6 Adapting Kernels

Learning a GP model means to optimize the hyperparametéhg girocess according to some optimiza-
tion criterion such as the marginal data-likelihood giveEguation (2.9). Besides the global noise rgte
and the signal variancey, the parameters of the local kernels used:Ry; £ form our set of hyperparam-
eters. Optimizing these kernel parameters correspondkafatiag the kernels to the local terrain structure.
Depending on the parameterization, we have three or foamnpeters per kernel (cf. Section 2.4). Given
observations, we g8t + 2 or 4n + 2 hyperparameters in total. Obviously, this is a hard highetisional
optimization problem vulnerable to local optima. Depeigdim the optimization criterion, the optimiza-
tion problem isill-posed i.e., there exists no unique solution. Different kernaibinations may lead
to similar data-fits due to the nature bfsg. In order to make this problem well-posed, we need to
introduce additional constraints on the parameter spasedigcussed in Section 3.5, one such criterion
is to constrain the kernels to vary smoothly across inputespa here are different ways to incorporate
this requirement. Paciorek and Schervigd04 who introduced the family of non-stationary covariance
functions used in this thesis employ a hierarchical modetHis purpose. They introduce a top-level GP
model on the kernels as follows. They define a multivariateess for the matrix-valued functia-).

To model this process, they use an independent univariateps for each kernel parameter. To make
the kernels vary smoothly across input space, all singlegsges are given a GP prior with a common
stationary covariance function. Straightforward optiatian, e.g., by means of gradient ascent, however,
is precluded by the additional GP models for the kernel patars. Therefore, Pacioreit al. employ
Markov-Chain Monte-Carlo (MCMC) sampling. Unfortunatedyie to the large number of parameters this
results in slow computation, "limiting the feasibility di¢ model to approximately < 1000" (p. 7). In
terrain modeling we are dealing with large numbers of tregrabservations. Thus, this hierarchical model
is not applicable to our problem setting and we need to er@tiernatives for adapting the kernels of the
covariance function. This thesis studies two possibditeegradient ascent approach over the pseudo data-
likelihood introduced in Chapter 4 and an approach basedcal terrain gradients presented in Chapter
5. By means of both procedures, it is possible to fulfill thgeuieements that the kernels vary smoothly
across input space and do not become too small.
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Chapter 4

Gradient Ascent

Our first approach to learn the optimal local kerngjsof the non-stationary covariance functibr sz is
to maximize the marginal data-likelihood restated here@mvenience,

1 _ 1 n
£ =logp(y|X) = =5y K, 'y = 5 log| K| —  log 27 (4.2)

where we use the shorthahd, = K + I o2. A popular optimization technique is gradient ascent. Rue t
the interdependencies among the many kernel parametetseadvn k sz, however, the gradient of this
formula cannot be derived analytically. As an approximatige follow the common practice to optimize
the pseudo-likelihoofBesag, 197l We do not view the kernel parameters as random variablearin o
optimization process, but assume them all as fixed excemtrtbeve are optimizing. This is described in
Section 4.1 which enables us to find analytic forms for theligrats. In contrast to hybrid approaches that
use gradient ascent to derive a proposal distribution foMIG Paciorek, 2008 the approach proposed in
this chapter is fully based on gradient ascent. Sectionds2ribes our learning procedure. In Section 4.3,
we propose a method to incorporate smoothness priors ogeeettmel parameters. Section 4.4 presents
our experimental evaluations and results. In Section 4eXdiscuss this approach.

4.1 Partial Derivatives

We optimize the likelihoodZ by taking the gradient with respect to theeudo-likelihood This means
we assume all parameters fixed except the one for which weadealating the derivative. The partial
derivative of parametear of kernelX:; belonging to input locatios; takes the form

d 1 0K 1 0K
1 X = y'K ' ——K'ly— —tr(K™! 4.2
o ogp(y|X,©) 5Y o, X Y3 r( aeip> (4.2)
= ltr((ozozT - K™Y OK ) where a=K'y. (4.3)
2 90,

23
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The proofis given in the appendix in Section A.3. To compdt8)we need to calculate the derivative of
the covariance matrix

Ok(x1,%;)
O DR T];’p .. O
0K Bk(x:i,,x ) : Bk(x:i,xi) : Gk(xi,xn)
s = | e Bged . Sme) | (4.4)
' . ak(x'n.,xi) . :
O ... TTP ... 0

This matrix has non-zero entries only for théh row and column which contain the covariances of input
locationx;. Thus, we need to calculate the derivatives of all covagdnnctions for the input locatiog;
since only these incorporak¢; and thusd;,. These derivations require lengthy algebraic maniputatio
but can be derived analytically. They are described in thpeagdix in Section A.4. The resulting functions
can be evaluated in constant time.

4.2 Learning Procedure

As described in Section 3.3, the data-likelihood given imi&en (4.1) contains many local extrema since
it is not monotonous in the kernel parameters and differemiéd combinations may lead to similar data-
fits. In order to avoid bad local optima, we need a suitablenieg procedure. This problem is akin
to the problem of weight optimization in neural networks.tlis area, the adaptation proced&®rop
[Riedmiller and Braun, 1993s state-of-the-art. The idea &Propis to perform gradient ascent, but to
ignore the length of the gradient because it has no gendtafive interpretation that might be used for
adaptation. In contrast, learning is based only on the teatpehavior of the sign of the derivative.

We propose to take up these ideas and a&&ybpto our needs. Our learning algorithm is given in
Algorithm 1. First, we learn the optimal stationary kernatgmeters by standard gradient ascent and use
them as initialization for the individual kernels. In an iterative procedure, we optimize each kefgl
by means of partial derivatives as follows. Each kernelipaters;, maintains its individual update-value
aip Which completely defines the length of the update step.is adapted according to the direction of
the derivative. If the derivative retains its sign in suhsent iterations¢y;,, is increased by a factor*
in order to speed up convergenetsg if-part in Algorithm 1). If the sign changesléepart), indicating
that the last update was too big;, is decreased by a factgr. Also, the previous step is completely
retracted. Because of this backtracking step, the der&v&isupposed to change its sign once again. To
avoid double punishment ei;,, the backtracking flag;, indicates that no adaptation of,, shall take
place in the following stepif(-part). In our experiments, we found = 1.1 andn~ = 0.5 to produce
the best results. We set the adaptation maximump,,, = 3.0 and the minimun),,,;,, = 0.00001. The
time complexity of this algorithm is as follows. Assume weden iterations until convergence. In one
iteration, we adapt all parameters of each kernel. Givasbservations, we have- n adaptations per
iteration ¢ = 3,4 depending on kernel parameterization). A single adaptagquires the calculation of
the partial derivative with respect to this parameter. Tieisessitates the derivation of the covariance matrix
given in Equation (4.4) which requires calculatingovariance functions, namely those that incorporate
the respective kernel. The derivative of a single covagafunction with respect to a specific kernel
parameter is calculated in constant time. Thus, we get bdotaplexity of O(m - ¢ n - n) = O(m n?).
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Algorithm 1 Gradient Ascent Kernel Adaptation

Input: observation seb, nt, ™, Anaz, Amin
Output: optimal kernels;

Learn global paramete@®.;,, for ksg.

Initialize all local kernelsZ; with ®; = O ;;.

while not convergedio

for all 3; do
for all §;, € ®; do
if i, then /I Backtracking in iteration before

ip(t) = i (t — 1)
Ab;y(t) = sign(z5= (1)) * aip(t)
Oip(t + 1) = 0ip(t) + Al (1)

Bip = false
else if 25 (¢ — 1) = 25 (t) > 0 then // Derivative retains sign
ip ip
@ip(t) = min(ap(t — 1) * 0™, Appas) /I — Increase convergence speed

Dby (1) = sign(z5=(t)) * cip(t)
Hip(t + 1) = in(t) + A@ip(t)

else /I Derivative changes sign
aip(t) = max(aip(t — 1) * 0™, Avin) Il — Decrease convergence speed
Bip(t +1) = 01y (1) — Abyy(t — 1)
Bip = true

end if

end for
end for
end while

4.3 Regularization

Taking the gradient with respect to only one single parameate proposed in the previous section, has
severe practical limitations. As described in the last thiaphe covariance functiohysg is strongly
influenced by the shapes of the kernels of the two input lonatiEven if these kernels vary only slightly,
the covariance might decrease quickly. This has the effttthe gradient can only moderately indicate
kernel modifications if it wants to retain a high covarianedue with respect to an input location with a
kernel of similar shape. On the other side, decreasing thar@mce between two input locations can be
achieved simply by choosing different kernel shapes. Tasileleads to overfitting. As many different
kernel combinations may lead to similar data-fits, the ojzation problem is ill-posed. To achieve a
model with robust generalization performance, we need posa the constraint that kernels vary smoothly
across input space (cf. Section 3.5). One way to achievaghig introducing a further constraint into
the optimization criterion, i.e., the marginal data-likelod in our case. This is described by the theory of
Tikhonov regressiofiTikhonov, 1943, also known as ridge regressififoerl, 1963, which explains how

to derive a well-posed problem by additional assumptiomhé ridge regression formulation, we want to
minimize the functional

T =X F I+ Q. f) (4.5)

wherey are the observed training targets dhdre the values predicted by functigin The first term is
the regularizer which encodes the smoothness assumpfiding bypothesis spacl. The second term
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assesses the quality of the data-fit. This might be, for mt&athe squared error which corresponds to the
negative log-likelihood of a Gaussian noise modgltrades off both terms. The regularization method
yields a minimizerf* of this functional. This minimizer can be viewed as the maxima-posteriori
(MAP) function under the posterior distribution over fuiects of the GHRasmussen and Williams, 2006

In contrast, the GP model represents a posterior distabwtver functions (and not only a single estimated
function).

Using the regularizer as defined in Equation (4.5) has noradyge over the GP procedures as it yields
the same MAP function. It points out, however, how we can isgpon our model the constraint that
the kernels vary smoothly across input space. We derive ati@ned likelihoodZ: by introducing a
regularizer for each kernel parameter type6, € {¢1, 2, o} or {{1, {2, u, v})

Oip, — 0,
‘ z; — x|
which we combine with the original likelihood to a new maximization criterion

Le=L=Y Xg,Ro,. (4.7)

p

Ry, quantifies the difference of the kernel parametigrf®r neighboring input locations. Since this penalty
term does not depend on the targets, it is conceptually alpnt/to a prior on the hyperparameters, i.e.
the kernel parameters. We use the standard rprn||= v/a2. The regularization term enforces the
constraint that the closer two input locations are the moméla are their kernels. The coefficieng,
defines the importance each kernel parameter type has.iffigsil to derive this coefficient analytically,
so it should be estimated by means of cross-validation. Eneative of the regularization term is given
in the appendix in Section A.4.1.

4.4 Experiments

To investigate the modeling capabilities of our gradieneas approach, we applied it to different synthetic
data-sets. In a first experiment, we learned the kernelsddfieult terrain structure. Then, we performed
experiments where we adapted lengthscales and orientsjmarately to assess the general ability of this
approach to fit kernel parameters to local properties. Wiuated the following variants of the algorithm:

e With and without a regularization term that constrains teenkls to vary smoothly across input
space (cf. Section 4.3).

e With and without removal of observation points to assesgéreeralization capabilities.

o Different approaches for setting kernel matrices on lacestiwhere no latent kernel structure has
been adapted (e.g., at the gap locations that are not cedtairthe training set; cf. Section 3.4).

4.4.1 Adapting All Parameters

In our first experiment, depicted in Figure 4.1, we appliedlearning procedure to a difficult terrain data-
set consisting of 225 data-points (Figure 4.1(a)). Thixeatains uniform regions as well as sharp edges
and corners, which are hard to adapt to locally. Note, fongla, that the edge between the lowest and
the second lowest plateau has a curvature and that threeetiffheight levels can be found in the local
neighborhood of the corner approximately in the middle ef diagram. To initialize the kernels at the
input locations, we learned the best stationary kernelghisrmap. Prediction with this stationary GP is
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Figure 4.1: Results of gradient ascent adaptation withadtwith regularization on a difficult artificial

map.
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poor as it largely oversmoothes the discontinuities in ttagmMNe applied the gradient ascent procedure
described in Algorithm 1 to learn individual kernels for timput locations. Convergence was achieved
after about 50 iterations.

Without regularizatiorterm, the learned kernel map looks chaotic: small kernatsbeafound next
to very large kernels and kernel orientations change alyrufthile many of the learned kernels meet
expectation, e.g. the long thin kernels at the border of {hyeetleft plateau, other kernels do not at all
correspond to intuition, e.g. the very long, thin kernelthatbottom-left step which are oriented not along,
but perpendicular to the step. Nevertheless, the correspgprediction fits the data very well. This is,
however, deceiving as for many parts of the map this is duevers overfitting. As the kernel shapes
vary significantly, the covariances among the input locegtiget small. This problem becomes evident
when we remove data-points in the training set to measurgeheralization capabilities of the model.
We removed 15% of the data-points and repeated the experirhba prediction for the gaps is poor as
expected. First, we did not assign kernels to the unseer logations (cf. Section 3.4). In this case, we
only make use of the kernel of the other data-point with resfewhich we are calculating the covariance.
As an alternative, we averaged kernels by means of an isotnep-dimensional Gaussian with a standard
deviation of 2 and set the resulting kernel estimates at tiseen locations which mimics a hierarchical
top-model for the kernels. This, however, improved the jmtézh performance only slightly.

With regularizationterm, the learned kernel map is much more structured. In perss of the input
space, kernels vary smoothly. In case of 15% of the datatpodmoved, the prediction quality is still un-
satisfactory when one does not assign individual kernefsgainseen locations. If we use neighborhood
averages, however, the prediction quality improves. Tlecebf regularization is clearly visible here.
Though still being far from perfect, the resulting predietmap reliably closes the gaps. Close inspection
of the filled kernel map reveals that in spite of regularimagsome kernels still have shapes that differ sig-
nificantly in comparison to their neighborhood. These eutlimight be accounted for by using a quadratic
penalty for the regularizer.

This experiment reveals that finding an optimal kernel mag lerd problem. Due to the many pa-
rameters involved, it is prone to local extrema. Nevertsgl¢he results indicate that our gradient ascent
procedure is in principle capable of learning an adequatakstructure and that regularization is crucial.
In order to study this approach in more detail, we simplifieel problem-setting to problems where only
some of the kernel parameters are adapted.

4.4.2 Adapting Lengthscales I (qualitatively)

In this experiment, we investigated the capability of ourdelao reliably adapt the lengthscales of the
kernels when their orientations are fixed. Figure 4.2 prisseur adaptation results for a small data-set
consisting of 81 data-points. 9 points, at least two rows$adisfrom the map border, were randomly
removed. The set represents a straight step along theension. A stationary model oversmoothes the
step as visualized in Figure 3.2. Our gradient ascent proeatkeds to find adequate kernels to preserve
the step. Without regularizatiorterm, a significantly larger data-likelihood is achievedhisTis due to
the large kernels the model is allowed to produce in this.cassing large kernels results in a smaller
complexity penalty which boosts the data-likelihood. Dspf the large kernels, the model is still able
to fit the data well by exploiting the prefactor of the covada function. The model uses two different
kernel types to preserve the discontinuity, one for each sitthe step. Although both types are large,
the covariance across the step is small since the types diffeificantly in shape which decreases the
prefactor ofkysg. A third completely different kernel type is used along theps This avoids influence
of any of the two step sides which thus corresponds to oveditTherefore, the learned model is not able
to generalize well and to reliably fill the gaps. In particuthe gaps along the step are filled poorly. These
problems are only slightly improved if one places neighlbodhaverage kernels at the unseen locations.
In contrast, gradient ascenith regularizationterm is able to predict the discontinuity correctly. The
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Figure 4.2: Results of gradient ascent adaptation aftevergence on artificial terrain with 10% of the
data-points removed. Only kernel lengthscales are adagted kernel-averaging, the missing kernels
of the unseen locations were calculated as an average avévdhl neighborhood based on an isotropic
Gaussian with a standard deviation of 2.
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Figure 4.3: Performance of gradient ascent in terms of MSEap depicted in Figure 4.2(b) with respect
to different noise levels and fractions of missing obseovest (20 runs per configuration).

regularization effect can be observed easily: the kerraalg smoothly in input space and are similar. As
the discontinuity needs to be modeled by thin, elongatedetsrin the center structure, this model is not
able to improve on the penalty term of the likelihood by exlieg the kernel size. This has the desired
effect that overfitting is avoided. While all other unseenalions are almost perfectly predicted, two
outliers can be observed. If one places averaged kerndis aintseen locations, this problem disappears.
This has the minor disadvantage, however, that the disoaitiibecomes less sharply represented at some
other unseen locations.

4.4.3 Adapting Lengthscales Il (quantitatively)

We repeated the previous experiment on the small simulatedin, which represents a simple step and
is depicted in Figure 4.2(b), for different combinationsnoiise distortion and fractions of missing data.
We applied our gradient ascent procedure to learn the |soglss of the kernels while we left the angles
fixed. In particular, we explored noise levelsof= 0.0,0.1,0.2. As the step has an elevation of 1, it

does not make sense to consider larger noise values. Thi@fraof removed points were 0%, 10%, 20%,

30%, 40%, and 50%. Each combination was repeated 20 timbglifitrent random seeds. As evaluation
metric, we used the mean squared error

MSE(Y) = — 3~ (4 — i)’ 4.8)

of predicted elevationg; relative to ground truth elevations on the set of input location¥ = {x;}%1,.

We used the regularization weights = 0.5 and A, = 10.0 which we found to produce best results.
Kernel-averaging for the unseen locations was done by mefas isotropic Gaussian with a standard
deviation of 2. Figure 4.3 presents our results. In all corations of noise and gap fraction, the gradient
ascent adaptation clearly performs better in case of iingla regularization term. Prediction also signifi-
cantly improves when we place averaged kernels estimaigttfre local neighborhood at the unseen input
locations (instead of using only the other kernel when datig i sr with respect to an observation).
The baseline corresponds to a simple hyperplane-fit. Usiadignt ascent with kernel-averaging always
leads to a better performance than the baseline. This ptheespability of our non-stationary GP model
to adequatly adapt to and preserve discontinuities.
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Figure 4.4: Results of adapting kernel orientations by medigradient ascent
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4.4.4 Adapting Orientation

In this experiment, which is presented in Figure 4.4, westigated learning the optimal kernel orientation
by gradient ascent. While keeping the lengthscales of theecke fixed, their angles were adapted to the
terrain structure. Again, we used the terrain with the sergiep. We applied the same kernel shape for
the whole input space: a thin and elongated kernel inigaliat an orientation of 45with respect to the
discontinuity. The optimal orientation i$ 8o that the kernels are oriented along the step. In the c&@8é of
gaps, including a regularization term does not show a benfiile not all kernels get optimally rotated,
the important kernels next to the step receive the corréentation which leads to a good data-fit. Thus,
the learning procedures stops adapting the kernels. Somelket the map border, however, get rotated
wrongly even when using a regularization term. This seenbgtan artifact of their special location. Also
if 15% of the data-points are removed, using a regularinatom yields only a slight improvement. The
same holds for kernel-averaging for unseen locations wikaths only to a minor prediction improvement.
The discontinuity is well represented which substantifliesclaim that gradient ascent optimization is a
promising procedure also for learning kernel orientation.

4.5 Discussion of Experimental Results

Gradient ascent optimization is a promising way to learridlcal kernels for a non-stationary GP model.
It is prone, however, to get trapped by one of the many locah@ We were able to show on a simulated
terrain that gradient ascent is able to learn almost optiemgjthscales and angles in separate adaptation
procedures. This can be seen as a proof of concept for oupagpin a limited problem setting. In
our experiments, we did not focus on optimization of the paaters of the learning procedure itself.
In order to make this approach work in more complex, reaktes; the learning procedure based on
gradient ascent needs more sophistication to avoid lodahap A first step in this direction is the use of
a regularization term which constrains kernel parametessaty smoothly across input space. We have
qualitatively and quantitatively illustrated the benefisach a regularization term. Furthermore, we found
that in the prediction for unseen areas it is most useful tonese the corresponding kernels based on
the kernels of the local neighborhood. Already a simple ayieilg over the neighborhood results in major
improvements in prediction quality.



Chapter 5

Terrain Gradient Adaptation

The gradient ascent model presented in the previous chanaedes a flexible and general framework for
learning the kernels used I s . It is, however, prone to the many local optima of our terramdeling
problem. As an alternative approach to fitting the non-astetity GP model, we propose to learn the optimal
kernels by means of adaptation to the local terrain gradigntture. We model the kernel matrices as
independent random variables that are initialized withl&aened kernel of the corresponding stationary
model and then iteratively adapted to the local structutb®fjiven terrain data. This approach is inspired
by work in the computer vision community where the problenadéapting smoothing kernels to local
structure has been well studied. It is therefore not surgithat, although image processing algorithms
are typically restricted to dense and uniformly distrilslitiata, we can use findings from that field as an
inspiration for our terrain adaptation task. Section 5tfoiduces the concept of elevation structure tensors.
These tensors guide the adaptation of the local kernelssasibed in Section 5.2. Section 5.3 presents the
complete learning algorithm based on terrain gradientsti@e5.4 describes our experiments. In Section
5.5, we discuss the experimental results.

5.1 Elevation Structure Tensors

Middendorf and Nagdl2004 present a technique for iterative kernel adaptation in theext of optical
flow estimation in image sequences. Their approach buildtherconcept of the so called grey-value
structure tensor (GST), which captures the local struatfisen image or image sequence by building the
locally weighted outer product of grey-value gradientsha heighborhood of the given image location.
Analogously to their work, we define tledevation structure tensdEST) for a given locatiox; as

EST(x;) := Vy(Vy)T(x;) , (5.1

wherey(x) denotes the terrain elevation at a locatioand™ stands for the operator that builds a locally
weighted average of its argument according to the ke¥hel For two-dimensionak;, Equation (5.1)
calculates the locally weighted average of the outer prodbi®y = (87741, ;Ty) This local elevation
gradient can be estimated directly from the raw elevationg@es in the nelghborhood of the given input
locationx;.

Equation (5.1) yields a tensor, representable as<a2 real-valued matrix, which describes how the
terrain elevation changes in the local neighborhood oftlonax;. The first eigenvector of this matrix
points into the direction of the strongest ascent. The eprding eigenvalue measures this ascent, while
the second eigenvalue measures the ascent in the perplandicection. Thus, small eigenvalues denote

flat areas while large eigenvalues are typical for regiorstedp ascent, e.g. at discontinuities.

33



34 CHAPTER 5. TERRAIN GRADIENT ADAPTATION

CoO0O0O0O0O00QUIID o
OOOOCOOO0VVV SO T o o 8 b - -
2000000000080 0 0 s o o - -
FAATOOOOO0 0000 00 0 0 o v -

> 0 - 7200000000000« - - - _

2000 - -

222 2
= ol
=
A0 - S s - _

i i i i i
-10 -5 0 5 10
X

/;%%!222222;23:::::
%/yﬁ&aooo ,,,,,,,

0000000 e e
N

(a) Artificial data-set (b) Tensors

Figure 5.1: Elevation structure tensors (EST) capture keceain properties.

To get an intuition, how this can guide the adaptation of tial kernelX:;, consider the following
situations. Let\; and A\, denote the eigenvalues &fST(x;) and 5 be the orientation angle of the first
eigenvector. If; is located in a flat part of the terrain, the elevation gratdi&hy are small in the neigh-
borhood ofx;. This results in two equally small eigenvalueso$7T(x;). In contrast, ifx; was located in
an ascending part of the terrain, the first eigenvalu 8%'(x;) would be clearly greater than the second
one and the orientatioi would point towards the strongest ascent. Figure 5.1 iitiss the tensors of
an artificial map. The most prominent structural changeesstieep step in the bottom-left corner which
is reflected by the long thin tensors oriented perpendidoldhis step. Smaller tensors of similar shape
dominate at the other smaller steps. In contrast, the honmageterrain areas in the upper right and upper
left corner are represented by very small tensors withoigrafecant elongation.

5.2 Adapting Kernels

As discussed by Middendorfand Nag2004, the kernek; describing the extent of the local environment
of x; should be set to the inverse 8157 (x;). This corresponds to intuition: In regions of low structura
change such as flat areas, the eigenvalues of the tensommalie Bhese regions have homogenous local
properties, so the covariance is large also with respedstart input locations. Thus, the kernels should be
large. In contrast, the eigenvalues of tensor eigenveptuirging into directions of rapid structural change
are large. Along these directions, covariances shouldkfyubecrease. Therefore, the corresponding
kernel eigenvalues should be small. Since the kernel e&dees are adapted according to the eigenvector
directions of the tensors, the kernel orientation is setesponding to the orientation of the tensor. By
means of this adaptation strategy, flat areas are populgtéatde, isotropic kernels, while sharp edges
have long, thin kernels oriented along the edge directio@ierner structures, having strong elevation
gradients in all dimensions, result in relatively smalldbkernels.

To prevent unrealistically large kernels, Middendorf analgill describe how this inversion can be
bounded to yield kernels, whose standard deviations liedxt given values,,,;,, ando,,,.,.. Based on
their findings, we give three concrete local adaptationsrthat have been compared in our experimental
evaluation. Lef\; and)\, denote the eigenvalues of the EST anits orientation. To simplify notation, we
introduce), = A\x/(\1 + X2), k = 1,2, and use the kernel parameterization of Equation (2.1Ftess
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where the lengthscalés and/; scale in orthogonal directions ardtlis a rotation matrix specified by the
orientation anglev.

1. Direct Inverseadaptation:
2. Bounded Lineandaptation:

3. Bounded Inversadaptation:

mazPmin k=1.2

2
gk - A_ By A_ 2 I )
kE Omax + (1 - k) Oimin

Figure 5.2 presents curves f(ir for differento,,;, ando,,.... TheDirect Inverseadaptation procedure
has the disadvantage that the resultipgre unbounded. If the EST is very small, the resulting kecaal
become unrealistically large which disrupts the compldtgptation procedure. THeounded Lineaadap-
tation procedure leads to rather balanced kernels withstroag bias for one dimension as the resulting
eigenvalues are of similar order. In contrd&bunded Inversstrongly favors the smaller eigenvalue. This
has the effect that it is more suitable to closely fit the dat&js more prone to overfitting, whilBounded
Linear copes better with sparse data and gaps.

5.3 Learning Procedure

So far, we have described how to perform one local adaptatemfor an arbitrary kernél;. As the com-
plete learning and adaptation procedure, which is also sanmed in Algorithm 2, we propose to assign
to each input locatiorx; of the training setD a kernel matrix>:; which is initialized with a global pa-
rameter vecto®. © has been learned using standard GP learning with the stayisquared exponential
covariance functiorksg. The local kernels are then iteratively adapted to the élmvatructure of the
given terrain data-set until their parameters have comeerghe local weights in the tensor computation
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of the averagé™ are chosen according to the current estimat® 0fin order to speed up the adaptation,
we introduce a learning raig to make the adaptation speed for eaghdepend on the local data-fit, given

by

df(x;) = —PWilx) (5.3)

max, p(y|x;)

This data-fit quantifies the regression error and corresptmthe normalized observation likelihood, i.e.,
the likelihood of the observation; divided by the maximum of the predictive distribution fey. We
also take the kernel complexity into account to avoid ov@rfitwhich we approximate by, = 1/|%;| =
1/(1313) (see Appendix section A.1). Both components are used to fotearning rate parameter cal-
culated by means of a modified sigmoid functiep,= sigmoid —df(x;) - ¢;; §), where the additional
parameter® are tuned empiricallyn; defines how quickly the current kernel estimate is adapteteo
local structure. Intuitively, we get a high adaptation sheden the data-fit relative to the kernel size is
small. Algorithm 2 summarizes the adaptation procedure.

Algorithm 2 Local Kernel Adaptation Based on Terrain Gradients

Input: observation seb, o,in, Cmaz
Output: optimal kernels;

Learn global paramete®,;,; for ksg.
Initialize all local kernel; with ®; = ®;4:.
while not convergedio
for all 3; do
Estimate the local learning ratg.
Estimate ESTx;) according ta;.
¥ «— ADAPT(EST(x;))
Y= nSi+(1—-n)%
end for
end while

5.4 Experiments

To evaluate the terrain gradient adaptation approach, wferpged several experiments on synthetic and
real data. First, we tested our approach on a small, thoutjbulti artificial terrain data-set. Then, we
investigated two real-world scenarios to prove the capigluf our approach to predict terrain elevations
in occluded areas. In a final experiment, we applied our amtrdo a large real-world environment. For
the real-world data-sets, we acquired sets of 3D scans @&feescsing a mobile robot equipped with a laser
range finder and a pan-tilt unit. To evaluate our predictiaresuse the mean squared error (MSE) as given
in Equation (4.8).

5.4.1 Artificial Terrain Data

The first set of experiments was designed to illustrate tiraitegradient adaptation approach, to quantify
the benefits of local kernel adaptation, and to compare treettifferent adaptation rules. As a test
scenario, we took the artificial terrain data-set depiatelligure 5.3 consisting of 441 data-points, which
contains uniform regions as well as sharp edges and commbkich are hard to adapt to locally. Note, for
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Figure 5.3: An artificial scenario used in the experimental@ation, that exhibits several local features
that are hard to adapt to. Test data-sets are generated imgadtite noise and then randomly removing
a portion of the data-points.

example, that the edge between the lowest and the secondtlpla¢eau has a curvature and that three
different height levels are present in the vicinity of therer approximately in the middle of the diagram.
To generate training data-sets for the different expertsmegported on here, we added white noise of a
varying standard deviatiom to the true terrain elevations and randomly removed a podfdhe samples

to be able to assess the model’s predictive abilities.

Figure 5.4 visualizes a complete adaptation process usaBdunded Inversadaptation procedure
for a data-set generated with a noise rate ef 0.3. Figures 5.4(c)-5.4(e) give the results of standard GP
regression which places the same kernels at all input lmestiWhile this leads to good smoothing perfor-
mance in homogeneous regions, the discontinuities witi@nmap are also smoothed as also quantified by
the absolute errors in the third column. Consequentlyghmsations get assigned a high learning rate, see
right column, for the first local kernel adaption step.

The first adaptation step leads to the results depicted nr&€$95.4(g)-5.4(i). It is clearly visible, that
the steps and corners are now better represented by thessegrenodel. This has been achieved by
adapting the kernels to the local structure, see the firstnaolof this row. Note, how the kernel sizes
and orientations reflect the corresponding terrain praggertKernels are oriented along discontinuities
and are small in areas of strongly varying elevation. In @stt they have been kept relatively large
in homogeneous regions. After three iterations, the resgyeanodel has adapted to the discontinuities
accurately while still de-noising the homogeneous regignigures 5.4(k)-5.4(m)). After this iteration,
the local learning rates, see Figure 5.4(n), have all setddow values. It is important to note that the
local error distribution is non-uniform over the terraincas be seen from Figure 5.4(m). In homogenous
areas such as the upper right plateau, denoising has beessstid so errors are small there. Along the
discontinuities already minor prediction errors may leadigh error measures. Thus, local errors are
larger there although they have drastically been reducedrimparison to the standard GP model.

In a second experiment, we investigated the predictiorop@dnce of our approach for all three adap-
tation rules presented in Section 5.2. We added white ndiaevarying noise level to the artificial terrain
depicted in Figure 5.3. The diagrams in Figure 5.5 give tkalts for different amounts of points removed
from the noisy data-set. When no points are removed frometsteset, th&ounded Inversadaptation rule
performs best for small noise values. For large noise vaBesnded LineaandDirect Inverseachieve
better results. In the case of 15% and 30% of the data-pa@ntsvedDirect InverseandBounded Inverse
are not competitive. In contradounded Lineasstill achieves good results for all noise levels. Overall,
Bounded Lineaproduces reliable predictions for all tested noise ratelstata densities and we therefore
employed this adaptation rule in all subsequent experisaéfigure 5.6 depicts the convergence behavior
of our approach using thBounded Lineaadaptation rule in terms of the mean squared predictiorr erro
for different amounts of points removed from the noisy deg-After at mosé iterations, the errors have
settled close to their final value. Concerning the companaii efficiency, a single iteration per run takes
in average about 44 seconds on this data-set on a PC with aZ®@cessor and a 2 GB CPU.
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Figure 5.4: The local kernel adaptation process on an aatitierrain data-set: the original data-set, de-
picted in Figure 5.3, exhibits several local features thatteard to adapt to. The test data-set (a) was
generated by adding white noise, resulting in the absoluteseshown in (b). The second row of diagrams
depicts the initialization state of our adaptation processthe results of standard GP learning and regres-
sion. The following two rows depict the results of our apmtoafter the first and after the third adaptation
iteration respectively. In the first column in this figure, wisualize the kernel dimensions and orientations
after the corresponding iteration. The second column defhe predicted means of the regression. The
third column gives the absolute errors to the known grounthtelevations and the right-most column
gives the resulting local learning ratgsfor the next adaptation step.
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Figure 5.5: Prediction accuracy for the scenario depiatgigure 5.3 with (a) all data-points available,
(b) 15% of the data-points removed randomly, and (c) 30% kemioandomly. Each figure plots the mean
squared error of elevation predictions for a varying lefehdded white noise. The values are averaged
over 10 independent runs per configuration. (In the case)oti{e error ofDirect Inversewas always

greater than 4.0).
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Figure 5.6: The mean squared error (MSE) of predicted emvafor the scenario depicted in Figure 5.3

converges with an increasing number of adaptation stegratibn0 gives the MSE for the learned standard
GP. Values are averages over ten independent runs.
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5.4.2 Real Scenario |: Occluded Stone Block

In this experiment, we investigated the ability of our térnaodel approach to preserve and predict sharp
discontinuities in real terrain data. We positioned theotab front of a rectangular stone block such that
the straight edges of the block run diagonally to the rodats of view. A person stood inbetween the
robot and the block, thereby occluding parts of the block anthe area in front of it. This scenario is
depicted in Figure 5.7(a). The task is to recover the lingacture of the discontinuity and fill the occluded
area consistent with the surrounding terrain elevatioaltev

To simplify the calculations and to enhance the visibilityh® results, we manually removed the person
from the data-set in this scenario. Although this is a sifigaltion giving an advantage to our model, it is
not unrealistic: it corresponds to a pre-classificatiorefdcence where data-points that differ significantly
in height are assigned different class label. A more adwdhatgorithm could also directly recognize the
human-being as such and deduce that it is a dynamic objectvefiould not be used in the adaptation
of the terrain model. To derive a ground truth map, we repktie laser scan without the person. Figure
5.8(a) depicts the resulting elevation levels of the grawuith while Figure 5.8(b) illustrates the observed
elevations within the occluded terrain. The observed dataonsists of 2,219 data-points.

We applied our learning algorithm with tlB®unded Lineaadaptation procedure where we 8gt;,, =
0.25 ando ., = 4.0. The adaptation procedure converged already after twatitgrs. One iteration took
about 22 minutes on a standard PC of which only 7 seconds adeddor adapting the kernels. The
remaining time is used to calculate the new covariance ratrd the likelihoods of the training points.
The resulting kernels are visualized in Figure 5.8(e). Torette the kernels of the unseen locations, we
built a weighted average over the local neighborhood withisatropic two-dimensional Gaussian with
a standard deviation of 3 which we had found to produce théresslts. The adapted kernels reflect
the terrain structure very well. They are oriented alongdiseontinuities of the stone blocks. Note in
particular the curve structure at the bottom-left of themigock. In contrast, the initial isotropic kernels
have been kept in the homogenous areas, i.e., on the grouathtand on top of the blocks. They are
also used in the slowly ascending area next to the main stiog&.bNote that although the kernels in the
occluded area of the strong discontinuity are rather ipadtc¢he covariance structure at these locations
has a significant orientation as it is constructed by avaragver the neighboring kernels (cf. Equation
(3.3) for the non-stationary covariance functiofsz). The learned kernel structure enables the model to
correctly adapt to the stone blocks as can be seen from tlecfee elevations visualized in Figure 5.8(c)
and the predicted map in Figure 5.7(c). In particular, theaarccluded by the person is correctly filled:
due to the long, diagonally oriented kernels, the discaiities of the stone blocks are predicted sharply
while the tops of the blocks and the areas in front of them areectly estimated as flat terrain.

The uncertainties of these predictions, correspondingdovariances of the predictive distributions,
are illustrated in Figure 5.8(d). They are large in the abedsnd the stone blocks where no observations
are available. The corresponding predictions tend to thennoéthe GP model which &, i.e., the height
of the ground terrain. In contrast, the predictive variaaes almost zero at the observed input locations.
Most importantly, they are also small at those occludedtiona that are in reasonable distance of some
observations. This holds in particular for the area ocdilalethe person. This is also visualized in Figure
5.8(c) where the contour lines for predictive variances 008 and 0.05 are given. Within the area occluded
by the person, the model is certain about its prediction iarge oft14cm (this range covers 95.5% of
the density mass of the predictive distribution). This israpressive result given the large discontinuity in
this area. A mobile robot would thus be relatively certainatiihe block structure within the gap although
not having observed it directly. In contrast, it would be esviéhat it cannot rely upon its terrain model in
the occluded areas beyond the blocks: there are no obsersatithin a reasonable distance and thus, the
predictive variances are large.
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Figure 5.7: A real-world scenario where a person blocks thet's view on a stone block. The edges of
the stone run diagonally to the robot’s line of view. Figucg depicts the prediction of the terrain model
which was learned from the observations visualized in (e $harp edges of the stone are preserved
and the stone structure is correctly retrieved in the oaduakea. This is due to the adapted kernels as
visualized in Figure 5.8.
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Figure 5.8: Results for the occluded stone block scenadsgnted in Figure 5.7. Figures (a)-(c) visualize
the elevations of the ground-truth (obtained from a secead svithout the obstacle), of the observations,
and of the prediction. Figure (c) also contains two contmed for the predictive variances given in (d).
Figure (e) depicts the kernels which have been adapted #herfgjock edges.
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Scenario| Linear Interpolation| Our model| Improvement
1 0.116 0.060 48.3%
2 0.058 0.040 31.0%
3 0.074 0.023 69.9%
4 0.079 0.038 51.9%

Table 5.1: Prediction performance for occluded hill stowes as illustrated in Figure 5.9 in terms of MSE
relative to a second, not occluded scan.

5.4.3 Real Scenario Il: Inhomogenous Hill Structure

The previous experiment demonstrated the usefulness @fgproach for preserving and estimating sharp
linear discontinuities. To prove that our approach is alsle # predict non-linear structures in unseen ar-
eas, we investigated a second occlusion scenario. Agaersapstood in front of the robot and shadowed
some parts of the terrain. The occluded area contains \@sfiactures, flat areas as well as an ascending
slope of a small hill. A photo of this scenario is given in Fig’.9(a). We applied our learning algorithm
with the Bounded Lineaadaptation procedure where we sef;,, = 0.25 ando,,, = 4.0. Figure 5.9
illustrates the results of this experiment.

We compared our prediction results to an approach from thetics literaturdFriihet al,, 2004 that
has been applied successfully to the problem of three-dsiaeal mapping of urban areas. Fréhal.
perform horizontal linear interpolation orthogonally teetrobot’'s view. We evaluated our approach on
the situation depicted in the figure as well as three simiteaso Note that the scenarios used are actually
rather easy ones for Frigt al, as the large gaps can all be filled orthogonally to the rebaéw, which
is not the case in general. Table 5.1 gives the obtainedtsedul all four cases, our approach achieved
higher prediction accuracies, reducing the errors by 30%08». Figure 5.9(d) depicts the predictions
of our approach in one of the situations. In contrast to Fetial, our model is able to also estimate its
predictive uncertainties. These are largest in the cefiteemccluded area as can be seen in Figure 5.9(e).
Figure 5.9(f) depicts the predictive distribution for & elevations along a cut through the map. The
estimated means are close to the true terrain structurds thiei corresponding variances indicate that the
regression model is aware of its predictive uncertainties.
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Figure 5.9: A real-world scenario, where a person blocksdbet’s view on an inhomogeneous and sloped
terrain (a). Figure (b) depicts the raw data-points. Figdjeives the predicted means of our adapted non-
stationary regression model. Figure (c) depicts the tnuaiteelevations as aquired by recording a second
3D scan without the person in the scene. Importantly, ourehaldo yields the predictive uncertainties for
the predicted elevations as depicted in Figure (e). Fighinaqualizes the full predictive distribution as a
cut through the terrain at = 3m.
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5.4.4 Real Scenario lll: Large Campus Environment

To evaluate our approach on a large-scale environment, wkedpt to a real-world data-set recorded
on the campus site of the University of Freiburg. Figure ) @llustrates this scenario. The data is
represented by means of a multi-level surface map with asgadl of 10cmx 10cm. The scanned area
spans approximately 299 by 147 meters. For simplicity, wig oonsidered the lowest data-points per
location, i.e., we removed overhanging structures like tops or ceilings. Our resulting data-set consisted
of 531,920 data-points. To speed up computations, we $ditnhap into 542 overlapping submaps such
that at least 80% of the cells of the resulting submaps angaed. This is possible without loss of accuracy
as we can assume compact support for the local kernels edaivour calculations (as the kernel sizes in
our model are bounded). We randomly removed about 20% ofdteebints per submap. A full run over
the complete data-set took about 50 hours.

We compared the prediction performance of the three difteaidaptation rules with respect to a stan-
dard stationary GP model where the local kernels are nottedafhe table in Figure 5.10(h) gives the
results of this experiment. THgounded LineaandBounded Inversadaptation rules clearly outperform
the standard GP model, whildrect Inverses not competitive. Figures 5.10(b)-5.10(g)illustrate thodel
predictions and kernels learned by mean8otinded Lineafor three submaps. Figure 5.10(b) depicts a
submap whose terrain structure is simple and easy to modaines do not need to be adapted as the
data-likelihoods of the training points are sufficientlglhiusing the initial stationary GP. The terrain of
the submap visualized in Figure 5.10(c) is of medium coniptelt contains a long wall next to a flat area
which is reflected by the elongated kernels. Figure 5.10(€3gnts a challenging terrain with a complex
structure. This submap has been the one with the worst pi@aicerformance which is also due to the
comparatively large elevation differences (which havenb&zaled in the figure due to space constraints)
which punish already minor prediction errors. This variefysubmaps shows that our model is able to
cope with real terrain types of varying complexity. As thengarison to the stationary GP model shows,
our approach gains its predictive power from the adaptea kernels.
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(a) Large campus map of University of Freiburg (Figure oesytof
Patrick Pfaff and Rudolph Triebel)
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(b) Submap containing simple struc- (c) Submap containing structure of (d) Submap containing difficult struc-
ture only (MSE =0.000001) medium complexity (MSE = 0.0103) ture (MSE = 3.1685)
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(e) Adapted kernels of submap con- (f) Adapted kernels of submap con- (g) Adapted kernels of submap con-
taining simple structure only taining structure of medium com- taining difficult structure
plexity

Adaptation procedure MSE

No adaptation 0.071
Direct Inverse 0.103
Bounded Linear 0.062

Bounded Inverse 0.059

(h) Prediction performance

Figure 5.10: Experiment on a large campus environment. \kepaoe our three adaptation procedures
with a standard GP. Figures (b)-(g) illustrate the preditdiand learned kernels for three submaps of
varying terrain structure complexity. In (b)-(d), the gngmints depict the observations while the red lines
illustrate the prediction. In (e)-(f), the learned kerrfelsthe observed locations are given in red, while the
estimated kernels for the unseen locations are drawn imgree
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5.5 Discussion of Experimental Results

Adaptation based on terrain gradients is an effective wégarhing the local kernels of our non-stationary
terrain model. We use learning rates based on the localfiiatand kernel complexities to speed up
computations. Various experiments on synthetic and ret@ demonstrate that this iterative procedure
converges. We have shown on a difficult artificial terrainaesgt that our model successfully balances
smoothing against the preservation of local structure siscbharp discontinuities. In several real-world
scenarios, we have shown that our model is able to recovéurdeat terrains of different structures, sharp
linear discontinuities as well as inhomogenous non-lineaain structure. In an experiment on a large,
heterogenous real terrain, we proved the applicability wfapproach to complex large-scale data-sets.
More work needs to be done with respect to the computaticoralptexity of our approach. While our
kernel adaptation procedure is comparibly efficient, tledard GP calculations (building and inverting
the covariance matrix based on the new kernels) have cubé&domplexity. Established techniques like
sparse GP models and approximative algorithms should leetaldignificantly reduce the computation
times.
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Chapter 6

Conclusions

In this thesis, we have proposed an adaptive terrain maglalpproach that balances smoothing against
the preservation of discontinuities. The latter is pattidy important in the area of outdoor robotics
where, for example, steps, stairs, or building walls previdportant features for path planning or terrain
segmentation tasks. Our model uses Gaussian processsiegre#h non-stationary covariance functions
to locally adapt to the structure of the terrain data. Thikesat possible to account for discontinuities such
as edges and corners while at the same time being able tovachieng smoothing in flat areas and along
edges. The learned model yields predictive height didiobs for arbitrary locations of the terrain. This
enables us to fill gaps in the data stemming from occlusiodsfamty observations as well as to assign
uncertainty estimates to our predictions. Our model is &bkeccount for all types of occluded terrains,
highly non-linear inhomogenous terrain structures as agharp linear discontinuities.

We achieve non-stationarity in our model by assigning I&eahels to input locations. These kernels
capture the local terrain properties. The covariance batv@o elevation variables is calculated by aver-
aging the two individual kernels involved. In this way, tloe#l characteristics at both locations influence
the covariance of the corresponding target elevations.nfdia task in learning an adequate terrain model
consists of adapting these kernels to the local terraingtgs. We have shown in a detailed analysis
of our non-stationary covariance function that differeatriel combinations may lead to similar data-fits.
Without additional constraints, the problem of finding apdi kernels is clearly ill-posed due to the many
local optima caused by the non-stationary covariance fomctVe have argued that it is sensible to require
the kernel parameters to vary smoothly across input spasiegla full hierarchical model to achieve this
by placing additional GP priors on the kernels is only felesibr small data-sets. As terrain models typi-
cally contain huge numbers of data-points, we have intrediwwo different learning algorithms. First, we
have investigated a gradient ascent approach over thdikiglihood. We adopt the kernel parameters in
a fashion similar to th&Propalgorithm used in neural networks. We have demonstratadrtearting a
regularization term into the optimization criterion is atable means to achieve smoothness of the kernels
across input space. This improves the generalization pedice of the learned model which makes it
possible to better fill gaps. We have shown that this appr@aapplicable to limited problem settings and
yields acceptable results there. If applied to real datagher, it is prone to be trapped by one of the many
local optima. To overcome this problem, more work needs tddoee with respect to the learning proce-
dure, in particular the way the kernel parameters are maldifoeording to their gradients. In our second
approach to learning the local kernels, we adapt the kearalmpeters based on the local gradients in the
terrain structure. We employ adaptation rules that havegareuccessful in problem domains studied by
the computer vision community. In experiments on synthatid real data, we have demonstrated that
this learning method produces accurate and reliable giedsin the presence of noise and is able to fill
gaps stemming from occlusions. The time complexity of oprapch is dominated by the standard GP
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model calculations, in particular the inversion of the ataace matrix, while the adaptation of the kernels
requires only a small fraction of the overall runtime.

6.1 Outlook

A main objective of future work is to strengthen the conrmttbetween our terrain modeling approach
and the concept of multi-level surface maps. In particitiahould be investigated how predictions of our
model can be best incorporated into such representatioiisisiwork, we have focused on single-leveled
elevation maps only. In natural scenarios, however, we tadeal with several levels, for example in
the case of bridges and trees. The difficulty is how to assigividual terrain models to the different
elevation levels found in the multi-level surface map and kmexploit the relations among the individual
models. Furthermore, for real-world applications it is orjant to explore how large environments can
be processed most efficiently while keeping prediction igyaligh. In our work, we split up the map
of a large campus environment into several submaps to be@lolempute terrain models in reasonable
time. It would be interesting to investigate the optimal malp size that balances model learning speed
with the quality of the resulting predictions. Also, otheayg to improve the efficiency of our learning
algorithms are worth exploring, for example by using appr@tions for the linear algebra involved and
by the use of sparse GPs. This might significantly speed-eipitbcess of rebuilding the GP model with
the new kernels, i.e., calculating and inverting the carazeé matrices, which is the most expensive part
in our formulation. We have used preprocessed surface nsagata-structures for our terrain models. It
might be advantageous to work directly on the sensory inpggally point clouds, and thereafter build a
surface map based on the learned terrain model. Anotheiresgent is how to cope with dynamic objects
and new observations. One should investigate how the lseafiglew training points are most efficiently
adapted in an incremental, online fashion. One could cstnieself only to the local neighborhood which
makes it possible to apply a full hierarchical model with MCM

Although the terrain gradient approach produces good tgstilwould be desirable to have an ana-
lytical derivation for optimal kernels based solely on déitalihoods and model complexity. We have
proposed a gradient ascent technique which yields goodtsesismall artificial data-sets. In order to be
able to apply this approach in real-world scenarios, thasriimg technique needs to become more robust
against local optima. There are many possibilities to improur proposed gradient ascent procedure, in
particular in the way the parameter values are modified affidrther exploring the idea of using a regu-
larization term to achieve smoothness of the kernels adnpss space. Alternatively, one could continue
the work on Paciorek’s hierarchical model which uses MCMGetrn the local kernels. In particular,
its efficiency needs to be improved in order to become applkc® larger data-sets. Similarly, variational
methods for covariance adaptation appear promising. Enadel kernel structure is an interesting interme-
diate representation level by itself. As we retrieve tergioperties in terms of the kernels, its application
to terrain segmentation and classification is promisingotAar interesting problem is how to represent
this structure more efficiently which would lead to a denseletof the underlying terrain. For example,
in a flat area all input locations share approximately theeskernel type and could thus be represented
sparsely by a single kernel. Using a sparse hierarchicakirindhis way might lead to more effective
ways to estimate the kernels of unseen locations.

Various applications of our model are worth exploring. M&pes of autonomous agents need to build
terrain models from their sensor measurements in ordertpiinpathes. Autonomous cars, for instance,
collect sensory data while driving. This leads to serioyssga the reconstructed map which need to be
filled. In the RoboCup Rescue scenario, autonomous robets teedeal with varying terrain structures
and to reliably recognize the forms of obstacles in ordento fine best paths and behaviors to reach their
goal. There is increasing research in using helicopterdtmpbs for landscape mapping. Based on stereo
recordings, our model might provide reliable estimatedefitcanned area. A further promising application
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is seebed mapping where coping with varying data densitidgtee preservation of discontinuties are key
requirements. Furthermore, as our terrain gradient approses ideas from computer vision, it might be
inspiring to evaluate it on typical test cases in computsiovi and to compare it with the algorithms of
this community.
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Appendix A

Mathematical Background

A.1 Kernel Matrices

A.1.1 Standard Parameterization

Using the standard parameterization of the rotationalimatith rotation anglen, a kernel matrix takes

the form
B cosa  —sina 20 cosa  sina
= ( sina  cosa ) ( 0 3 ) ( —sina cosa ) (A-1)
B (cos a)?03 + (sin a)?43 cos asin al? — sin al? cos (A-2)
N sin v cos a3 — cos a3 sin (sin oz)2£2 + (cos a)? 03

Its determinant is

1] = (((cosa)?f3 + (sina)?43) - ((sin a)?43 + (cos )?(3)) (A-3)
—((sin acos alf — cos a3 sin a) - (cos asin ali — sin af3 cos )
= (cosa)?(sin a)?4} 4 (cos o) (242
+(sin @)*¢303 + (cos a)*(sin o) 245
—(sin@)?(cos a)? ¢} + (sina)?(cos a)*(3 (3
+(sin a)?(cos a)0202 — (sin «)?(cos o) 2 (5
= ((sina)* + (cosa)* + 2(sin a)?(cos o) ?)¢2 (2
((sina)? 4 (cos a)?)%203
= 3. (A-4)

A.1.2 Overparameterization

Letl,, = vu? + v2. When using an overparameterized rotational matrix, asdematrix has the form
U v 62 0 _u v
D ( luv  luw ) ( 1 5 luy — luw (A-5)
Tow  Tuw 0 & oo Tuo

. (A-6)
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Letu := ;*, v := ;. Then, its determinant is

luv

12 (w203 + 0203) (0203 + u?03) — (avl? — uvl3)(avl — uvls)
= @20+ a0+ R + w0y — w0 + 2ut0R 305 — PRl
10 (at + ot + 2u20?) = 6305(a? + 0%)? .
As we have
2 2 2 2
o0 9 U vt Ut vt
uc 4+ v° = lg—v E = m =1 s
we get
12| = 0242 (A-T)
A.2 Identities

We present some basic identities which are used in the pafafse following sectiong§Petersen and
Pedersen, 2006 A denotes a x n-matrix, whose entries are functiods; = a;;(x). v is a constant
vector of sizen. Let|A| denote the determinant ef.

[rA| = r"|A| (A-8)
A7 =147 (A-9)
|A] = |AT| (A-10)
DA! L 0A
S =—AT—A (A-11)
d|A|2 1 . _s0|A
= A 22 A-12
ox 2| | ox ( )

ovTAv) L 0A

5 =Vvigov (A-13)
Proof of Equation (A-13):
o(vT Av 0 e~ 0 o —
% = 5 DD wiag (@) = p > vivjag(x)
i=1 j=1 i=1 j=1

& 0 0A
= szi”‘ia—xaij(»@)ZvT@—xV

i=1 j=1
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A.3 Marginal Data-Likelihood

We prove Equation (4.3) which yields the derivative of thegirzal data-likelihood.

a% logp(y|X,0) = %yTKlg—ngly - % tr(Klg—éj) (A-14)
= % tf(KlnyKTg—gj) —~ % tr(Klg—gj)
= —tr(K! TKTg—gj - Klgg)
= % tr((cea” — K‘l)g—g) (A-15)

This proof uses the identity” Mv = tr(vv’' M), wherev = K~y andM = %ﬁj. This equality holds
as on the one side, we have:

mi1 min U1
viMv = (v1 vn)
Mpl .. Mpn Up,
U1
= (vmiitFvamar .. VIR F e UMy )
Un

= (vimi1 + - Fvpmp)vr + -+ (V1M + -+ VMg )y

On the other side, we have:

U1 miy e min
vwiM = ( V1 ... Up )
Un Mp1 . Mpp
U% V1V2 N V1Up, mi1 . mMin
= V2U1
UnU1 N N 1)72I mMn1 e Mpn

vimin + vivamar + -+ 4 V1V M

VpU1M1pn + VpV2Man + -+ + V20,

vi(vimar + vamar + - 4 U Mip1)

Un (V1M + VaMan + -+ + Up My
Thus, we get

tr(vv ' M) = (vimyy +vamar + - + vpmp1)vr + -+ (Viman + VaMay + - VM Uy
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A.4 Derivative of the Covariance Function

To calculate the derivative of the covariance maitixwe need to compute the derivatives of the covariance
functions which are parameterized over the input locatidm®ther words, for input locations; andx;

we calculate the derivative éfy sy with respect to the-th parameter of the kern&l; belonging to input
locationx; (p thus denotes a lengthscale or the angle), namely

8K - 8kNSE(Xj,Xj)
< 5 9ip>ij = T . (A-16)

To repeat, the covariance function is

1
2

1 DI
kNSE(Xi,Xj) = |Ei|4 |Ej|4 Tj (A-l?)
AN AN
exp l—(xi - xj)T ( 5 '7> (x; — xj)] )
To simplify notation, we define the variables
1 1
a; =T E
1
. . 2
b; = ’E“LEJ , and
2
-1
C; = exp _(Xz X])T (EZ —i2_ 27) (xz X] )‘| 9
so that we get
knse(xi,X;) = a; - b; - ¢; .
By means of the product rule, we get the derivative of the Gamae function
6k(xi,xj) 6((11- . bi . Ci)
i) _ A-18
06, 06, ( )
da; ob; Jc;
= aTipblCZ + alaTipCZ + albzaT,L-p . (A 19)
The derivative ofy; is
da;  O(%|? [T4)) L A(2,0%)% L (02 05)
L ? J — 2.7 11742 — |27 1742 A-20
90, 90, %31 90, 1% 90 (A20)
which is0 for the angle parameters and for the lengthscales it is
a(03e2) 11
1 ; h 1
¥ 2 e TS —— A-21
| J| 0ls | J| 22 \/m ( )
1 1
1 QLA L3) 1 1 1
¥t 22 Sl = A-22
| J| 8512 | .7| 12 \/E ( )
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The derivative ob; is

Ti+%; |2 2 1
b 9173 _ () Imi+ ) (A-23)
90, 90:, 90,
B Lo o 30]Si 15
= 2eglme i
3 0(Z; +%;
= —|EZ—+2J—|’5|E¢+EJ—|tr((2i+2j)’17( + J))
90;,
_1 _ 8 EZ—FZ
ip
and the derivative of; is
-1
e dexp {—(xi —x;)T (%) (x; — xj)}
00, 96, (A-25)
) ) —1
smemy o[ () )
= exp [—(xi - X;) ( 5 J) (x; — xj)] o (A-26)
where
—1
0 [—(xi —x;)T (%) (x; — xj)] 9 (zizzj)f
= (i —x) T2 (x;—x,) (A-27)
50, ! 0, ’
0(Zi+3,)"
=—(xi—x;)"-2- %(Xi - X;)
0(%; +%; _
=2(x; — %) (—(Zi + Ej)_l(iij)(Ei +355) 7 (xi —x5) (A-28)

90

Thus, in order to calculate the derivativesptndc;, we need to calculate the derivative of the sum of two
kernels

0(%; + Ej)
06, '
The derivation of this term depends on the parameterizatigdhe kernel, either by using the standard

rotational matrix with anglev or by using the overparameterized rotational matrix withapzeters: and
V.

Standard parameterization

Using the standard parameterization (cf. section A.1hg)stim of two individual kernel matrices is (where
we use the shorthandg = sin oy, andeg, = cosay, fork = 1, 2)
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202, + 202 cisil? — sil%c;
. R — i 11 Sitia g il 2% _
I OV Sa0 e 1 (A-29)
+< ?le fng 0757€2 s%€z2cj )
Schéjl CJ£J25J S_]g]l + Cjéj?
_ 611 + 516122 + c5 €j1 + s?ﬁﬂ CiS; éll 5101612 + chJ sjcj 72( -30)
siczﬁfl cisil?y + sjcj€?1 — cjst?Q s202 + 2%, + s?ﬁ?l + c é

Now, we can calulate the derivative of the sum of two kernelrites with respect to the different kernel
parameters;,. For6;, = l;;, the resulting matrix is

OXEi+3%5) [ 2y 2-¢sila
0l T\ 2-sielin 2083 ’ (A-31)

while for 6;, = l;> we get

T ol \ —2esili 23 ) (A-32)

Foré,, = «; the matrix entries are

o 2@2 2[2 2[2 2[
(citu + i ﬁaa‘ 341+ 5552) =2-ci(—8)03 + 2 sicil3 = 255c(—03 + 12) (A-33)
O(cisilh — sicilyy + ¢j5il5 — sj¢il%) (A-34)

e
=02 (cici — 8i8:) — U (cici — si8:) = (03 — 1%)(c? — s7), and (A-35)
d(s %%1 %52 ?ffl ?@2) (A-36)
e
=2 8;cil3 + 2 ci(—si)l3 = 2sici(0F — 13) (A-37)
so that we get
i +%;) 2sin oy cos oy (—02 +0%) (1 — £%)(cos® a; — sin® a;) (A-38)
Oa; (3 - £3)(cos? a; —sin® ;) 2 sin a; cos a; (02 — (%) ’

Overparameterization

When using an overparameterized rotational matrix (cftiged\.1.2), the sum of two kernels takes a
different form. Letl,, ., = \/ui + v}, Uy = 74— andyy, = %
UEVEk

UEVEk ’

2 2
( Ui 62 + ( Vi ) 62 é _Vi Ui 62 Vi
zwv) il Ty o, i2 lu v N luge;  Tugo; 27,
E’i _j’_EJ — Vi Vi 21 i Vi 2 (A_39)
Uq 62 I 17} 62 V4 V4 62 Uj 62
l 17, 4. v luﬂi 2 luiui luiv: 11 luﬂi i2

1Y%

2
uj 2 vj 2 uj g2 v Ui 92 b
(luju,.) éjl—"(l ) Ej? lu; ﬂjll lu £J2l
2

wsv i
Jivi Y3V “jvi “ivi
2

+

T, éjll Tujo; 32T0s0;

W3 + 202, + u32£2 + vﬂﬁ u—fﬂv—z u—fﬁu—z + ;02 1@ 2,057
= =2 2 2 2 J 2 % (A'40)
WlHT; — WlHT; + T0HT; — W05 Tl + Wy + U0 + 05,

J
U5 2 Y Uy 2 Y vj 2 uj 2
( l“j vj KJ ( J éJQ
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Now, we can calulate the derivative of the sum of two kerndirives with respect to the different kernel
parameters;,. For¢;, = l;;, the resulting matrix is

I(X; + %) 2wy 2 wvila
0l T\ 2- il 207 ’ (A-41)
while for 6;, = l;2, we get
I(Xi + %) 202l =2 Wil
Ol;s T\ 2wl 2% ' (A-42)
Foré,, = u,, the derivation is more complicated:
ou;’ ov;? oy ouiv
OE+%) ([ B than GBS — L% (A-43)
Ou; - 20w _ 20me 20% 4 1200
To compute this matrix, we derive the following derivatives
Ui ;s 8\/uf+v?
ou; 0 uf o} gu;\/u?+vf—uiT (A-44)
ou; ou; u? +v?
AT Bk ek B VAT R kU Ui d AN
u? + vf u? + vf
o O a2+
_ i i vi 7 [ (A_46)
ou; ou; Ou;
1
= i) + )72 20 = —vgui(uf + vf) 2 (A-47)
o o
— = uy— A-48
ov;2 ov;
? — 2_1 Z A-49
= Ty — A-50
8ui b 6ui v 6ui ( )
Foré;, = v;, the derivation is analogous:
2 0> 2 977> 2 Ouv; 2 Ouiv;
O +%5) _ filﬂ@ + éi2@5‘1 i Fou €i2837 (A-51)
dv; R T A R £
To compute this matrix, we derive the following derivatives
Vi . 5o O/ u?+v?
ov; o u? + v?
B R A 1 e SV Rkt At { U 3 RPN

2 2 2 2
u; + v; u; + v;
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_ 0——= 1
ow;, N2tz Oui4ui)e
81)i a 81)i o 81)i (A 54)
= ) +07) 20 = —wi(u? +07) (A-55)
ov;? om;
= o A-56
(9’Ui v (%Z- ( )
ou;? o
avi = 2U16—U1 (A'57)
Juwv;  __0vy; __0u;
81}1- - 81}1- vi 81}1- (A 58)
A.4.1 Derivative of the Regularization Term
We want to determine the derivative of the regularizatiomte
Z H 91610 9117 H (A'Sg)
(7
We have
a| Oip — Oip [ 9 (eip - 911,)2
/U " ) A-60
00, 00, ( )
1 1
= .2 (0 — O})
2/ (0ip = 01p)? v
_ (eip — 91;)) (A-Gl)
(91-,) - elp)Q
and
a| Orp — bip [ 9 (ekp - eip)z
= A-62
00, 00, ( )
1 1
= o .2 (O — 0sp)
2/ (Op — 0ip)? v
(9117 — 91@10) (A-63)
(91-,) - okp)Q

so that in cases = k and: = [ the derivative is zero and otherwise we hﬂ@%ﬂ = W’g)@ijw”.
Therefore, the derivative has the form

H 91@:0 911) H 0 || 911) 9110 ||
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