
Planning and Exploration
in Stochastic Relational Worlds

Dissertation zur Erlangung des Grades
eines Doktors der Naturwissenschaften (Dr. rer. nat.)

am Fachbereich Mathematik und Informatik
der Freien Universität Berlin

von

Tobias Johannes Lang

Berlin
2011

2

FREIE UNIVERSITÄT BERLIN
Fachbereich Mathematik und Informatik

Institut für Informatik
Machine Learning and Robotics Lab
Prof. Dr. Marc Toussaint

Planning and Exploration
in Stochastic Relational Worlds

Dissertation

Autor Tobias Johannes Lang
aus Mainz

Vorgelegt im Februar 2011

Disputation am 30. Mai 2011

Erstgutachter Prof. Dr. Marc Toussaint
Zweitgutachter Prof. Dr. Klaus-Robert Müller

Summary

Goal-directed behavior is one of the most interesting aspects of human and animal intel-
ligence. This thesis addresses planning and exploration in so called stochastic relational
worlds which are characterized by two key attributes: they contain large numbers of ob-
jects whose properties and relationships can be manipulated, and the effects of actions
are uncertain. Such worlds comprise many natural environments such as households,
offices, or factories. We take up ideas from the emerging field of statistical relational arti-
ficial intelligence and combine rich symbolic representations with a probabilistic frame-
work to learn and represent compact models of action effects which generalize across
objects. We propose a variety of methods for planning with such models in ground re-
lational domains on the level of concrete objects. Our methods are largely based on
the information processing principle of probabilistic inference in graphical models. We
introduce a framework for focusing on relevant objects in planning. We lift existing ex-
ploration theories to relational representations. This results in a novel form of exploration
which focuses decidedly on objects to which the learned knowledge does not generalize
yet. Combining our proposed techniques with existing methods enables goal-directed
behavior of autonomous agents in stochastic relational worlds.

i

Acknowledgements
Danksagung

I have been very happy to have Marc Toussaint as my advisor. I have profited greatly
from his impressively quick comprehension of complex matters and his benevolent help-
fulness. His honest joy in doing research has strengthened my belief in science and re-
search.

I thank Klaus-Robert Müller for his advice and ideas, for being the second referee of
my thesis, and, most importantly, for his relaxed and friendly attitude which has made
his machine learning lab at TU Berlin such an enjoyable environment to work.

I am happy to have gone to Berlin and to have spent my last years at the TU machine
learning lab where I have felt comfortable and met great people. Thank you, Martijn,
Katja, Nikolay, Stanio, Nils and all you others!

I thank Kristian Kersting for our joint research. Back in Freiburg, I would have never
expected that this friendly “guy from the neighboring lab working on this strange logic
stuff” would turn out to be so inspiring for my upcoming years.

I am grateful to many other people I met at conferences, summer schools and the like
who have given me inspiration, advice and motivation for my research.

Mein besonderer Dank gilt all den Menschen, die sich womöglich etwas weniger als
ich für “Planen und Erkundung in Stochastischen Relationalen Welten” begeistern, mit
mir aber meine wichtigen Stunden der letzten Jahre verbracht und mir dadurch sehr
bei meiner Dissertation geholfen haben: meinen Meenzern, meinen (Ex-) Osnabrückern,
der Schivelcrew, den Berlinerinnen und Berlinern, die ich kennenlernen durfte und mir
meine letzten drei Jahre so schön und intensiv gemacht haben, und dem unbekannten
Kumpel im Himmel für seine Klappe. Und ich bin sehr froh über meine Familie: meine
Eltern, meinen Bruder Tillmann und meine Schwester Elisa.

iii

“If you test your programs not merely by what they can accomplish,
but how they accomplish it, then you’re really doing cognitive science;
you’re using AI to understand the human mind.”

Herbert Simon

“Sehen Sie”, erklärte Hohenegg, “nach meiner Auffassung gibt es
drei mögliche Haltungen angesichts der Absurdität dieses Lebens.
Zunächst die Haltung der Masse – hoï polloï –, die einfach nicht akzep-
tieren will, dass das Leben ein Scherz ist. Diese Leute lachen nicht
darüber, sondern arbeiten, horten, kauen, verdauen, huren, pflanzen
sich fort, werden alt und sterben wie die Ochsen im Joch – töricht, wie
sie gelebt haben. Das ist die große Mehrheit. Dann gibt es diejenigen,
die, wie ich, wissen, dass das Leben ein Scherz ist, und die den Mut
haben, darüber zu lachen, wie die Taoisten oder Ihr Jude. Schließlich
gibt es noch jene – und das trifft nach meiner Diagnose genau auf Sie
zu –, die wissen, dass das Leben ein Scherz ist, die aber darunter lei-
den.”

Jonathan Littel: Les Bienveillantes.
Translation from French to German by Hainer Kober.

Contents

1 Introduction 1
1.1 Stochastic Relational Worlds . 2

1.1.1 Motivating Example: Robot Manipulation 3
1.2 Computational Principles for Intelligent Behavior 6

1.2.1 Reasoning with Models for Goal-Directed Behavior 7
1.2.2 Aspects of Intelligent Behavior . 8
1.2.3 Intelligent Behavior in Stochastic Relational Worlds 8

1.3 Thesis Outline and Contributions . 9
1.4 Previously Published Work . 11

2 Basic Background 13
2.1 Formal Models of the Environment . 13

2.1.1 Markov Decision Processes . 13
2.1.2 State and Action Representations . 15

2.2 Goal-Directed Behavior . 17
2.2.1 Planning . 18
2.2.2 Reinforcement Learning . 20

2.3 Probabilistic Reasoning in Graphical Models 21
2.3.1 Graphical Models . 22
2.3.2 Inference for Planning . 23

2.4 Discussion . 25

3 Representing Relational Transition Models 27
3.1 Related Work on Relational Transition Models 27

3.1.1 Statistical Relational Learning . 28
3.1.2 Probabilistic Relational Transition Models 29
3.1.3 Probabilistic Relational Rules . 34

3.2 Graphical Models for Ground Relational Domains 38
3.2.1 Naive DBN . 39
3.2.2 PRADA-DBN . 39
3.2.3 Half-decomposed Factor Graph . 42
3.2.4 Fully Decomposed Factor Graph . 43

3.3 Discussion . 45

vii

viii CONTENTS

4 Planning in Ground Relational Domains 47
4.1 Related Work on Planning in Stochastic Relational Domains 48
4.2 Forward Reasoning . 51

4.2.1 Planning with Look-Ahead Trees . 52
4.2.2 Planning with Approximate Inference 54
4.2.3 Evaluation . 66
4.2.4 Conclusions and Future Work . 79

4.3 Probabilistic Backward and Forward Reasoning 80
4.3.1 Two-Filter Smoothing using Backward NID Rules 81
4.3.2 Backward-Forward Reasoning . 84
4.3.3 Evaluation . 86
4.3.4 Conclusions and Future Work . 89

4.4 Relevance Grounding . 89
4.4.1 A Formal Model of Relevance Grounding 91
4.4.2 A Sufficient Definition of Relevance 93
4.4.3 Planning with Relevant Objects . 94
4.4.4 Learning Object Relevance . 96
4.4.5 Evaluation . 96
4.4.6 Related Work on Reduced Ground Relational Models 100
4.4.7 Conclusions and Future Work . 101

4.5 Relational Planning By Inference . 102
4.6 Relational Planning on a Real Robot . 103

4.6.1 Target Scenario . 104
4.6.2 Methods . 105
4.6.3 Evaluation . 106
4.6.4 Conclusions and Future Work . 107

4.7 Discussion . 108

5 Relational Exploration 111
5.1 Related Work on Exploration . 113
5.2 Background on E3 in Enumerated State Spaces 116
5.3 A Density Estimation View on Known States and Actions 117
5.4 Relational Exploration Framework . 123
5.5 A Complete Relational Model-Based Reinforcement Learner 124

5.5.1 Illustrative Example . 125
5.6 Evaluation . 128

5.6.1 Series 1 – Robot Manipulation Domain 131
5.6.2 Series 2 – IPPC . 134
5.6.3 Series 3 – Robot Manipulation Domain 138

5.7 Discussion . 140
5.7.1 Future Work . 141

6 Conclusions 143
6.1 Future Work . 145

CONTENTS ix

A Proofs 149
A.1 Proof of Proposition 4.2.1 . 149
A.2 Proof of Lemma 4.4.1 . 149

B Relation between NID rules and PPDDL 151

C Theoretical Considerations concerning PRADA 155
C.1 PRADA Finds the Optimal Solution with Exact Inference 155
C.2 Sufficient Conditions for Exact Inference . 156
C.3 PRADA Assumes Rewards are Probable . 157

Literature 161

Zusammenfassung 172

x CONTENTS

List of Figures

1.1 Goal-directed behavior of a chimpanzee . 1
1.2 Robot manipulation domain simulator . 4

2.1 Graphical models for unstructured Markov decision processes 23

3.1 Assuming uncertainty in the observations for learning compact models . . 32
3.2 Application of an exemplary NID rule . 36
3.3 Graphical models for ground relational domains 40

4.1 SST planning algorithm . 53
4.2 Dynamic Bayesian network “PRADA-DBN” 56
4.3 Two different methods to account for stochastic actions 64
4.4 Forward reasoning: results in High towers problem 70
4.5 Forward reasoning: results in Clearance problem 73
4.6 Advantages of backward reasoning . 81
4.7 Dynamic Bayesian networks for bidirectional reasoning 82
4.8 Binary actions for backward reasoning . 83
4.9 A model of human cognition . 91
4.10 Graphical model of relevance grounding 92
4.11 A model of relevance grounding . 95
4.12 Clearance task . 100
4.13 The real-world robot platform . 104
4.14 Visualization of start and end postures of calculated trajectories 107

5.1 Illustration of active learning . 118
5.2 Relational exploration: results of experiment 1 131
5.3 Relational exploration: results of experiment 2 132
5.4 Relational exploration: results of experiment 3 133
5.5 Relational exploration: results of experiment 4 134
5.6 Relational exploration: results of experiment 5 136
5.7 Relational exploration: results of experiment 6 137
5.8 Relational exploration: results of experiment 7 138
5.9 Relational exploration: results of experiment 8 139

6.1 Goal-directed behavior of chimpanzees . 144

xi

xii LIST OF FIGURES

List of Tables

2.1 Illustration of three world representation types in a robot manipulation
domain . 16

3.1 Example series of experienced relational state transitions 30
3.2 Example STRIPS action schema . 32
3.3 An exemplary NID rule . 36

4.1 Example of PRADA’s factored frontier inference 61
4.2 Forward reasoning: results in High towers problem 69
4.3 Forward reasoning: results in Clearance problem 71
4.4 Forward reasoning: results in Reverse tower problem 74
4.5 Forward reasoning: results on Benchmarks of the IPPC 2008 77
4.6 Example NID rule for a robot manipulation scenario with binary actions . 84
4.7 Bidirectional reasoning: results in Clearance problem 87
4.8 Bidirectional reasoning: results in Reverse tower problem 88
4.9 Bidirectional reasoning: results in Box tower problem 89
4.10 Example of active and passive object relevance 94
4.11 Relevance grounding: results in High towers problem 97
4.12 Relevance grounding: results in Clearance problem 99

5.1 Three relational states in a robot manipulation domain 120
5.2 Example of Relational E3 . 126
5.3 Illustration of NID rules on different abstraction levels 130

B.1 Example for converting a PPDDL action operator into NID rules. 152

C.1 Results for evaluating PRADA’s sampling strategy in a toy scenario 160

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

Figure 1.1: The chimpanzee
Grande has successfully piled
wooden boxes to reach a banana.
(Source: Köhler, 1917)

The chimpanzee Grande spots a banana which
hangs from the ceiling. She jumps for it, but the
banana is out of her reach. She becomes frustrated
and runs upset through her cage hitting the walls.
All of a sudden, she stops, looks at the wooden
boxes which are in her cage, looks at the banana,
looks at the boxes again, and then starts to put one
box on top of the other (Fig. 1.1). Grande knows
that boxes are objects which she can manipulate
and which she can climb upon. By reasoning, she
seems to have suddenly understood how she can
exploit these properties favorably to get the ba-
nana by building a tower. After this first exper-
iment, Grande handles easily similar new situa-
tions with other boxes and is able to build towers
of up to four boxes.

Grande was one of the chimpanzees whose
problem-solving skills the psychologist Wolfgang
Köhler investigated in the 1910s in Tenerife, de-
scribed in his book “Intelligenzprüfungen an Men-
schenaffen” (“The mentality of apes”) (Köhler,
1917). Köhler’s other chimpanzees showed like-
wise an understanding of how to use objects in
their environment to achieve their goals and get
what they want (that is, bananas). A key characteristic of the apes’ behavior is the mo-
ment of insight, the “aha experience”: suddenly, from reasoning the apes find a plan
which they consider promising, and they start acting in a purposive way to execute this
plan. This hints at the cognitive processing involved in problem-solving of animals: the
chimpanzees seem to have a model of the properties of the boxes and what they can
do with them—that they can move them and climb on them. Further, they appear to

1

2 1.1 STOCHASTIC RELATIONAL WORLDS

mentally find solutions before they actually manipulate the boxes. Such behavior shows
every sign of involving insight and planning, at least on the first occasion.

What are the capabilities and prerequisites which permit such goal-directed behav-
ior? What has Grande mastered to be able to get her banana? The experiment described
above suggests that she

• represents the environment in terms of objects and their properties and relation-
ships.
There are wooden boxes and bananas in the world. Some boxes are on the ground, some on
other boxes.

• has a model of the effects of her actions which tell her in general terms abstracting
from individual objects how her actions change the world.
Boxes can be lifted and put somewhere.

• has learned this knowledge from experience as it is hardly innate.
An object is held inhand and let loose so that it falls on the object below or on the ground.
A potential conclusion is that one can influence the position of objects.

• has explored her environment to gain the experience necessary for effective learn-
ing.
Let’s see what can be done with this wooden angular thing.

• copes with uncertainty.
Sometimes, a tower of boxes is unstable and topples over.

• uses her model for reasoning and planning with the concrete objects in the current
situation.
Somehow, these boxes can be rearranged in such a way that by climbing them a closer
position to this tempting banana can be reached.

This thesis is about computational theories and frameworks to solve these tasks and to
enable goal-directed behavior such as Grande’s tower-building:

The goal of this thesis is to understand and create computational principles for
goal-directed behavior involving planning and exploration in natural environ-
ments composed of many manipulable objects.

A household, offices and factories are examples of such environments. Such environ-
ments are often referred to as stochastic relational worlds. Before we discuss the concepts
and contributions of this thesis on a more theoretical level, we take a closer look at
stochastic relational worlds to get a better idea of our work.

1.1 Stochastic Relational Worlds

Stochastic relational worlds are a formalization of environments of objects where an au-
tonomous agent performs actions to manipulate these objects and thus the state of the

1 INTRODUCTION 3

world. The general term agent subsumes humans, robots, chimpanzees, and other ani-
mals and is defined as a system that perceives its environment and takes actions which
maximize its chances of success (Russell and Norvig, 2003). The two attributes of these
worlds capture key properties of typical real-world environments:

• Relational. The environment contains many objects and can be described in terms
of the properties of objects and their relations (Baum, 2004). Actions of the agent
manipulate the properties and relations. Learning can abstract from individual
objects: what has been learned about one object generalizes to others.

• Stochastic. An agent such as a robot operating in residential homes or in the open
world in general has to cope with uncertainty about the outcomes of its actions for
multiple reasons:

– The world itself may be stochastic.

– The agent’s perceptions and actions are noisy. Sensors are limited in what
they can perceive and often not fully accurate. Likewise, the motor control of
the agent’s body is affected by control noise and mechanical failure.

– The abstraction level of the agent’s world description neglects many details.
Models are approximations of the environment whose degree of exactness is
often sufficient, but sometimes fails to capture relevant properties implying
uncertainty in prediction.

– Allowing for uncertainty is crucial for learning compact models using reg-
ularization. For instance, learned models ignore deliberately rare situations
(“outliers”). (We discuss this in more detail later.)

In the following, we present a prototypical domain of stochastic relational worlds which
will form our running example in this thesis and on which we evaluate many of our
methods (we also evaluate on other benchmarks). This domain makes the ideas pre-
sented thus far more concrete and provides a more specific idea of the challenges which
we investigate in this thesis.

1.1.1 Motivating Example: Robot Manipulation

Inspired by the chimpanzee Grande and her towers of boxes, our prototypical domain
describes worlds in a simulated complex robot manipulation scenario where a robot
manipulates cubes, balls and boxes scattered on a table (Fig. 1.2). This is an important
scenario in robotics: “Competent pick and place operations may provide a sufficient
functional basis for the manipulation requirements of a many of the targeted applica-
tions [of autonomous manipulating robots]” (Christensen, 2009, p. 56). We use realistic
robotics kinematics, path planning methods and a 3D rigid-body dynamics simulator
(ODE) that enables a realistic behavior of the manipulated objects1. For instance, piles of

1This simulator is available at http://userpage.fu-berlin.de/tlang/DWSim/ and was written
by Marc Toussaint.

4 1.1 STOCHASTIC RELATIONAL WORLDS

Figure 1.2: In our robot manipulation domain, a robot has to explore a 3D simulated
desktop environment with cubes, balls and boxes of different sizes and colors to master
various tasks.

objects may topple over or objects may even fall off the table (in which case they become
out of reach for the robot). Depending on their type, objects show different characteris-
tics. For example, it is almost impossible to successfully put an object on top of a ball,
and building piles with small objects is more difficult. The robot can grab objects, try to
put them on top of other objects, in a box or on the table. Boxes have a lid; special actions
may open or close the lid; taking an object out of a box or putting it into it is possible
only when the box is opened. The actions of the robot are affected by noise so that result-
ing object piles are not straight-aligned. We assume full observability of triples (s, a, s′)
that specify how the world changes to a new state s′ when an action a was executed in a
certain state s.

We take up the fundamental assumption from artificial intelligence and cognitive
science that many aspects of higher intelligence can be achieved by reasoning on a sym-
bolic level (Newell and Simon, 1976). We employ symbols to represent the structure
and properties of states as well as to denote the actions of the agent. Hence, these
symbols provide the mental language of the agent. In particular, we use relational
logic symbols which permit to describe states in terms of objects and their relation-
ships. We represent states with predicates cube(X), ball(X), box(X), table(X), on(X,Y),
contains(X,Y), out(X), inhand(X), upright(X), closed(X), clear(X) ≡ ∀Y.¬on(Y,X),
inhandNil() ≡ ¬∃X.inhand(X) and functions size(X), color(X), where the variables
X and Y denote any world objects. These symbols are obtained by querying the state
of the simulator and translating it according to simple hand-made guidelines, thereby
sidestepping the difficult problem of converting the agent’s observations into an inter-
nal representation. For instance, on(a, b) holds if a and b exert friction forces on each
other and a’s z-coordinate is greater than the one of b, while their x- and y-coordinates

1 INTRODUCTION 5

are similar. The resulting space of possible world states, called the state space, is im-
mense: if there are o objects and f different object sizes and colors in a world, the state
space consists of f2o22o2+8o different states (not excluding states one would classify as
“impossible” given some intuition about real world physics). For instance, for o = 10
objects and f=3 we get more than 1084 possible states. Clearly, methods which abstract
over situations and objects are required for reasoning and acting in such worlds.

The actions of the robot are denoted by predicate symbols. These actions correspond
to motor primitives whose effects we want to explore, learn and exploit. As mentioned
above, the motor primitives are affected by noise. We define five different types of ac-
tions. The grab(X) action triggers the robot to open its hand, move its hand next toX , let
it grab X and raise the robot arm again. The execution of this action is not influenced by
any further factors. For example, if a different object Y has been held in the hand before,
it will fall down on either the table or a third object just below the robot hand; if there
are objects on top of X , these are very likely to fall down. The puton(X) action centers
the robot’s hand at a certain distance above X , opens it and raises the hand again. For
instance, if there is an object Z on X , the object Y that was potentially inhand may end
up on Z or Z might fall off X . The openBox(X) and closeBox(X) actions only apply to
boxes. openBox(X) triggers the robot to move its arm next to a box X and try to open
its lid; this is only successful if there is no object on top of this box. If the box is already
open, the position of the lid does not change. Similarly, closeBox(X) triggers the robot
to move its arm next to the lid of the box X and close it; if the box is already closed, the
lid is not moved. The doNothing() action triggers no movement of the robot’s arm. The
robot might choose this action if it is satisfied with the current state or thinks that any
other action could be harmful with respect to its task. We emphasize again that actions
always execute, regardless of the state of the world. Also, actions which are rather unin-
tuitive for humans such as trying to grab the table or to put an object on top of itself are
carried out. The robot has to learn by itself the effects of such motor primitives.

Our robot manipulation domain is related to the blocksworld scenario (Slaney and
Thiébaux, 2001), perhaps the most popular—and, in the eyes of many students, infamous—
scenario in classical artificial intelligence since the 1970s and an “almost ridiculously sim-
plified proxy” (Pasula et al., 2007) of everyday-life environments. Many existing meth-
ods related to our work have been evaluated in the deterministic blocksworld or, over
the last years, in extensions with stochastic action outcomes. Only very recently, realistic
simulations of the blocksworld with intrinsic noise have been used in experiments (Pa-
sula et al., 2007). Our robot manipulation scenario extends this simulated scenario by a
manipulating articulated robot arm controlled by inverse kinematics and path planning
and by multiple object types. While our domain is significantly more complex than pre-
vious testbeds, it is without doubt still a long way to full-fledged natural environments.
In this thesis, however, we present a study where we investigate such a manipulation
domain on a real robot platform.

Exploration, planning, and learning are challenging tasks in our robot manipulation
domain due to its intrinsic noise and its complexity. In this thesis, we propose compu-
tational frameworks and algorithms for goal-directed behavior in such domains. Let us

6 1.2 COMPUTATIONAL PRINCIPLES FOR INTELLIGENT BEHAVIOR

formalize the problem setting more precisely:

The agent is given:

• A symbolic vocabulary to describe states
on(X,Y), inhand(X), clear(X), cube(X) . . .

• The ability to convert continuous perceptions into a symbolic representa-
tion

• Symbolic actions triggering motor primitives (always executed, effects
depend on contexts)
grab(X), puton(X), openBox(X) . . .

• A (changing) reward function describing goal states and tasks

In contrast, the agent is not given and has to acquire by itself:

• Policies and plans specifying the actions to take to explore the environ-
ment, achieve tasks and get rewards
"Which sequence of actions will lead to the goal?"

• A model of the state transition dynamics describing the effects of sym-
bolic actions
"How do the motor primitives triggered by symbolic actions change the world?"

This scenario has analogies to the decision-making of the chimpanzees from above: the
chimpanzees seem to have symbols to refer to boxes and bananas and their relationships
such as piles. From their experience, they must have learned the “transition model”
for stacking and climbing boxes. Using this model for high-level reasoning, they derive
appropriate plans to achieve their goals, namely to build towers of boxes to reach the
banana.

Having illustrated the problem setting in a concrete scenario, we now turn to dis-
cussing goal-directed behavior in more general theoretical terms and setting our contri-
butions in context.

1.2 Computational Principles for Intelligent Behavior

Research in artificial intelligence, robotics and cognitive science has laid many impor-
tant foundations in our understanding of building intelligent systems and has led to
impressive results. Nowadays, intelligent agents are on par with particularly intelligent
humans in specialized tasks such as playing chess. They are hopelessly inferior to al-
most all humans, however, in deceivingly simple tasks of everyday-life, such as clearing
a desktop, preparing a cup of tea or manipulating chess figures:

1 INTRODUCTION 7

“The current state of the art in reasoning, planning, learning, perception, loco-
motion, and manipulation is so far removed from human-level abilities, that we
cannot yet contemplate working in an actual domain of interest.” (Pasula et al.,
2007)

For instance, high-level reasoning about common object manipulations of real-world
robots is indeed a challenging task: we can choose from a large number of distinct ac-
tions with uncertain outcomes and the number of possible situations is basically unseiz-
able. While the field of robotics has greatly advanced in learning of behavioral primitives
and motor skills based on reward (Peters and Schaal, 2008), hardly any progress has been
made to extract abstracting knowledge usable for goal-directed object manipulation. Ab-
stract reasoning at the symbolic level is a bottleneck in current state-of-the-art robotics,
and the ability to generalize from experiences is viewed as a key desired capability of
robots: "It is largely perception and machine learning that distinguish a robot from an
ordinary machine" (Christensen, 2009, p. 78).

So how can we tackle the challenges of autonomous goal-directed behavior? A
promising approach is to learn a model of the environment from experience and exploit
it for reasoning and acting. We describe this approach, and its alternative, next, before
discussing how this translates to different aspects of intelligent behavior and stochastic
relational worlds.

1.2.1 Reasoning with Models for Goal-Directed Behavior

The behavior of intelligent agents can be characterized with respect to how much active
reasoning it involves. On the one hand, for many tasks agents maintain explicit knowl-
edge which actions to take in a situation in form of direct mappings from states and
sensory inputs to actions, for instance by associating task-dependent values with actions
and choosing the most valuable actions. Finding appropriate actions is then simply a re-
action to the current state and does not require reasoning about predicted action effects
(Brooks, 1991). Such mappings can be genetically hard-wired (such as reflexes) or be ac-
quired through extensive experience (such as habits or learned motor skills like peeling
a banana).

Goal-directed (or deliberative) behavior with many changing tasks, however, cannot
be achieved with habits or reflexes: an agent cannot maintain mappings for all potential
tasks. Not only are the agent’s memory resources limited, but also many tasks cannot be
foreseen or the amount of experience with a task is insufficient to form habits. Instead,
goal-directed behavior involves active reasoning: the agent needs to predict the effects
of actions to plan for desirable situations. For this purpose, an agent requires a task-
independent model of its environment and of the effects of its actions (Fikes and Nilsson,
1971). Such a model can be learned from the accumulated experience of the agent as the
acquired knowledge is reusable and generalizes over tasks. The chimpanzees described
above make the strong impression to have derived their solution of tower-building from
reasoning with some model of their action effects. For instance, they might internally
simulate action sequences and the resulting situations, or they might reason backwards

8 1.2 COMPUTATIONAL PRINCIPLES FOR INTELLIGENT BEHAVIOR

from mental images of desired situations. Recent findings in neurobiology and cognitive
science hint at the importance of internal simulation in intelligent behavior of animals
(Hesslow, 2002; Grush, 2004). From a theoretical point of view, however, we require
more rigorous computational frameworks and models of such processes. This thesis
provides steps into this direction.

1.2.2 Aspects of Intelligent Behavior

Learning, planning (reasoning) and exploration are among the most interesting aspects
of intelligent behavior in humans and animals and intrinsic to a model-based approach
of goal-directed behavior. If in 100 years there are autonomous robots which have learned
to manipulate objects in natural environments to achieve varying tasks, then these prob-
lems must have been solved. Let’s take a closer look at each of these aspects.

Learning To understand how to manipulate its environment, an autonomous agent has
to learn a model of the effects of its actions. For example, a pile of boxes is more stable
if big boxes are placed at the bottom; it is a hard job to build a tower from balls; filling
tea into a cup may lead to a dirty table cloth. Autonomous agents need to learn such
models from their experience to adapt to new environments and not to rely on human
hand-crafting.

Planning Once the agent can predict the effects of its actions by means of a model,
the challenge is how to exploit this knowledge to reason and plan: how can the ac-
quired model be used in reasonable time to find a sequence of actions suitable to achieve
the current goal? This is a challenging task in natural environments where models are
learned and thus imperfect and the outcomes of actions are uncertain. Furthermore,
very many objects need to be considered so the number of potential actions in each time-
step is huge and the search space of action sequences grows quickly with the length of
sequences, namely exponentially in the number of actions.

Exploration In order to learn a model quickly, the agent needs to gather insightful ex-
periences. It has to estimate the interestingness of actions and situations to decide where
it will potentially learn the most useful things with respect to its tasks and goals. The
generalization behavior of the learning system has strong implications on what is worth
exploring. Exploiting generalization is especially important in the exploration of natural
environments containing many objects. For instance, consider a hypothetical household
robot which just needs to be taken out of the shipping box, turned on, and which then
explores the environment to become able to attend its cleaning chores. Without a com-
pact knowledge representation that supports abstraction and generalization of previous
experiences to the current state and potential future states, it seems to be difficult—if not
hopeless—for such a“robot-out-of-the-box” to explore one’s home in reasonable time.

1 INTRODUCTION 9

1.2.3 Intelligent Behavior in Stochastic Relational Worlds

The current state-of-the-art of methods in artificial intelligence and robotics is far from
solving problems in many domains of interest (Pasula et al., 2007) such as natural envi-
ronments. The recent years, however, have reassured and spurred the excitement and ex-
pectation of many researchers to come closer to the goal of building autonomous agents
acting in relevant real-world scenarios. This hope is based on the advent of statistical
relational learning techniques, resulting in the field of statistical relational artificial intelli-
gence. These techniques combine two key benefits from different lines of research:

• They are probabilistic, deal with uncertainty on all levels of behavior and permit to
learn models from experience.

• They make the structural assumption that the world is appropriately represented
in terms of objects and their properties and relationships, namely by expressive rela-
tional representations using predicates and functions to capture object properties
and relationships. The effects of actions are assumed to depend only on the at-
tributes of objects and not on their identities. Such a prior assumption permits
strong generalization which is required in the immense state spaces of relational
domains.

Although methods from statistical relational artificial intelligence offer a great potential
to approach goal-directed behavior, work into this direction is still relatively sparse. In
this thesis, we introduce and discuss statistical relational methods for all three aspects
of intelligent behavior mentioned above, learning, planning, and exploration, which we
combine to enable goal-directed behavior of simulated and real-world robots.

1.3 Thesis Outline and Contributions

The organization of this thesis follows the mentioned aspects of goal-directed behavior:

• Chapter 2: Basic Background. Before diving into our frameworks and algorithms,
we present the general basic background to readers unfamiliar with artificial in-
telligence and machine learning research on goal-directed behavior. We describe
formal models for decision-making, in particular Markov decision processes, and
several ways to represent states and actions; we discuss two prominent types of
goal-directed behavior in artificial intelligence, namely planning and reinforce-
ment learning; we show how the framework of graphical models can be used
for probabilistic reasoning; and we discuss the limitations of classical methods for
goal-directed behavior.

• Chapter 3: Representing Relational Transition Models. We investigate transi-
tion models which tell an agent how its actions change the state in stochastic rela-
tional worlds. We review the existing work on such models: starting from a gen-
eral discussion of statistical relational learning, we describe the desired properties

10 1.3 THESIS OUTLINE AND CONTRIBUTIONS

and established formalisms for relational transition models and the prerequisites
for learning them from experience, before we discuss in detail an existing formal-
ism based on probabilistic relational rules. Then, we introduce different graphical
model formalisms to represent ground relational transition models.

Contributions:

– We describe several novel ways to represent the transition dynamics in ground
relational domains by means of graphical models and show how to build these
from learned probabilistic relational rules.

– Furthermore, we set these rules in relation to the prominent description language
PPDDL and provide more insights into learning such rules.

• Chapter 4: Planning in Ground Relational Domains. We examine the problem of
planning with a given relational transition model on the level of concrete objects
in worlds with many objects and uncertain action outcomes. We present several
planning algorithms based on different computational concepts and evaluate them
extensively; we show how to cope with worlds containing a large number of ob-
jects; and we demonstrate some of our methods on a real-world robot.

Contributions: We introduce a variety of novel planning approaches for planning in
ground relational domains:

– We present forward reasoning approaches based on lookahead trees and our novel
PRADA algorithm based on approximate inference in graphical models.

– We extend the inference approach PRADA to backward reasoning enabling planning
based on bidirectional reasoning.

– We introduce the formal framework of relevance grounding for the idea of focusing
on relevant objects in planning.

– We are the first to frame relational planning as a pure inference problem and
present a brief study in this direction.

– We describe one of the first case studies on applying high-level relational planning on
a real-world robot.

• Chapter 5: Relational Exploration. We investigate how an intelligent agent can ef-
ficiently explore natural environments described by relational representations. We
discuss why existing methods fail in these environments and how generalization
exploiting relational abstraction can be used to steer exploration to gather insight-
ful experiences. An extensive empirical evaluation completes our theoretical con-
siderations.

Contributions:
– We develop a relational model-based reinforcement learning framework gener-

alizing over states, actions and objects.

11

– We introduce the problem of relational density estimation in relational exploration
strategies and present different methods to use it in a reinforcement learning context
to formalize the novelty of relational states and actions.

– We present our relational exploration algorithm REX, the first complete practical
and implemented solution to exploration and model-based reinforcement learning in
relational domains.

• Chapter 6: Conclusions. We conclude this thesis with summarizing our main find-
ings and giving some intuitions of what kinds of problems can be solved with our
methods. Furthermore, we present major challenges for future work to achieve
real-world goal-directed behavior.

1.4 Previously Published Work

The concepts, frameworks, algorithms and results presented in this thesis have partially
been published in the following journal and conference papers:

Publications

T. Lang and M. Toussaint. Relevance grounding for planning in relational domains. In
Proc. of the European Conf. on Machine Learning (ECML), 2009a.

T. Lang and M. Toussaint. Approximate inference for planning in stochastic relational
worlds. In Proc. of the Int. Conf. on Machine Learning (ICML), 2009b.

T. Lang and M. Toussaint. Probabilistic backward and forward reasoning in stochastic
relational worlds. In Proc. of the Int. Conf. on Machine Learning (ICML), 2010a.

T. Lang and M. Toussaint. Planning with noisy probabilistic relational rules. Journal of
Artificial Intelligence Research (JAIR), 39:1–49, 2010b.

T. Lang, M. Toussaint, and K. Kersting. Exploration in relational worlds. In Proc. of the
European Conf. on Machine Learning (ECML), 2010.

M. Toussaint, N. Plath, T. Lang, and N. Jetchev. Integrated motor control, planning,
grasping and high-level reasoning in a blocks world using probabilistic inference. In
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2010.

Submissions

T. Lang, M. Toussaint, and K. Kersting. Relational exploration. Submitted, 2011.

12

Chapter 2

Basic Background

In this chapter, we describe general background on goal-directed behavior of autonomous
agents. This chapter is primarily targeted to readers not familiar with artificial intelli-
gence and machine learning. We discuss the state-of-the-art work related to our pro-
posed techniques in the subsequent chapters. First, we describe how an intelligent agent
can represent its environment and the effects of its actions in formal models. In Sec. 2.2,
we discuss types of goal-directed behavior which we investigate in this thesis. In Sec. 2.3,
we explain different forms of graphical models and how they can be used for probabilis-
tic reasoning. Finally, in Sec. 2.4 we discuss the limitations of classical work on goal-
directed behavior.

2.1 Formal Models of the Environment

An intelligent agent needs an internal model of its environment to perform goal-directed
behavior for varying tasks. A model is always only an approximation of the true under-
lying natural processes and needs to abstract the task-relevant structure from the natural
world. The right level of abstraction is key for the agent’s ability to reason and thus for
its performance. For instance, a household robot cannot reason on the level of its sensory
inputs and motor control to fulfill its cleaning chores: reasoning in the respective huge
state spaces would be overly complex. Rather, it needs a symbolic description on an
appropriate high level which describes the household structure in terms of the involved
objects and how it can employ them for cleaning.

In AI research, the most prominent formal model of the interaction of an agent with
its environment are Markov decision processes (Puterman, 1994). These allow arbitrary
levels of abstraction and will be presented first. How to represent states and actions is a
key question in formal models and will be discussed thereafter.

2.1.1 Markov Decision Processes

A Markov decision process (MDP) (Puterman, 1994; Boutilier et al., 1999) is a discrete-
time stochastic control process used to model the interaction of an agent with its envi-

13

14 2.1 FORMAL MODELS OF THE ENVIRONMENT

ronment. At each time-step, the process is in one of a fixed set of discrete states S and the
agent decides for an action from a set of actions A. Each state s ∈ S is associated with
an individual reward R(s). Rewards inform the agent which states it should achieve
and which it has to avoid. Primarily for reasons of presentation, we do not consider the
dependency of rewards R on actions; this assumption is not especially restrictive and
our frameworks and algorithms can be augmented to deal with more general reward
specifications taking both states and actions into account.

The key characteristic of MDPs is the Markov property: conditional on the present
state and action, the future and past of the process are independent. Therefore, when the
agent chooses an action in a state, the successor state depends only on the current state
and the action and is independent of all previous states. The strong assumption of the
Markov property allows to derive efficient inference methods. It needs to be justified by
representing the underlying modeled process on the right level of abstraction.

More technically, the transition model T of an MDP specifies the transition distribu-
tion P (s′ | a, s) over successor states s′ when executing an action a in a given state s. The
agent receives rewards in states according to a function R : S → R. A (deterministic)
policy π : S → A tells the agent which action to take in a given state. The objective of
the agent is to maximize its collected rewards where future rewards are assumed to be of
less worth than immediate rewards. This objective is formally expressed as the expected
sum of discounted rewards

E[

∞∑
t=0

γtrt | s0;π] .

for following the policy π starting in state s0, where 0 < γ < 1 is a discount factor
and rt = R(st) the reward obtained at time-step t. Often, we are only interested in the
rewards until a fixed horizon d:

∑d
t=0 γ

trt. The value function V : S → R of a policy
π is defined as the expected sum of discounted accumulated rewards when following π
from a state s:

V π(s) = E[

∞∑
t=0

γtrt | s0 = s;π]

= R(s) + γ
∑
s′

P (s′ |π(s), s)V π(s′) .

The optimal policy π∗ which maximizes the value function for all states can be defined
by the Bellman equation (Bellman, 1957) as

V π∗(s) = R(s) + γmax
a∈A

[
∑
s′

P (s′ | s, a)V π∗(s′)] .

Similarly, one can define the valueQπ(s, a) of an action a in state s as the expected return

2 BASIC BACKGROUND 15

after action a is taken in state s, using policy π to select all subsequent actions:

Qπ(s, a) = E[

∞∑
t=0

γtrt | s0 = s, a0 =a;π]

= R(s) + γ
∑
s′

P (s′ | s, a)V π(s′) .

The Q-values for the optimal policy π∗ let us define the optimal action a∗ and the optimal
value of a state as

a∗ = argmax
a∈A

Qπ
∗
(s, a) and

V π∗(s) = max
a∈A

Qπ
∗
(s, a) .

There exist many algorithms to compute the optimal policy in a given MDP, that is,
where T and R are known, using for example dynamic programming techniques (Bell-
man, 1957; Howard, 1960). This is also called “solving” an MDP or planning in an MDP.
Such algorithms depend strongly on the representation of states and actions which we
discuss in the next subsection.

In general, and in most parts of this thesis, the agent does not know many details
about the MDP model. In particular, the transition model T is unknown to the agent
and needs to be learned from experience. Maximizing the expected rewards in an MDP
with unknown transition model T is the problem of reinforcement learning. We discuss
planning and reinforcement learning in Sec. 2.2.

2.1.2 State and Action Representations

The states S in MDPs are descriptions of the agent’s environment that capture informa-
tion about the environment relevant to the problem at hand. How the agent represents
these states and its actionsA has important consequences on the conceptual and the algo-
rithmic level of its behavior (Boutilier et al., 1999; Russell and Norvig, 2003). Three differ-
ent representation types dominate AI research: (i) unstructured enumerated representa-
tions, (ii) factored propositional representations (Kearns and Koller, 1999; Guestrin et al.,
2003) and (iii) relational representations (van Otterlo, 2009; Brachman and Levesque,
2004; McCarthy, 1963; de Raedt, 1997). Table 2.1 presents three states in a robot manipu-
lation domain together with their translations to the respective representations.

The simplest representation of states and actions is the enumerated, or table-based
or atomic or flat, representation. States and actions are represented by single distinct
symbols. Hence, the state and action spaces S and A are simply enumerated lists or
tables where states and actions respectively correspond to single entries. In Table 2.1,
the three states are represented by symbols s1, s2 and s3. This representation ignores the
structure of states and does not provide a concept of objects. Therefore, it is impossible to
express commonalities among states and actions. In the example, all three states appear
equally different in this representation.

16 2.1 FORMAL MODELS OF THE ENVIRONMENT

Table 2.1: Illustration of three world representation types in a robot manipulation do-
main

(a)

(b)

State Enumerated Factored Relational

1 s1
on_o1_o2, on_o2_t,
on_o3_t, inhand_o4

on(o1, o2), on(o2, t), on(o3, t), inhand(o4),
ball(o1), cube(o2), cube(o3), cube(o4), table(t)

2 s2
on_o3_t, on_o4_t,
on_o5_o4, inhand_o2

on(o3, t), on(o4, t), on(o5, o4), inhand(o2),
cube(o2), cube(o3), cube(o4), ball(o5), table(t)

3 s3
on_o1_t, on_o2_t,
on_o3_o2, on_o6_o3

on(o1, t), on(o2, t), on(o3, o2), on(o6, o3),
cube(o2), cube(o3), cube(o6), ball(o1), table(t)

In a factored propositional representation (Kearns and Koller, 1999; Guestrin et al.,
2003), states are described by lists of state properties. Such properties represent, for in-
stance, the battery status of a robot or whether a specific object is in the robot’s hand.
These properties are called state variables, state features or state attributes. By factoring
states into individual state attributes, commonalities among states are captured. MDPs
based on factored representations, called factored MDPs, have been investigated exten-
sively in planning and reinforcement learning research. The disadvantage of factored
representations is their lack of a notion of objects so that it is impossible to express
commonalities among attributes. For instance, in Table 2.1 the attributes on_o1_o2 and
on_o5_o4 are treated as fully distinct and therefore s1 is perceived as equally different
from s2 as from s3. Similar arguments hold for actions which are also represented by
distinct symbols; for instance, formalizing the experience of grabbing object o3 in s1 in
a factored representation might provide information about grabbing o3 in s2, but cannot
provide information about grabbing any other object.

Relational representations account for state structure and objects explicitly (van Ot-
terlo, 2009; Brachman and Levesque, 2004; McCarthy, 1963; de Raedt, 1997). The state
space S is described by means of a relational vocabulary consisting of predicates P and
functions F which describe the relationships and properties that can hold for domain
objects O. This is considered to be a key requirement for intelligent agents:

“It is hard to imagine a truly intelligent agent that does not conceive of
the world in terms of objects and their properties and relations to other
objects.” Kaelbling et al. (2001)

We distinguish between primitive and derived concepts (predicates and functions). The
latter are defined in terms of formulas over primitive or other derived concepts. Let

2 BASIC BACKGROUND 17

us briefly clarify more logic vocabulary: An atom is simply a predicate, or a function,
applied to a tuple of terms. In this thesis, terms, which we also call arguments, are ei-
ther logical variables or constants. Constants are also referred to as objects. If all of the
terms in an atom are variables, then the atom is called an abstract atom. If all terms
are constants, this is a ground atom. Thus, P and F yield the set of ground atoms with
arguments taken from the set of domain objects O. We will speak of grounding an ab-
stract formula ψ if we apply a substitution σ that maps all of the variables appearing
in ψ to objects in O. A state is defined by a conjunction of true ground atoms. The
action space A is defined by atoms from a special set of predicates PA ⊂ P with argu-
ments from O. In MDPs based on relational representations, called relational MDPs, the
commonalities of states, actions and objects can be expressed. Hence, we can generalize
information about one object to reach conclusions about other, related objects. Using
a relational representation state descriptions and models may be compact since we can
abstract from concrete objects and situations by means of abstract atoms containing log-
ical variables. In Table 2.1, abstract atoms let us capture the equivalence of s1 and s2 in
contrast to the difference of s1 and s3: we can generalize s1 and s2 to the (semi-) abstract
state on(A,B), on(B, table), on(o3, table), inhand(C), which cannot be done for s3. Simi-
lar arguments hold for actions: for instance, the experience of grabbing o1 in s1 provides
information about grabbing o5 in s2 when using a relational representation.

The choice of representation determines the expressivity and compactness of internal
world models of an agent and thus strongly affects its learning, reasoning, generalization
and exploration capabilities. We will discuss this in detail in Chapter 3 where we focus
on the transition model T describing the effects of the agent’s actions. Concepts and
algorithms for goal-directed behavior based on expressive relational transition models
are then the focus of Chapters 4 and 5. Which goal-directed behavior we will investigate
is described next.

2.2 Goal-Directed Behavior

Goal-directed behavior (Botvinick and An, 2009; Niv et al., 2006; Tomasello et al., 2005)
denotes the activity of an agent which attempts to achieve tasks and situations which
satisfy its preferences and desires. Typically, goals and tasks change over time (Oudeyer
et al., 2007; Dignum and Conte, 1997); if this is the case, an agent that is to behave in a
goal-directed manner requires a model of its environment telling the agent how its ac-
tions change the environment (Fikes and Nilsson, 1971; Kaelbling et al., 1996; Boutilier
et al., 1999). (Without a model, the agent would need to collect very many experiences
to learn a reactive behavior for each new task.) In terms of MDPs, such a model corre-
sponds to the transition model T , while the goals and tasks are specified in the reward
functionRwhich in contrast to T is subject to frequent change. In this thesis, we assume
R is always given to the agent and we focus on transition models T . One should bear
in mind that T is never correct in the sense of describing the natural world dynamics
with full accuracy—instead, T is a model on an appropriate abstraction level and hence
only approximates the true dynamics. Let’s assume, however, that here T is the most

18 2.2 GOAL-DIRECTED BEHAVIOR

accurate model for the given level of symbolic abstraction.
Usually, the agent which starts to behave in a goal-directed way does not know the

“correct” model T , but maintains an estimate M of T . In this thesis, we will always
refer to this estimateM when speaking of the agent’s model; nonetheless,M may well
correspond to the “correct” model T .

The problem of how to use a (temporarily) fixed modelM for reasoning and sequen-
tial decision-making is studied in the field of planning which we describe first in the
following. Thus, planning is a computational process without interaction with the en-
vironment. In contrast, how to achieve high-reward states when starting to act without
a confident estimateM is studied in the field of reinforcement learning (RL) which we
discuss thereafter. In (model-based) RL, the agent has to learn M from its interaction
with the environment and exploit it to achieve high rewards. Thus, a major focus in RL
is how an agent can quickly gain an understanding of its environment, and planning is
a computational subtask in RL.

2.2.1 Planning

Planning (Weld, 1999; Boutilier et al., 1999; Fikes and Nilsson, 1971; Helmert, 2003; Nau,
2007) is the problem of using a transition modelM to compute an action sequence which
leads to high reward states according to a reward functionR. Different planning scenar-
ios can be distinguished along the following characteristics:

• Certainty of action outcomes. M may specify either deterministic or indeterministic
action outcomes. In the latter case, these may be quantified with probabilities.

• Type of reward function. We distinguish two types of reward functions R based
on the number of states which achieve reward and the variability of the assigned
rewards.

A goal-oriented, or task-oriented, reward function specifies non-zero rewards for
a set of absorbing states where a clear-cut goal is fulfilled and the problem termi-
nates. The cost-to-goal formalization, where we want to minimize the costs of steps
to the goal, is symmetric and also falls under this category. In a factored proposi-
tional or relational representation, such a goal can expressed by means of a logical
formula φ. Typically, this formula is a partial state description so that there exists
more than one state where φ holds. For example, the goal might be to put all our
romance books on a specific shelf, no matter where the remaining books are lying.
In this case, planning involves finding a sequence of actions a such that executing
a will result in a world state s with s |= φ.

Alternatively, the reward function may specify multiple, possibly competing objec-
tives in the form of general preferences over states, called “utilities”, by assigning
varying rewards to different states so that the utility of desirable states is high,
while it is low for unfavorable states. Such a utility-based, or process-oriented, re-
ward function can be used to model an ongoing optimization process where the
task of the agent is to continuously accumulate reward over an infinite horizon. For

2 BASIC BACKGROUND 19

instance, our goal might be to keep the desktop tidy. Planning with utility-based
rewards corresponds to the decision-theoretic paradigm which is also studied in
operations research, control theory and economics.

Many real-world problems exhibit both task- and process-oriented behavior (Boutilier
et al., 1999).

• Number of start states. We may either compute policies (or likewise, value functions)
over the complete state space or we may focus on planning from a subset of dis-
tinguished start states. The latter problem is simpler as it requires examining only
a small local subset of the complete state space. While algorithms computing full
policies also solve the problem of planning from a single start state, they will be
inefficient compared to specialized planners which can exploit knowledge of the
start state to avoid searching through all states and to find local high-value plans.

• Observability of states. We may either have full access to the current state or we can
only partially, or not at all, observe it. In this thesis, we assume that the state is
always fully observable.

Given full observability of states, the framework of MDPs can accommodate all planning
scenarios by appropriately choosing the transition model M and the reward function
R. Hence, MDPs generalize many of the planning paradigms found in the literature
and have been adopted as a standard model for decision-theoretic planning with fully
observable states in the field of AI (Boutilier et al., 1999; Bertsekas and Tsitsiklis, 1996).
Although MDPs provide a general model, the concrete algorithms for planning depend
strongly on the characteristics of the planning scenario. Likewise, the representation of
states and actions and in turn of the transition modelM and the reward functionR have
major consequences for planning algorithms. We will discuss this in detail in Chapter
3. We note here already that the potential compactness of M and R does not carry
over to planning. In the following, we discuss prominent planning scenarios reflected in
different lines of research.

In classical planning studied in the AI planning community, the objective is to find a
sequence of deterministic actions that will lead from the initial state to a goal state (thus,
the reward function is goal-oriented). Shorter plans might be favored, or more generally
we might associate actions with costs which we want to minimize. Classical planning
algorithms (Weld, 1999) exploit knowledge of the start state to avoid searching through
all states.

Planning under uncertainty extends classical planning with probabilistic action out-
comes and is inherently harder than its deterministic counterpart (Kushmerick et al.,
1995; Littman, 1997; Littman et al., 1997). (We neglect here planning under uncertainty
where the action outcomes are non-deterministic, but not probabilistically determined,
which is for instance studied in conditional planning and in conformant planning (Rus-
sell and Norvig, 2003).) Achieving a goal state with certainty is typically unrealistic. The
task is then to find a “satisficing” action sequence that will lead with high probability to
states with large rewards. A further source of uncertainty next to stochastic action out-
comes which we have ignored thus far is the uncertainty about the starting state. While

20 2.2 GOAL-DIRECTED BEHAVIOR

we ignore it in the following and always assume deterministic initial states, planners
based on probabilistic inference in graphical models, such as our approaches proposed
in Chapter 4, incorporate this uncertainty in a straightforward manner. Research on clas-
sical deterministic and probabilistic planning has employed relational representations to
a large extent as we discuss in more detail in Chapter 3.

In decision-theoretic planning (Boutilier et al., 1999) (or sequential decision-making
under uncertainty), studied mostly in the machine learning and reinforcement learn-
ing communities, the task is to find sequences of stochastic action with (near-) optimal
expected utility. Prominent “MDP solution algorithms” (Bertsekas and Tsitsiklis, 1996)
compute policies (or value functions) over complete state spaces and are usually de-
signed for enumerated representations. For instance, exact solution algorithms include
linear programming and dynamic programming methods such as value iteration (Bell-
man, 1957) and policy iteration (Howard, 1960), while approximate value iteration and
linear value function approximations are examples of approximate algorithms. In Chap-
ter 4, we introduce different approaches for decision-theoretic planning from given start
states in stochastic relational domains.

2.2.2 Reinforcement Learning

Reinforcement learning (RL) (Sutton and Barto, 1998; Kaelbling et al., 1996) is a learning
paradigm where an agent needs to learn from its experience which actions to take in
an unknown environment so as to accumulate high rewards. In contrast to supervised
learning, an RL agent is never provided the correct outputs for the inputs (that is, the
optimal actions for the given states) and its sub-optimal actions are not explicitly cor-
rected. Instead, the agent needs to distribute received rewards, “reinforcements”, over
previous states and actions so as to understand which actions are advantageous where.
For instance, a cook apprentice might be praised by its guests for cooking a delicious
meal and then has to decide which actions, such as adding which spices, had signifi-
cant impact on this reinforcement. Inspired by behaviorist psychology, reinforcement
learning is a key scenario in AI: it needs to be solved by any autonomous agent who
wants to continuously extend its ability and horizon to predict, control and manipulate
its environment.

We formalize the problem of reinforcement learning in an MDP framework (Werbos,
1977). Then, the notion of an “unknown environment” implies that the correct transition
model T is unknown and an estimateM needs to be (at least, implicitly) learned from
interaction with the environment. In alternative formulations, the reward function R is
also unknown, but in this thesis we always assumeR be given.

Model-free RL approaches such as the prominent Q-learning algorithm (Watkins and
Dayan, 1992) learn values of states and actions directly from the interaction with the en-
vironment (Brooks, 1991). Approaches for enumerated representations collect statistics
for each individual state-action pair. In contrast, structured representations offer the po-
tential to generalize experiences to yet unseen states and actions: this can be achieved by
value function approximators which take sets of state features (and an action) as input

2 BASIC BACKGROUND 21

and predict a value. The training instances for this supervised learning problem are pro-
vided by the experienced states in combination with the distributed collected rewards
(reinforcements) of the agent. Using model-free approaches, an agent can learn to be-
have in a goal-directed way for a fixed reward function (which determines the specific
task), but not in situations where the reward function of the agent changes quickly, for
instance in case of varying tasks.

In contrast, model-based RL approaches learn a transition modelM from the expe-
rienced state transitions in a supervised setting and then use M to distribute the rein-
forcements of high-reward states appropriately across the state space (Kaelbling et al.,
1996; Russell and Norvig, 2003). This is achieved by calculating value functions of states
and actions using planning algorithms (see Sec. 2.2.1). As the same M can be used
for decision-theoretic planning with changing reward functions, model-based RL is a
promising approach for goal-directed behavior with varying tasks. In this thesis we
focus on model-based RL. The representational and structural choices for M have key
effects on the performance of the agent. For instance, ifM is based on an enumerated
representation, reinforcements can only be distributed over already experienced states,
while structured representations generalize over states and thereby can distribute re-
wards over yet unseen states. Transition modelsM and their implications on planning
and reinforcement learning will be the focus of Chapter 3.

A central challenge of a reinforcement learning agent is to ensure that it explores its
environment sufficiently to accurately understand the domain and to be able to plan for
high-value states. At the same time, the agent has to ensure to exploit its learned knowl-
edge and not to spend too much time in low-value parts of the state space. This is called
the exploration-exploitation tradeoff (Sutton and Barto, 1998). For instance, consider a
household robot which has found out how to wash dishes in the sink to achieve a reward
for clean dishes. If it continues exploring, it may eventually find out that this can also
be achieved by using the dish-washer which leaves it with the time to fulfill other tasks
such as repairing the car, enabling to collect even more reward. Different concepts have
been developed for describing explorative behavior, including curiosity (Schmidhuber,
1991a,b), counters on the occurrences of states and actions (Thrun, 1992), and assuming
high rewards for unknown states and actions (“optimism in the face of uncertainty”)
(Szita and Lörincz, 2008). The frameworks of E3 (Kearns and Singh, 2002), Rmax (Braf-
man and Tennenholtz, 2002) and Bayesian Reinforcement Learning (Poupart et al., 2006)
provide a rather explicit theoretical understanding of exploration and exploitation. For
instance, E3, which we will describe in detail in Chapter 5, has primarily been proposed
to enable a proof that the exploration-exploitation problem can be solved in time which
is polynomial in the number of states. While these methods provide clear theoretical
insights, they have been formulated on enumerated representations and hence are not
applicable to natural environments. In our view, the key challenge is thus not to devise
new exploration-exploitation theories, but to realize the existing principles on non-trivial
representations. A central aspect is to investigate how generalization and abstraction in
structured representations interferes with these principles. We will address this in detail
in the upcoming chapters, in particular in Chapter 5.

22 2.3 PROBABILISTIC REASONING IN GRAPHICAL MODELS

2.3 Probabilistic Reasoning in Graphical Models

Graphical models represent knowledge in uncertain domains by networks of coupled
information units and provide a computational framework for reasoning under uncer-
tainty (Pearl, 1988; Jordan, 1999). Graphs visualize compact factorized representations of
joint distributions exploiting their conditional independences. From a conceptual point
of view, inference in graphical models can be thought of as a theoretically grounded for-
malization of the idea of internal simulation. On a purely information processing level,
several authors proposed that certain functions of neural substrates could be abstracted
in terms of Bayesian information processing and inference (Doya et al., 2007; Ott and
Stoop, 2007; Tenenbaum et al., 2011). In the following, we first describe different types
of graphical models, before we discuss how inference in such models can be used for
probabilistic reasoning and planning.

2.3.1 Graphical Models

Let us first clarify notation. We denote random variables by upper case letters (e.g., S),
their values by the corresponding lower case letters (s ∈ dom(S)), variable sets by
bold upper case letters (S = {S1, S2, S3}) and value sets by bold lower case letters
(s = {s1, s2, s3}). We also use column notation (s2:4 = {s2, s3, s4}).

Formally, a graphical model represents the joint probability distribution over a set
of random variables X by means of a graph G which encodes how the joint factorizes
over these variables. The nodes in G represent the random variables, while the edges
define their dependencies and thereby express conditional independence assumptions
among X. Inference in graphical models is the process of computing a posterior marginal
P (H |O) over the hidden variables H = X\O given a set of observed variables O. Two
types of graphical models can be distinguished according to their underlying graph
structure: in Bayesian networks G is a directed acyclic graph, while in factor graphs
G is undirected. We discuss both in turn.

A Bayesian network (BN) (Jensen, 1996) uses a directed acyclic graph G to encode
a compact representation of the joint probability distribution over random variables X.
The value x of a variable X ∈ X depends only on the values of its immediate ancestors
in G, which are called the parents Pa(X) of X . Conditional probability functions at each
node define P (X |Pa(X)). In case of discrete variables, they usually take the form of
conditional probability tables. A BN is a compact representation of a distribution over
X if all nodes have only few parents or their conditional probability functions have sig-
nificant local structure. This will play a crucial role in our development of relational
planning algorithms in Chapter 4.

An alternative graphical representation are factor graphs which represent the fac-
torization of a probability distribution explicitly. Factor graphs are bi-partite graphs
connecting variable nodes with factor nodes. Factors represent general couplings be-
tween variables. Mathematically, a factor graph is given by random variables X =
{X1, . . . , Xn}, a set of cliques C = {C1, . . . , Ck} which are tuples of variables and for

2 BASIC BACKGROUND 23

(a) (b)

Figure 2.1: Graphical models for representing a two-step MDP model in an enumerated state
and action space. The couplings between states St and actions At encode the policy. (a)
A dynamic Bayesian network represents dependencies by means of arcs in a directed
graph. (b) A factor graph represents the couplings of variables explicitly by factor nodes
shown here as black squares.

each clique a factor ψi such that

P (X1, . . . , Xn) =
1

Z

k∏
i=1

ψi(XCi) with Z =
∑
x

k∏
i=1

ψi(XCi) .

Though closely related, conditional independence and factorization are not the same
concepts: for instance, a complete graph of three variables does not encode conditional
independences, while the underlying distribution could be factored in three binary fac-
tors or one tertiary factor. Bayesian networks and a further type of undirected graphical
models called Markov random fields (Kindermann and Snell, 1980) can be converted to
factor graphs.

Graphical models can represent the evolution of stochastic systems over time by
specifying the dependencies of variables across multiple time-steps. About the effects
of actions can be reasoned by introducing random variables for actions. We will use
both factor graphs as well as dynamic Bayesian networks (DBNs) for reasoning about
actions over time. Fig. 2.1 shows a DBN and a factor graph for a two-step unstructured
MDP. In the following, we describe DBNs in more detail; similar ideas apply to dynamic
factor graphs. A DBN (Murphy, 2002) extends the BN formalism to model a dynamic
system evolving over time. Usually, the focus is on discrete-time stochastic processes.
The underlying system itself (in our case, a world state) is represented by a BN B, and
the DBN maintains a copy of this BN for every time-step. A DBN can be defined as a
pair of BNs (B0, B→), where B0 is a (deterministic or uncertain) prior which defines the
state of the system at the initial state t= 0, and B→ is a two-slice BN which defines the
dependencies between two successive time-steps t and t+1. The resulting DBN satisfies
the Markov property: the variables at time t+1 depend only on other variables at time
t+1 and on variables at t. In the DBN for a two-step MDP model using an enumerated
representation shown in Fig. 2.1, the state at time-step t is a discrete random variable St
whose values correspond to the state space of the MDP. Similarly, the discrete random
variable At represents the action at time-step t and takes values according to the action

24 2.3 PROBABILISTIC REASONING IN GRAPHICAL MODELS

space. The reward at time t is represented by the utility node Ut. It is possible to express
arbitrary reward expectations P (Ut |St) with binary U (Cooper, 1988). The transition
model T of the MDP defines the probabilities P (st+1 | st, at) and the reward function R
the probabilities P (ut | st). In addition, a distribution P (s0) for the initial state has to be
provided. The policy π is represented by P (at | st).

2.3.2 Inference for Planning

Inference in dynamic graphical models can be applied to the problem of planning in a
stochastic domain in various ways. Let Ht denote the unobserved hidden variables and
Ot the observed variables at time-step t such that Ht ∩Ot=∅ and St=Ht ∪Ot where St
are the variables representing time-step t. Inference tasks for reasoning include: infer-
ring the hidden states, that is calculating the posterior marginals P (ht |o0:T); filtering,
that is calculating the posterior P (ht |o0:t); calculating the likelihood of the observations,
P (o0:T); and finding the most-likely sequence h∗0:T maximizing P (h0:T |o0:T). In partic-
ular, filtering will be at the heart of one of our relational planning techniques proposed
in Chapter 4.

The ultimate goal is to use inference to compute optimal policies in MDPs. This
problem has been termed as “planning by/as inference”. Toussaint and Storkey (2006)
have recently shown that planning in MDPs can be reformulated as a problem of prob-
abilistic inference in a DBN (see also Botvinick and An (2009); Hoffman et al. (2009)).
This reformulation is based on several ideas: identifying the policy as a parameter of
the DBN, namely as the conditional probability P (a | s) coupling states to actions; using
a mixture model to cope with different horizons; and computing posteriors over ac-
tion variables conditioning on rewards. An expectation-maximization (EM) algorithm
(Dempster et al., 1977) which employs inference in an internal loop can be used to opti-
mize the parameters P (a | s) such that the likelihood of the conditioned rewards is max-
imized, thereby computing the optimal policy. Intuitively, in this framework rewards
correspond to “mental observations” of future events. Inferring posteriors over hidden
action variables and optimizing the DBN parameters amounts to finding actions and a
policy which is “coherent“ with these “observations” (Toussaint, 2009b).

The mentioned EM algorithm (Toussaint and Storkey, 2006) solves planning in un-
structured MDPs with enumerated state and action spaces. The corresponding DBN rep-
resents a state simply by a single variable St. What makes planning-by-inference promis-
ing is that there exists a variety of inference techniques which can be applied on more
structured representations instead. For instance, variables can be discrete, continuous or
mixed and may represent different features of states such as motor commands, future
actions and constraints, even in hierarchies (Toussaint, 2009b). Planning corresponds to
conditioning some of these variables to desired values (goals) and others to known state

2 BASIC BACKGROUND 25

or sensor information and then to compute coherent estimates of the remaining variables
(in particular actions) across the network. As random variables can represent states on
arbitrary abstraction levels, in principle inference in graphical models is applicable from
low-level continuous motor control to symbolic decision-theoretic planning. While there
are already appealing successful applications, for instance to hierarchical controllers in
partially observable MDPs (Toussaint et al., 2008), thus far applying inference for plan-
ning in symbolic relational representations has not been investigated. Standard infer-
ence techniques are hardly applicable in such scenarios. We will examine this challenge
in detail in Chapters 3 and 4.

2.4 Discussion

Goal-directed behavior has been a major topic in the study of intelligent systems and
agents from the first days (McCarthy, 1963; Fikes and Nilsson, 1971). Classical work in
artificial intelligence (AI) and reinforcement learning (RL) laid important foundations
in our understanding of goal-directed behavior. Both lines of classical research, how-
ever, face limitations. Interestingly, these are complementary: while classical AI meth-
ods employ expressive representations, they cannot cope with uncertainty and cannot
adapt behavior from experience; while classical RL methods investigate learning to act
from experience in domains with uncertain action outcomes, they focus on trivial non-
generalizing state and action representations. We review this in more detail in the fol-
lowing.

Limitations of Classical Artificial Intelligence

The idea of using rich symbolic representations to model the world and the effects of
the agent’s actions has been pursued in artificial intelligence research from its begin-
nings (McCarthy, 1963). Various relational representations have been investigated, often
in very general forms employing full (and undecidable) first-order logic. The “physi-
cal symbol systems hypothesis” (Newell and Simon, 1976) is central to classical AI ap-
proaches (also known as “good old-fashioned AI”) which states that many aspects of
higher-level intelligence can be achieved by the manipulation of symbols. The assump-
tion that human problem solving consists primarily of such high-level symbol manipu-
lation also laid the grounds for the field of cognitive science. Classical AI achieved great

26 2.4 DISCUSSION

success at simulating high-level reasoning in small demonstration programs, in classi-
cal planning in deterministic domains and led to successful applications such as expert
systems.

A major drawback of classical AI methods is that they typically rely on hand-crafted,
laborious models of the world. Therefore, such methods often solve problems only in
severely restricted problem domains. For instance, early work on relational action lan-
guages used hard-coded representations for representing deterministic domain dynam-
ics (Fikes and Nilsson, 1971). Learning and coping with uncertainty, however, are key
requirements for intelligent agents. Specifying in advance models by hand for all possi-
ble situations the agent may encounter is surely infeasible (Pasula et al., 2007). Besides,
humans have difficulties to provide accurate models of complex domains, both on the
structural as well as the parametrical level. Also, transition dynamics may change mak-
ing existing models obsolete, so that agents have to adapt to such changes. Furthermore,
the world by itself may be stochastic: there may be random events or hidden (latent)
variables which cannot be accessed.

Hence, what is required to make classical AI approaches more applicable to real-
world scenarios are generic tools to express uncertain information, to cope with lack
of knowledge, to reason under uncertainty and to learn to act from experience. In-
deed, uncertainty has become a major concern in AI research over the last two decades.
Nonetheless, learning for goal-directed behavior in stochastic domains is still a largely
unresolved challenge.

Limitations of Classical Reinforcement Learning

The field of reinforcement learning (RL) investigates the learning task of an autonomous
agent which has to find a policy for action selection that maximizes its reward over the
long run (Sec. 2.2.2). Classical (model-free and model-based) RL methods (Sutton and
Barto, 1998) have laid important foundations for understanding and formalizing explo-
ration, learning and planned behavior. In contrast to classical approaches in AI, these
methods have often been designed to cope explicitly with uncertainty in action outcomes
and observations. However, while research in AI from the early days on has investigated
powerful generalizing relational representations, surprisingly, most classical RL meth-
ods instead rely on propositional, that is enumerated or factored, representations. The
focus on learning and uncertainty and the neglect of expressive representations may be
due to the historical development of RL which evolved as a subfield of machine learning
rather than from AI research. Hence, the shortcomings of propositional representations
(Sec. 2.1.2) transfer to classical RL methods, namely the difficulty to learn strongly gener-
alizing knowledge and to be applicable to domains of real-world goal-directed behavior.

To overcome the limitations of classical RL, expressive representations of states and
actions are required. The field of relational reinforcement learning (Džeroski et al., 2001;
van Otterlo, 2009), which has evolved over the last decade, pursues this by means of
relational representations, but has mostly focused on model-free approaches which are
less appropriate for goal-directed behavior. How relational representations can be used

2 BASIC BACKGROUND 27

for learning expressive transition models and acting in a goal-directed manner is a major
focus of this thesis and will be discussed in more detail in the next chapters.

28 2.4 DISCUSSION

Chapter 3

Representing Relational Transition
Models

Models of the transition dynamics of its environment enable an intelligent agent to per-
form goal-directed behavior. Transition models inform an agent how its actions modify
the state of the world by encoding the distribution P (s′ | s, a) over successor states s′

when the agent performs action a in state s. In this chapter, we investigate such mod-
els using relational representations to account for the transition dynamics in stochastic
worlds with many objects. In Sec. 3.1, we describe the related work on relational transi-
tion models. Thereafter, in Sec. 3.2 we introduce graphical models to represent the tran-
sition dynamics of ground relational domains on which a wide variety of computational
methods can be applied for inference. Finally, we discuss briefly the most important
aspects of relational models with respect to the following chapters.

Our contributions in this chapter are the following:

• We describe several novel ways to represent the transition dynamics in
ground relational domains by means of graphical models and show how
to build these from learned probabilistic relational rules (Sec. 3.2) (Lang
and Toussaint, 2009b, 2010b).

• Furthermore, we set these rules in relation to the prominent action de-
scription language PPDDL and provide more insights into learning such
rules (Sec. 3.1.3 and Appendix B) (Lang and Toussaint, 2010b).

3.1 Related Work on Relational Transition Models

Our methods introduced in this thesis use relational transition models for goal-directed
behavior. In the following, first we review briefly general work in the field of statisti-
cal relational learning which forms the background of research on relational transition
models. Then, we describe various aspects of probabilistic relational transition mod-
els, including their required properties, the prerequisites to learn them, existing model

29

30 3.1 RELATED WORK ON RELATIONAL TRANSITION MODELS

types, and how they enable goal-directed behavior. Finally, we inspect a specific transi-
tion model type, probabilistic relational rules, in detail, discuss how to learn rules from
experience and place this model type in context to the prominent PPDDL representation.

3.1.1 Statistical Relational Learning

The field of statistical relational learning (SRL) (Getoor and Taskar, 2007; de Raedt et al.,
2008; de Raedt, 2008) combines statistical machine learning techniques with structured
relational representations to learn generalizing, compact models from experience. For
instance, an autonomous agent can then adapt to unknown stochastic relational envi-
ronments and perform goal-directed behavior by learning symbolic transition models
from experience. Here, we give a brief overview over the general field of statistical rela-
tional learning.

A variety of specific models with the corresponding computational methods for in-
ference and learning has been developed. Almost all of them ignore dynamic aspects of
natural environments and focus on static domains. For instance, Muggleton (1996) and
Cussens (1999) have extended stochastic grammars to stochastic logic programs, while
Taskar et al. (2002) have extended Markov networks towards relational Markov net-
works and Richardson and Domingos (2006) towards Markov logic networks (MLNs.)
MLNs, for instance, combine logic representations with formalisms of uncertainty by
assigning weights to logic formulas; these weights determine the degree to which a for-
mula typically holds and in turn the probability of “worlds” (in the sense of world states)
by combining the weights over all ground formulas. Likewise, dependency networks
have been extended towards relational dependency networks (Neville and Jensen, 2007)
and Bayesian networks to logical and relational structures, including probabilistic logic
programs (Ngo and Haddawy, 1997), relational Bayesian networks (Jaeger, 1997), prob-
abilistic relational models (Pfeffer, 2000; Getoor et al., 2001), Bayesian logic programs
(Kersting and de Raedt, 2008), and Bayesian logic (Milch et al., 2005).

While the parameters of these models can often be estimated efficiently using expec-
tation -maximization (EM) (Dempster et al., 1977) or gradient descent, structure learning
is a particularly complex task: the number of potential structures is infinite; as learning
the structure of (propositional) Bayesian networks is NP-complete, learning relational
structures must be at least as hard. Many structure learning approaches take up the
idea of traditional inductive logic programming methods (de Raedt, 2008) to greedily
improve the current best model by syntactic manipulations with refinement operators
and to choose a model according to some penalized likelihood scoring metric. Struc-
ture learning has been investigated in particular in the context of MLNs (Mihalkova
and Mooney, 2007; Kok and Domingos, 2009, 2010) and relational dependency networks
(Neville and Jensen, 2007; Natarajan et al., 2010). For autonomous goal-directed behav-
ior we require a solution to the structure learning problem in dynamic domains, as we
want to learn a probabilistic relational transition model. Fortunately, one of the few so-
lutions to structure learning based on a heuristic algorithm (Pasula et al., 2007) applies
to learning transition models. We will discuss it in depth below.

3 REPRESENTING RELATIONAL TRANSITION MODELS 31

Apart from the problem of structure learning, how in general to model dynamic do-
mains within the prominent SRL approaches mentioned above and how to perform the
required inference then is not clear. While it is often argued that time could be modeled
as an additional variable in relations and any known inference algorithm developed
for the static cases could then be employed, successful applications of this idea are not
widely known. In contrast to many static domains, in dynamic domains we need ap-
proximations even for sparse models as state attributes easily become correlated over
time as they share the same influences in the past. Deriving efficient inference methods
for specific statistical relational models and using them for planning will be the focus of
Chapter 4.

3.1.2 Probabilistic Relational Transition Models

A modelM of the transition dynamics specifies P (s′ | s, a), the probability of a succes-
sor state s′ if action a is performed in state s (Boutilier et al., 1999). In this thesis, this
distribution is usually non-deterministic. A model M has to satisfy the following re-
quirements:

• Expressivity: M shall cover large parts of the state space S and the action space
A. Typically, these spaces are very large in relational domains, so that a modelM
needs to generalize strongly to cover significant parts of S and A.

• Inference: The point of a model M is to enable goal-directed behavior. For this
purpose, it needs to be possible to use and exploit M by means of efficient in-
ference techniques (Brachman and Levesque, 2004). Hence, we often prefer low-
complexity models.

• Learning: M needs to be learned from the interaction with the environment. A
learning algorithm for M has to be efficient and should only require few experi-
ences to learn expressive models. Thus, M has to incorporate strong structural
assumptions about the world and to depend on a comparatively small number of
parameters to achieve generalization. This is achieved by penalizing model com-
plexity in form of regularization which leads to compact and thus generalizing
models (instead of merely storing data).

Relational modelsM permit strong generalization by encapsulating the transition prob-
abilities P (s′ | s, a) in a compact way exploiting the relational structure of the domain in
terms of objects and their properties and relationships. For example, probabilistic rela-
tional rules, described in detail in Sec. 3.1.3, employ generalized partial world state de-
scriptions in the form of conjunctions of abstract literals. This enables abstraction from
object identities and concrete domain instantiations. For instance, consider a set of N
cups: the effects of trying to grab any of these cups may be described by the same sin-
gle abstract model instead of using N individual models. The structural assumptions of
relational representations may not always permit perfect models of the world. It is our
view, however, that a model does not have to be a precise map of the truth—the point

32 3.1 RELATED WORK ON RELATIONAL TRANSITION MODELS

of a model is to abstract, to partition the state and action space in the right ways and to
simplify things, such that it is a good basis for decision making.

Statistical relational learning methods (Getoor and Taskar, 2007; de Raedt, 2008) are
required to learn relational modelsM. As we will argue below, the assumption of un-
certainty is key for learning. Statistical relational learning is not merely a marriage be-
tween logic and statistical learning—it is crucial to get logic working in real-world sce-
narios. Statistical relational learning and in particular probabilistic relational models do
not make use of logic in the computational sense, in contrast to traditional work in AI
investigating logic inference and theorem proving as a computational paradigm (for ex-
ample, in Prolog). Instead, from our point of view, the logic descriptions are just complex
feature descriptors which are used by a statistical modelM for prediction.

The suitability of a model M depends on the computational process it is used for
(Brachman and Levesque, 2004). For instance, some model representations are appropri-
ate for efficient learning, while others are more appropriate for inference. In particular,
the compactness of models and the existence of efficient learning techniques do not im-
ply that the development of efficient inference techniques is straightforward; typically,
efficient inference methods need to be developed separately. In this thesis, for instance,
we employ probabilistic relational rules for learning and then convert them to graphi-
cal models for planning; using a rule representation is appealing for learning due to the
intriguing regularized method to extract them from noisy experience. Before taking a
closer look at such rules in Sec. 3.1.3, in the following we discuss the prerequisites for
learning probabilistic relational transition models in general, review related work, in-
cluding other prominent AI planning representations, and touch on using these models
for goal-directed behavior which will be the focus of the upcoming chapters.

Learning Generalizing Transition Models

The central learning task in model-based reinforcement learning is to estimate a transi-
tion model M from a set of experiences E = {(st, at, st+1)}T−1

t=0 which defines a condi-
tional distribution P (s′ | s, a) and can be used for decision-making and planning (Kael-
bling et al., 1996). An example of E is given in Table 3.1. We obtain compact models by
compressing the experiences E . In Sec. 3.1.3, we will describe a specific algorithm for
learning rules. Here, we consider general conceptual points about learning and com-
pression. Compression of experiences E and thereby learning of compact models can
exploit three opportunities:

• The frame assumption (Russell and Norvig, 2003), expressing that all state proper-
ties which are not explicitly changed by an action persist over time, allows us to
simplify the learning problem by deliberately ignoring large parts of the world.

• By abstraction, we can find general patterns in the experiences. Here, abstraction is
based on the assumption that the world is made up of objects and the effects of ac-
tions manipulating the objects generally depend on the attributes of objects instead
of their identities. We use relational representations to achieve such abstraction (de
Raedt, 1997).

3 REPRESENTING RELATIONAL TRANSITION MODELS 33

Table 3.1: The autonomous agent collects a series E = {(st, at, st+1)}T−1
t=0 of relational state

transitions consisting of an action at (on the left), a predecessor state st (first line) and
a successor state st+1 (second line after the arrow). The changing state features are un-
derlined. The agent uses such experiences to learn a transition modelM resulting in a
compression of the state transitions.

E = {
grab(d): cube(a), cube(b), ball(c), ball(d), table(t), on(a, t), on(b, t), on(c, a), on(d, b) . . .

→ cube(a), cube(b), ball(c), ball(d), table(t), on(a, t), on(b, t), on(c, a), inhand(d) . . .

puton(t): cube(a), cube(b), ball(c), ball(d), table(t), on(a, t), on(b, t), on(c, a), inhand(d) . . .

→ cube(a), cube(b), ball(c), ball(d), table(t), on(a, t), on(b, t), on(c, a), on(d, t) . . .

grab(c): cube(a), cube(b), ball(c), ball(d), table(t), on(a, t), on(b, t), on(c, a), on(d, t) . . .

→ cube(a), cube(b), ball(c), ball(d), table(t), on(a, t), on(b, t), on(d, t), inhand(c) . . .
...

...
}

• Assuming uncertainty in the observations is essential to fit a generalizing, regu-
larized function. The classic picture in statistical learning for this is illustrated in
Fig. 3.1. Uncertainty allows us to tradeoff the exact modeling of every observa-
tion (that is, the model likelihood) with generalization capabilities and to find low-
complexity explanations of the experiences. Singleton events can be “explained
away” as noise. In our point of view, the assumption of uncertainty is crucial to be
able to model realistic domains with relational representations: it “unleashes” the
model and opens the door for simplification and abstraction. Even in deterministic
domains, it may be advantageous to learn a probabilistic model because it can be
more compact and neglect irrelevant details. In this sense, modeling uncertainty
can also be understood as regularization.

The generalization capability of a modelM and, closely related, the required num-
ber of experiences to learn it depend on the chosen representation (Boutilier et al., 1999).
In an enumerated representation, we need to collect experiences for each relevant state-
action pair (s, a) separately. In a factored propositional representation, one can—to some
degree—generalize over states and actions by means of the state attributes, but not over
objects. For instance in Table 3.1, in a factored representation we need to learn the effects
for grab(d) and grab(c) independently. In contrast, a relational representation (de Raedt,
1997) enables compact transition models P (s′ | s, a) by using abstract formulas to gener-
alize from concrete situations and object identities. For instance in Table 3.1, both grab(d)
and grab(c) are used to learn one general model for the abstract action grab(X). In turn,
the learned model also applies to situations with previously unseen objects (which is
impossible with enumerated and factored propositional representations). We discuss
existing relational model types in the following.

34 3.1 RELATED WORK ON RELATIONAL TRANSITION MODELS

Figure 3.1: Assuming uncertainty in the observations is crucial to learn compact models. It
corresponds to regularizing the learning algorithm which in turn enables compression
and abstraction. (a) Modeling every observation exactly prohibits simplification and
abstraction. (b) Assuming uncertainty allows for fitting generalizing smooth functions.

Prominent Relational Transition Models

Since the beginnings of AI research, relational languages were used to model state tran-
sitions induced by actions. A famous first deterministic approach is the situation cal-
culus (SC) (McCarthy, 1963) which is an axiomatized logical framework. States are ex-
pressed by full first-order logic formulas (including quantification and disjunction) and
state transitions are calculated by logical inference with successor and frame axioms ap-
plied to the current situation. Due to the complexity of SC, inference in SC is difficult,
may be undecidable and involve a theorem prover.

In contrast, the representation language STRIPS (Stanford research institute problem
solver) (Fikes and Nilsson, 1971) is restricted enough to allow for the development of
efficient inference algorithms and thus became the basic representation language in clas-
sical planning. Our discussion of relational representations in Sec. 2.1.2 is based on this
representation. In STRIPS, states are represented as conjunctions of positive ground lit-
erals with arguments taken from the set of domain objectsO; thus, in contrast to SC, state
descriptions do not contain complex logical formulas. The state transitions triggered by
symbolic actions are described by action schemata (also known as “STRIPS rules”) in-
stead of action axioms. STRIPS allows only for deterministic action effects. Table 3.2
illustrates an exemplary action schema. An action schema consists of an abstract action
(with variables as arguments), a list of preconditions in form of a conjunction of literals
with arguments taken from the set of action arguments, and add- and delete-lists de-
scribing the modified literals in the successor state: literals in the add-list are made true
and literals in the delete-list are made false. All other ground literals persist according
to the frame assumption. If an action is applied in a state where not all preconditions of
its action schema hold, this results in a reported “failure signal” and the state will not
change. Planning with STRIPS models is P-Space complete (Bylander, 1994). Stochas-
tic STRIPS rules (Kushmerick et al., 1995; Blum and Langford, 1999) extend STRIPS by
considering multiple outcomes with probabilities and separate add- and delete-lists. An
extension of stochastic STRIPS are noisy indeterministic deictic (NID) rules (Pasula et al.,
2007) which add some important features to the STRIPS representation. We will use NID
rules extensively in this thesis and present them in detail below.

Many languages have extended deterministic STRIPS by more expressive constructs.

3 REPRESENTING RELATIONAL TRANSITION MODELS 35

Table 3.2: Example STRIPS action schema for a simple deterministic robot manipulation
scenario which models grabbing a ball X .

ACTION: grab(X,Y)
PRECONDITIONS: on(X,Y), ball(X)
EFFECT — ADD: inhand(X)

— DELETE: on(X,Y)

For instance, the popular action description language (ADL) (Pednault, 1989) introduced
conditional effects and negative precondition literals into action schemata among other
features. The planning domain definition language (PDDL) (Ghallab et al., 1998) pro-
vides a standard syntax for various planning formalisms used in AI including STRIPS
and ADL. PPDDL (Younes and Littman, 2004) is a probabilistic extension of a subset
of PDDL and is the language of the recent international probabilistic planning compe-
titions. Object-oriented MDPs (OOMDPs) (Diuk et al., 2008) consider object attributes
explicitly from which the true ground literals in a state are derived and whose predicted
values are described in the schema effects.

In the discussion thus far, we have neglected how to learn relational transition mod-
els. For a long time, this problem was not considered prominently in AI and machine
learning. Only with the advent of inductive logic programming (ILP) (Nienhuys-Cheng
and de Wolf, 1997) in the 90s, which studies the supervised learning of relational con-
cepts, significant work on (partial) learning of deterministic action schemata began.
Much of this work applied ILP algorithms directly to sets of experienced transitions
or transitions provided by a “teacher”. For instance, Gil (1994) used operator refine-
ment techniques to complete partial STRIPS-like domain descriptions (missing some
preconditions and action effects) from experience by actively testing operators. Other
algorithms such as OBSERVER (Wang, 1995) and TRAIL (Benson, 1996) used both ex-
perience and a teacher to learn deterministic action schemata. The first significant work
on learning probabilistic action schemata is very recent: Pasula et al. (2007) presented
a learning algorithm for their NID rules representation. Walsh (2010) showed that the
problem of learning general action schemata is NP-hard, but he presented learning al-
gorithms for many learning subtasks with suitable restrictions (such as bounding the
number of preconditions and the number of effects) for which efficiency guarantees on
the sample complexity can be derived.

Goal-directed Behavior with Probabilistic Relational Models

Probabilistic relational models have the potential to let an agent perform goal-directed
behavior in relational domains. It is important to note, however, that while such models
may describe the transition dynamics of the world in compact terms, this compactness
does not carry over to planning and exploration. Independent methods need to be de-
veloped for these tasks.

36 3.1 RELATED WORK ON RELATIONAL TRANSITION MODELS

Planning (Weld, 1999) with deterministic relational models has a long tradition in
classical AI. During the last decades, probabilistic and decision-theoretic planning tech-
niques (Kushmerick et al., 1995; Boutilier et al., 1999) for calculating the state and action
values of either the partial or the complete states spaces have attracted increasing atten-
tion. Some approaches exploit the relational structure to plan in relational MDPs on an
abstract level (without referring to concrete objects from O) (Boutilier et al., 2001; Kerst-
ing et al., 2004). Alternatively, one may reason in the ground relational domain. This is
one of the pursuits of this thesis. Planning in ground domains makes it straightforward
to account for special constructs of some world models, such as the noise outcome and
the uniqueness requirement of NID rules (Pasula et al., 2007) discussed below. Although
grounding simplifies the problem, decision-theoretic planning in the propositionalized
representation is a challenging task in complex stochastic domains. In Chapter 4, we
introduce algorithms reasoning in the ground relational domain for approximating the
optimal values of actions (and action-sequences) for a given state. We also discuss the
related work on planning under uncertainty in relational domains in more detail then.

Research on reinforcement learning (Sutton and Barto, 1998) in relational representa-
tions has focused on model-free approaches which compute policies from experience
with respect to fixed goals (Džeroski et al., 2001). Essentially, a number of relational
regression algorithms have been developed to estimate a value function of states and
actions. In contrast, the work on relational model-based RL is sparse. With the notable
exception of Walsh (2010), in particular the important problem of relational exploration
has not received significant attention. In Chapter 5, we present a conceptual framework
for relational exploration, and we introduce an algorithm for relational model-based re-
inforcement learning using probabilistic relational rules. We describe related work on
relational reinforcement learning in more detail there.

3.1.3 Probabilistic Relational Rules

Pasula et al. (2007) have recently introduced an appealing transition model representa-
tion based on noisy indeterministic deictic (NID) rules which combine several advan-
tages:

• a relational representation enabling generalization over objects and situations,

• indeterministic action outcomes with probabilities to account for uncertainty,

• deictic references for actions to reduce the action space,

• noise outcomes to avoid explicit modeling of rare and overly complex outcomes, and

• the existence of an effective learning algorithm.

This representation gains abstracting knowledge by compressing experiences as shown
in Table 3.1 into uncertain rules.

3 REPRESENTING RELATIONAL TRANSITION MODELS 37

An example of NID rules for our robot manipulation domain is shown in Table 3.3.
Fig. 3.2 depicts a situation where this rule can be used for prediction. Formally, a NID
rule r is given as

ar(X) : φr(X) →


pr,1 : Ωr,1(X)

...
pr,mr : Ωr,mr(X)
pr,0 : Ωr,0

, (3.1)

whereX is a set of logical variables in the rule (which represent a (sub-)set of abstract ob-
jects). The rule r consists of preconditions, namely that action ar is applied onX and that
the abstract state context φr is fulfilled, and mr+1 different abstract outcomes with asso-
ciated probabilities pr,i > 0,

∑
i=0 pr,i = 1. Each outcome Ωr,i(X) describes which state

attributes are predicted to change when the rule is applied and this outcome is chosen.
The context φr(X) and outcomes Ωr,i(X) are conjunctions of literals (that is, positive and
negated atoms) constructed from the set of predicates P as well as equality statements
comparing functions from the set of functions F to constant values. The so-called noise
outcome Ωr,0 subsumes all possible action outcomes which are not explicitly specified by
one of the other Ωr,i. This includes rare and overly complex outcomes typical for noisy
domains, which we do not want to cover explicitly for compactness and generalization
reasons. For instance, in Fig. 3.2 a potential, but highly improbable outcome is to grab
the blue cube while pushing all other objects of the table: the noise outcome allows to
account for this without the burden of explicitly stating it. The arguments of the action
a(Xa) may be a true subset Xa ⊂ X of the variables X of the rule. The remaining vari-
ables are called deictic references D :=X \ Xa and denote objects relative to the agent or
action being performed. Using deictic references has the advantage to decrease the arity
of action predicates. This in turn reduces the size of the action space by at least an order
of magnitude, which can have significant effects on learning and planning. For instance,
consider a binary action predicate which in a world of n objects has n2 groundings in
contrast to a unary action predicate which has only n groundings.

So, how do we apply NID rules? Let σ denote a substitution that maps variables
to constant objects, σ : X → O. Applying σ to an abstract rule r(X) yields a ground
rule r(σ(X)). We say a ground rule r covers a state s and a ground action a if s |= φr
and a = ar. Let Γ be our set of ground rules and Γ(s, a) ⊂ Γ the set of rules covering
(s, a). If there is a unique covering rule r(s,a) ∈ Γ(s, a), that is |Γ(s, a)| = 1, we use it to
model the effects of action a in state s. We calculate P (s′ | s, a) by taking all outcomes
of r(s,a) (omitting subscripts in the following) into account weighted by their respective
probabilities,

P (s′ | s, a) = P (s′ | s, r) =

mr∑
i=1

pr,i P (s′ |Ωr,i, s) + pr,0 P (s′ |Ωr,0, s), (3.2)

where, for i > 0, P (s′ |Ωr,i, s) is a deterministic distribution that is one for the unique
state constructed from s taking the changes of Ωr,i into account. The distribution given

38 3.1 RELATED WORK ON RELATIONAL TRANSITION MODELS

Table 3.3: Example NID rule for our complex robot manipulation domain which models
to try to grab a ball X . The cube Y is implicitly defined as the one below X (deictic
referencing). X ends up in the robot’s hand with high probability, but might also fall on
the table. With a small probability something unpredictable happens. Confer Fig. 3.2 for
an example application.

grab(X) : on(X,Y), ball(X), cube(Y), table(Z)

→


0.7 : inhand(X), ¬on(X,Y)
0.2 : on(X,Z), ¬on(X,Y)
0.1 : noise

Figure 3.2: The NID rule defined in Table 3.3 can be used to predict the effects of action
grab(yellowBall) in the situation on the left side. The right side depicts the possible
successor states as predicted by the rule. The noise outcome is indicated by a question
mark and does not define a unique successor state.

the noise outcome, P (s′ |Ωr,0, s), is unknown and needs to be estimated. Pasula et al. use
a worst case constant bound pmin ≤ P (s′ |Ωr,0, s) to lower bound P (s′ | s, a). Alterna-
tively, to come up with a well-defined distribution, one may assign very low probability
to very many successor states. As described in more detail in Chapter 4, our planning
algorithm based on approximate inference in graphical models achieves this by exploit-
ing the factored state representation of a ground relational domain and predicting each
state attribute to change with a very low probability.

If a state-action pair (s, a) does not have a unique covering rule r (including the case
that more one rule covers the state-action pair, resulting in potentially conflicting pre-
dictions), we use a noisy default rule rν which predicts all effects as noise: P (s′|s, rν) =
P (s′ |Ωrν ,0, s). Using rν expresses that we do not know what will happen. This is not
meaningful and thus disadvantageous for planning. (Hence, one should bias a NID rules
learner to learn rules with contexts which are likely to be mutually exclusive.) For this
reason, the concept of unique covering rules is crucial in planning with NID rules. Here,
we have to pay the price for using deictic references: when using an abstract NID rule for
prediction, we always have to ensure that its deictic references have unique groundings.

3 REPRESENTING RELATIONAL TRANSITION MODELS 39

This may require examining a large part of the state representation, so that proper stor-
age of the ground state and efficient indexing techniques for logical formula evaluation
are needed.

The semantics of NID rules allow one to plan in relational domains, that is, to find
a “satisficing” action sequence that will lead with high probability to states with high
rewards. In Chapter 4, we introduce planning algorithms based on NID rules. Our major
motivation for employing NID rules is that we can learn them from observed actions
and state transitions. Furthermore, our planning approach PRADA can exploit their
simple structure (which is similar to probabilistic STRIPS operators) and convert them
into a DBN representation. We provide a detailed comparison of NID rules and PPDDL
in Appendix B. While NID rules do not support all features of a sophisticated domain
description language such as PPDDL, they can compactly capture the dynamics of many
interesting planning domains as we will see in Chapters 4 and 5. In the following, we
describe how we can actually learn NID rules from experience.

Learning NID Rules

As discussed above, the ability to learn transition models from experience is a crucial
requirement for autonomous agents. The problem of learning rule-sets is in general NP-
hard, but with suitable assumptions and restrictions efficiency guarantees on the sample
complexity can be given for many learning subtasks (Walsh, 2010). Pasula et al. (2007)
have proposed a supervised batch learning algorithm for complete NID rules. This al-
gorithm learns the structure of rules as well as their parameters from experience triples
E = {(st, at, st+1)T−1

t=0 } (as illustrated in Table 3.1) relying on the frame assumption (as-
suming that nothing changes which is not explicitly stated to change). Following ideas
from inductive logic programming, the learning algorithm performs a greedy search
through the space of rule-sets. It optimizes the tradeoff between maximizing the likeli-
hood of the experience triples and minimizing the complexity of the current hypothesis
rule-set Γ by optimizing the scoring metric

S(Γ) =
∑

(s,a,s′)∈E

logP (s′ | s, r(s,a))− α
∑
r∈Γ

PEN(r) , (3.3)

where r(s,a) ∈ Γ is either the unique covering rule for the state-action pair (s, a) or the
noisy default rule rν . α is a scaling parameter that controls the influence of regulariza-
tion. PEN(r) penalizes the complexity of a rule and is defined as the total number of
literals in r. This has analogies to results in cognitive science suggesting that the subjec-
tive complexity of human intuitive theories is determined by the representation length
(Kemp et al., 2008). The larger α is set, the more compact are the learned rule-sets—and
thus, the more general, but also the more uncertain and potentially inaccurate. For in-
stance, if we set α=∞, the resulting model will consist of only the default rule, explain-
ing all state transitions as noise. In contrast, if we set α=0, the resulting model explains
each experience as exactly as possible, potentially overfitting and badly generalizing the
data.

40 3.2 GRAPHICAL MODELS FOR GROUND RELATIONAL DOMAINS

The noise outcome of NID rules is crucial for learning. The learning algorithm is
initialized with a rule-set comprising only the noisy default rule rν and then iteratively
adds new rules or modifies existing ones using a set of search operators. The noise out-
come allows avoiding overfitting, as we do not need to model rare and overly complex
outcomes explicitly. Its drawback is that its successor state distribution P (s′ |Ωr,0, s) is
unknown. To deal with this problem, the learning algorithm uses a lower bound pmin
to approximate this distribution, as described above. In our experience, while the re-
sulting rule-sets are robust to minor changes in the two parameters pmin and α, sensible
settings for both are essential for learning expressive rule-sets and their mutual influ-
ence has to be taken into account. These parameters, however, cannot be optimized by
the rule-learning algorithm itself. The required degree of rule compactness is not only
determined by the complexity of the modeled domain in terms of its stochasticity and
richness, such as the number and complexity of contexts which need to be distinguished
to describe the effects of an action. But it is also affected by the purpose the rules have to
serve; for instance, whether we want the rules to be as accurate as possible (for very reli-
able planning) or whether a coarse approximation of the transition dynamics is sufficient
(for fast approximate planning).

This rule learning algorithm uses greedy heuristics in its attempt to learn complete
rules, so no guarantees on its behavior can be given. It has been shown, however, that
learned NID rules can provide accurate transition models in noisy manipulation do-
mains (Pasula et al., 2007). In this thesis, we show that the transition dynamics in more
complex robot manipulation scenarios and in many domains of the international plan-
ning competition can be learned effectively from experience with NID rules.

NID rules are an appropriate representation for learning a transition modelM from
experience. Different representation types may be more appropriate for other compu-
tational processes such as inference and planning. In the following section, we discuss
graphical models for ground relational domains which can be built from NID rules.

3.2 Graphical Models for Ground Relational Domains

Decision-theoretic problems where agents need to choose appropriate actions can be
represented by means of graphical models which are augmented by decision nodes to
specify the agent’s actions (Boutilier et al., 1999). Toussaint and Storkey (2006) have
recently shown that the problem of planning in a Markov decision process, which is typ-
ically framed as a dynamic programming problem, can be reformulated as a problem of
probabilistic inference in graphical models (see Sec. 2.3). While both the dynamic pro-
gramming and the probabilistic inference view compute the same optimal solutions (on
feasible problems), the interesting difference lies in the concrete computational methods
that can be used to exploit structure for gaining efficiency or to compute approxima-
tions to infeasible problems. With the planning-by-inference paradigm, the whole va-
riety of existing (exact and approximate) inference methods becomes available to solve
hard planning problems in structured domains.

So far, however, planning-by-inference approaches have only been applied in non-

3 REPRESENTING RELATIONAL TRANSITION MODELS 41

relational domains with limited state spaces. It is an open question how to use infer-
ence techniques for relational planning. The existing non-relational approaches are not
feasible in relational domains due to their very large state and action spaces. The cru-
cial question is how to represent a relational planning problem in appropriate graphical
models which permit efficient inference methods. Such models need to be highly struc-
tured to exploit the redundancies and symmetries in relational domains. For instance,
many relational states share the same evidence and behave similarly in message prop-
agation. When planning a sequence of actions, the similarity of the network structure
across time-slices may cause many nodes to share a lot of information. While exact
inference is probably always infeasible in non-trivial relational domains, appropriate
graphical model representations may permit the development of efficient approximate
inference techniques.

In this section, we discuss an existing and three novel graphical models to repre-
sent the transition dynamics of ground relational domains (Lang and Toussaint, 2009b,
2010b). We show how to convert NID rules, providing a relational transition model, to
dynamic Bayesian networks and factor graphs. In Chapter 4, we discuss how to apply
inference in these models for planning. In particular, the second proposed graphical
model (Sec. 3.2.2) will provide the formal framework of our planning algorithm PRADA
(Lang and Toussaint, 2009b, 2010b).

Before diving into the models, we restate our notational conventions: we denote
random variables by upper case letters (e.g., S), their values by the corresponding lower
case letters (s ∈ dom(S)), variable sets by bold upper case letters (S = {S1, S2, S3}) and
value sets by bold lower case letters (s = {s1, s2, s3}). We also use column notation
(s2:4 = {s2, s3, s4}).

3.2.1 Naive DBN

A naive way to convert NID rules to DBNs is shown in Fig. 3.3(a). States are repre-
sented by a set S = {S1, . . . , SN} where for each ground predicate according to the set
of predicates P there is a binary Si and for each ground function according to the set of
functions F there is an Sj with range according to the represented function. Actions are
represented by an integer variable A which indicates the action out of a set of ground ac-
tion predicates. The reward gained in a state is represented by U and may depend only
on a subset of the state variables. It is possible to express arbitrary reward expectations
P (U |S) with binary U (Cooper, 1988). How can we define the transition dynamics using
NID rules in this naive model? Assume we are given a set of fully abstract NID rules.
We compute all groundings of these rules w.r.t. the objects of the domain and get the set
Γ of K different ground NID rules. The parents of a state variable S′i at the successor
time-step include the action variable A and the respective variable Si at the predecessor
time-step. The other parents of S′i are determined as follows: For each rule r ∈ Γ where
the literal corresponding to S′i appears in the outcomes of r, all variables Sk correspond-
ing to literals in the context of r are parents of S′i. As typically S′i can be manipulated by
several actions which in turn are modeled by several rules, the total number of parents

42 3.2 GRAPHICAL MODELS FOR GROUND RELATIONAL DOMAINS

(a) Naive DBN (b) PRADA DBN

(c) Half-decomposed FG (d) Fully decomposed FG

Figure 3.3: Graphical models for ground relational domains. We convert probabilistic rela-
tional rules to directed dynamic Bayesian networks (DBNs) and undirected factor graphs
(FGs) to use inference for relational planning. We omit the utility nodes U in the factor
graphs for visibility.

of S′i can be very large. This problem becomes worse by the usage of deictic references
in the NID rules, as they increase the total number K of ground rules in Γ. The resulting
local structure of the conditional probability function of S′i is very complex, as one has
to account for the uniqueness of covering rules. These complex dependencies between
two time-slices make this representation unfeasible for planning.

3.2.2 PRADA-DBN

A better way to capture the structure of NID rules is the graphical model shown in
Fig. 3.3(b) (Lang and Toussaint, 2009b, 2010b). This model is more compact in terms
of the number of parameters used to define the conditional probability tables. It will
be used by our planning algorithm PRADA, hence we call it PRADA-DBN. This DBN
represents the joint distribution

P (u′, s′, o, r,φ | a, s) = P (u′ | s′) P (s′ | o, r, s) P (o | r) P (r | a,φ) P (φ | s) , (3.4)

3 REPRESENTING RELATIONAL TRANSITION MODELS 43

which we will explain in detail in the following. As before, assume we are given a set
of fully abstract NID rules, for which we compute the set Γ of K different ground NID
rules w.r.t. the objects in the domain. In addition to S, S′, A, U and U ′ as above, we use a
binary random variable Φi for each rule to model the event that its context holds, which
is the case if all required literals hold. Let I(·) be the indicator function which is 1 if the
argument evaluates to true and 0 otherwise. Then, we have

P (φ | s) =
K∏
i=1

P (φi|sπ(Φi)) =
K∏
i=1

I

 ∧
j∈π(Φi)

Sj =sri,j

 . (3.5)

We use
∧
i ρi to express a logical conjunction ρ1∧· · ·∧ρn. The function π(Φ) yields the set

of indices of the state variables in s on which Φ depends. sri denotes the configuration
of the state variables corresponding to the literals in the context of ri. We use an integer-
valued variable R ranging over K+1 possible values to identify the rule which predicts
the effects of the action. If it exists, this is the unique covering rule for the current state-
action pair, i.e., the only rule r ∈ Γ(a) modeling action a whose context holds:

P (R=r|a,φ) = I

r ∈ Γ(a) ∧ Φr=1 ∧
∧

r′∈Γ(a)\{r}

Φr′=0

 . (3.6)

If no unique covering rule exists, we predict no changes as indicated by the special value
R = 0 (assuming not to execute the action):

P (R=0 | a,φ) =
∧

r∈Γ(a)

¬I

Φr=1 ∧
∧

r′∈Γ(a)\{r}

Φr′=0

 . (3.7)

The integer-valued variable O represents the outcome of the action as predicted by the
rule. It ranges over M possible values where M is the maximum number of outcomes
all rules in Γ have. To ensure a sound semantics, we introduce empty dummy outcomes
with zero-probability for those rules whose number of outcomes is less than M . The
probability of an outcome is defined as in the corresponding rule:

P (O=o | r) = pr,o . (3.8)

We define the probability of the successor state as

P (s′ | o, s, r) =
∏
i

P (s′i | o, si, r) , (3.9)

which is one for the unique state that is constructed from s taking the changes according
to Ωr,o into account: if outcome o specifies a value for S′i, this value will have probability
one. Otherwise, the value of this state variable persists from the previous time-step. As
rules usually change only a small subset of s, persistence most often applies. The result-
ing dependency P (s′i | o, r, si) of a variable S′i at time-step t+1 is compact. In contrast

44 3.2 GRAPHICAL MODELS FOR GROUND RELATIONAL DOMAINS

to the naive DBN in Fig. 3.3(a), it has only three parents, namely the variables for the
outcome, the rule and its predecessor at the previous time-step. This simplifies the spec-
ification of a conditional probability function for S′ significantly and enables efficient
inference, as we will see later. The probability of the reward is given by

P (U ′=1 | s′) = I

 ∧
j∈π(U ′)

S′j =τj

 . (3.10)

The function π(U ′) yields the set of indices of the state variables in s′ on which U ′ de-
pends. The configuration of these variables that corresponds to our planning goal is
denoted by τ . Alternatively, more general reward specifications for decision-theoretic
planning can be defined by individual probabilities for U ′ conditioned on different state
configurations (Cooper, 1988). Uncertain initial states can be naturally accounted for by
specifying priors P (s0). We renounce on the specification of a prior here, however, as
the initial state s0 will always be given in our experiments later to be able to compare
to the lookahead-tree based approaches SST and UCT which require deterministic ini-
tial states. The distribution P (a) used for sampling actions has major influence on the
planning procedure. We describe it in the context of our planning algorithms in Sec. 4.2.

For simplicity we have ignored derived predicates and functions which are defined
in terms of other predicates or functions. Derived concepts may increase the compact-
ness of rules. If dependencies among concepts are acyclic, it is straightforward to include
derived concepts in our model by intra-state dependencies for the corresponding vari-
ables. Indeed, we will use derived predicates in our experiments.

3.2.3 Half-decomposed Factor Graph

The structure of the PRADA-DBN model permits a specific efficient approximate infer-
ence method which we describe in the next chapter. However, this DBN is still highly
connected due to the central high-dimensional nodes A, R and O which couple all the
variables describing a state transition. While the symmetries inherent in relational do-
mains are reflected in the parameters of these central nodes, exploiting symmetries in
the associated factors for efficient inference is not straight-forward. In contrast, most
approximate inference strategies exploit symmetries in the structure.

Therefore, we introduce two novel graphical models in the following which represent
the symmetries of relational domains in their structure. Instead of directed Bayesian
networks, we represent these models as undirected factor graphs as it is more general
to express their parameters as coupling weights than as conditional probabilities. In our
subsequent presentation, for ease of illustration we assume that there is exactly one NID
rule without deictic references for each abstract action so that we can ignore the problem
of rule uniqueness and identify each ground action with exactly one ground rule. An
extension to multiple rules and deictic references is not difficult.

The novel factor graph shown in Fig. 3.3(c) decomposes a relational state transition
by introducing for each ground action α ∈ A a separate binary action variableA together

3 REPRESENTING RELATIONAL TRANSITION MODELS 45

with an outcome variable OA with arity according to the number of outcomes of α’s
covering rule rα. We abuse notation slightly and will denote rα by rA in the following.
A value a= 1 of A denotes that the corresponding action α is executed, a= 0 that it is
not executed. The value of OA picks out the corresponding outcome in rA. Similarly as
before, a context factor fΦ for each action variable A ensures that the context literals of
rA hold if A is true,

fΦ(sπ(ΦrA), a) =

{
I
(∧

j∈π(ΦrA) Sj =srA,j

)
if a = 1

1 otherwise
.

As above, the function π(ΦrA) yields the set of indices of the state variables in s on which
ΦrA depends, and srA denotes the configuration of the state variables corresponding to
the literals in rA’s context. If the action variable does not hold (a = 0, second line), this
factor does not impose any constraints on the current state.

By means of mutual action exclusion factors fexcl, we ensure that two action variables
are never true at the same time,

fexcl(a, a
′) =

{
0 if a=1 ∧ a′=1
1 otherwise

.

The outcome factors fo are simple priors for the outcome variables OA according to the
outcome probabilities of the covering rule rA:

fo(oA) = prA,oA .

As in the DBNs presented above, the outcome factors define the only non-deterministic
information in the graphical model.

Finally, the successor state factors fsuc couple the successor state with the predeces-
sor state by taking actions and their outcomes into account. In more detail, fsuc couples
the successor state variable S′i with its predecessor Si, the variables AS′i

of all actions ma-
nipulating S′i (as determined by their rules) and their corresponding outcome variables
OS′i

as follows:

fsuc(s
′
i, si,aS′i ,oS′i) =



1 if si=s′i ∧ ∀A∈AS′i
: a=0 (Ia)

0 if si 6=s′i ∧ ∀A∈AS′i
: a=0 (Ib)

1 if ∃Ak∈AS′i
: ak=1 ∧ (∀Al∈AS′i

, l 6=k : al=0)

∧ (si ◦ ΩrAk ,ok
= s′i) (IIa)

0 if ∃Ak∈AS′i
: ak=1 ∧ (∀Al∈AS′i

, l 6=k : al=0)

∧ (si ◦ ΩrAk ,ok
6= s′i) (IIb)

0 if ∃Ak, Al∈AS′i
, k 6= l : ak=1, al=1 (III)

.

If all action variables A ∈ AS′i
are false, then S′i has to match its predecessor Si (cases

Ia and Ib). If there is exactly one true variable Ak ∈AS′i
, then S′i is set according to the

prediction of rule rAk and the corresponding outcome variable Ok (cases IIa and IIb). To
express this constraint, we abuse notation and let ◦ denote the operation to construct the

46 3.2 GRAPHICAL MODELS FOR GROUND RELATIONAL DOMAINS

unique successor value of S′i according to Si and rule outcome Ωr,o. Furthermore, fsuc
forbids multiple true action variables A ∈ AS′i

by setting the weight of such configura-
tions to 0 (case III).

For brevity, we do not discuss the reward factor freward for a utility variable U which
can be set straightforwardly along the lines of the conditional probabilities of the above
DBNs.

This factor graph provides an encoding of the successor state distribution P (s′ | s, a)
as defined by NID rules. Its drawback is that the factors fsuc couple all actions AS′i

ma-
nipulating the state variable S′i. As AS′i

may become large, the factors fsuc easily become
large as well, making it hard to develop efficient approximate inference methods. The
next graphical model tries to overcome this limitation.

3.2.4 Fully Decomposed Factor Graph

Our novel model shown in Fig. 3.3(d) decomposes the model of the previous subsec-
tion further by introducing two additional variables Di and Pi for each successor state
attribute S′i. This helps to avoid the large successor state factors fsuc of the previous
model. First, the binary decision variableDi denotes whether no action variableA ∈ AS′i
of actions manipulating S′i is true and thus the value of Si persists (Di = 0) or whether
a relevant action variable A ∈ AS′i

is true and thus potentially predicts a change (this
depends on the outcome) (Di = 1). If Di = 0, then S′i must match Si, otherwise S′i is set
according to the action’s prediction. Separate factors fdecision for each variable A ∈ AS′i
determine whether a relevant action variable is true:

fdecision(a, di) =


0 if a=1 ∧ di=0
ε if a=0 ∧ di=1
1 otherwise

.

The first line prohibits the situation when a manipulating action variable is true (a= 1),
but the decision variable is set to persistence (di = 0). The second line specifies the case
that the action is not executed (a = 0), but an action manipulation for S′i is signaled
(di=1). A non-zero ε is necessary to allow for another action to manipulate S′i. ε should
be chosen small, however, to make the case less probable that for all relevant actions it
holds that a=0 while di=1 signals manipulation. Let m = |AS′i

| and l be the number of
actions A ∈ AS′i

for which a = 1. Then, the marginal over di of the product of the factors
fdecision is P (di = 0) ∝ 1m−l0l = 0l and P (di = 1) ∝ εm−l1l = εm−l. Thus, in the limit of ε
to 0, the marginal over di corresponds to a logical OR over the actions.

The prediction variables Pi have the same range as their corresponding state attribute
variables S′i and represent the predicted value according to an executed relevant action.
For each combination of state attribute S′i and manipulating action A ∈ AS′i

, there is
a separate factor fpred over the prediction variable Pi, the predecessor state attribute

3 REPRESENTING RELATIONAL TRANSITION MODELS 47

variable Si, the action variable A and its outcome variable O:

fpred(pi, si, a, o) =


0 if a=1 ∧ (si ◦ ΩrA,o 6= pi)
1 if a=1 ∧ (si ◦ ΩrA,o = pi)
1 otherwise (a=0)

.

As above, we abuse notation and let ◦ denote the operation to construct the unique
predicted value according to Si and outcome Ωr,o. If the action variable is true, fpred
prohibits other values than the one predicted by the action (first and second line). If the
action does not hold, the other variables are not constrained (third line).

Apart from the two new factor types fdecision and fpred, the factors for rule contexts
fΦ, action mutual exclusion fexcl and outcome priors fo are the same as in the previous
factor graph. We need to modify the successor state factors fsuc, however, which now
couple predecessor and successor state attribute variables Si and S′i with the correspond-
ing decision and prediction variables Si and Pi as

fsuc(s
′
i, si, di, pi) =


1 if di=1 ∧ pi=s′i (Ia)
0 if di=1 ∧ pi 6=s′i (Ib)
1 if di=0 ∧ si=s′i (IIa)
0 if di=0 ∧ si 6=s′i (IIb)

. (3.11)

If the decision node signals action manipulation, S′i has to match the predicted value
(cases Ia and Ib). Otherwise, S′i has to match the value of its predecessor (cases IIa and
IIb). Now, we see the advantage of introducing the additional variables Di and Pi for
each state attribute S′i: in contrast to the previous factor graph model, it allows for a
compact specification of fsuc over only four variables. Apart from fΦ whose size depends
on the complexity of rule contexts, all factors in this graphical model involve maximally
four variables so it is fully decomposed.

Whether this factor graph provides an encoding of the successor state distribution
P (s′ | s, a) as defined by NID rules depends on the parameter ε in the factors fdecision.
In the limit of ε to 0, the decision variables represent a logical OR over the actions ma-
nipulating the respective state attributes and in this case the overall factor graph is an
equivalent representation.

3.3 Discussion

In this chapter, we have investigated models of the transition dynamics in stochastic re-
lational worlds. These models inform an autonomous agent how its actions change the
state of the world and can thus be exploited to perform goal-directed behavior. Proba-
bilistic relational transition models permit to learn and represent the transition dynam-
ics in worlds with many objects: they make the structural assumption that the world
is appropriately represented in terms of objects and their properties and relationships
and the effects of actions depend only on these properties and relationships and not on

48 3.3 DISCUSSION

object identities; thereby, they permit strong generalization. We have discussed the re-
quirements to be able to learn relational transition models and we have described popu-
lar relational transition model representations which are typically hand-crafted and not
learned. We have focused on a specific model in form of probabilistic relational rules
for which an effective learning algorithm is known. We have provided some novel in-
sights concerning learning such rules and their relation to the general planning language
PPDDL. Different types of representations are appropriate for different computational
processes. For this reason, we have introduced novel graphical models for ground re-
lational domains which can be derived from learned rules. Such models will build the
backbone in our planning algorithms in Chapter 4, which in combination with algo-
rithms for learning will provide the foundation for exploration in relational domains
investigated in Chapter 5.

Chapter 4

Planning in Ground Relational
Domains

To act in the real world, we have to accomplish two tasks. First, we need to understand
how the world works: for example, a pile of cubes is more stable if we place the big cubes
at its bottom; it is a hard job to build a tower from balls; something can only be put into
a box if the box is open and not already filled. Probabilistic relational transition models
discussed in Chapter 3 encode such knowledge. They enable to generalize over object
identities to unencountered situations and objects of similar types and to account for in-
deterministic action effects and noise. Autonomous agents need to learn such models
from experience to adapt to new environments and not to rely on human hand-crafting.
Noisy indeterministic deictic (NID) rules (Pasula et al., 2007), described in Sec. 3.1.3, are
an appealing relational transition model as they can be learned effectively from experi-
ence and are therefore our choice in this chapter.

Once we know about the possible effects of our actions, we face a second challenging
task: how can we use our acquired knowledge in reasonable time to find a sequence of
actions suitable to achieve our goals? This chapter investigates this second task, namely
planning. The previously used approach for planning with probabilistic relational rules
relies on growing full look-ahead trees in the ground domain (Kearns et al., 2002; Pasula
et al., 2007). Due to the very large action space and the stochasticity of the world, the
computational burden to plan just a single action with this method in a given situation
can be overwhelmingly large. In this chapter, we propose novel ways for reasoning effi-
ciently in the ground domain using learned NID rules, enabling fast planning in complex
environments with varying goals.

We proceed as follows. After having discussed related work on planning in stochas-
tic relational domains, we propose two novel methods for forward reasoning in ground
relational domains (Sec. 4.2): we apply the existing Upper Confidence bounds applied to
Trees (UCT) algorithm (Kocsis and Szepesvari, 2006) with NID rules which cuts subop-
timal parts of lookahead-trees early, and we introduce the Probabilistic Relational Action-
sampling in DBNs planning Algorithm (PRADA) (Lang and Toussaint, 2009b, 2010b) which
uses probabilistic inference to cope with uncertain action outcomes. Thereafter, we intro-

49

50 4.1 RELATED WORK ON PLANNING IN STOCHASTIC RELATIONAL DOMAINS

duce a bidirectional reasoning approach (Lang and Toussaint, 2010a) based on employing
PRADA’s approximate inference for both backward and forward reasoning (Sec. 4.3).
Bidirectional reasoning may lead to significant efficiency gains in comparison to pure
unidirectional reasoning. All these planning approaches rely on grounding the rela-
tional domain, that is, they reason on the level of concrete objects in a propositionalised
relational representation. Planning in the fully grounded representation may become in-
efficient with a large number of objects. We show how to avoid this problem by means of
relevance grounding (Lang and Toussaint, 2009a) which grounds a relational domain only
with respect to the objects which are relevant for the planning task at hand (Sec. 4.4).
Thereafter, we explore briefly the full planning-by-inference paradigm in ground rela-
tional domains, which has never been investigated thus far (Sec. 4.5). Finally, we present
a study on applying our forward reasoning algorithm PRADA on a real-world robot plat-
form (Sec. 4.6) (Toussaint, Plath, Lang, and Jetchev, 2010). To our knowledge, this is
the first relational planning approach for object manipulation on a real robot, where in
addition the underlying knowledge has been learned from experience in a simulator.

Our contributions in this chapter are the following novel approaches for plan-
ning in ground relational domains:

• We present forward reasoning approaches, in particular we introduce our
PRADA algorithm based on approximate inference in graphical models
(Sec. 4.2) (Lang and Toussaint, 2009b, 2010b).

• We extend the inference approach PRADA to backward reasoning en-
abling planning based on bidirectional reasoning (Sec. 4.3) (Lang and
Toussaint, 2010a).

• We introduce the formal framework of relevance grounding for the idea
of focusing on relevant objects in planning (Sec. 4.4) (Lang and Toussaint,
2009a).

• We are the first to frame relational planning as a pure inference problem
and present a brief study in this direction (Sec. 4.5).

• We describe one of the first case studies on applying high-level relational
planning on a real-world robot (Sec. 4.6) (Toussaint, Plath, Lang, and
Jetchev, 2010).

4.1 Related Work on Planning in Stochastic Relational Domains

The problem of decision-making and planning in stochastic relational domains has been
approached in different ways. One can renounce on the use of relational transition mod-
els and try to estimate a policy or the values of actions with respect to a fixed goal type
(such as on(X,Y)) directly from state attributes. This is the approach taken in model-free
reinforcement learning (see Sec. 2.2) and has been investigated thoroughly in the context

4 PLANNING IN GROUND RELATIONAL DOMAINS 51

of relational representations (Džeroski et al., 2001; Driessens et al., 2006) using abstract
logical formulas to generalize over objects and situations. In contrast, if a probabilistic
relational transition model is available (either learned or handcrafted), one can pursue
decision-theoretic planning in several other ways. This is the focus of the current chapter
and of our discussion of related work in the following.

Planning in Abstract Representations

Within the machine learning community, a popular direction of research formalizes the
problem as a relational Markov decision process (RMDP) (see Sec. 2.1.2) and develops
dynamic programming algorithms to compute solutions, that is policies over complete
state and action spaces. Many algorithms reason in the lifted abstract representation
without grounding or referring to particular problem instances. Boutilier et al. (2001)
introduce symbolic dynamic programming, the first exact solution technique for RMDPs
which uses logical regression to construct minimal logical partitions of the state space
required to make all necessary value function distinctions. This approach has not been
implemented as it is difficult to keep the first-order state formulas consistent and of
manageable size. Based on these ideas, Kersting et al. (2004) propose an exact value
iteration algorithm for RMDPs using logic-programming, called ReBel. They employ
a restricted language to represent RMDPs so that they can reason efficiently over state
formulas. Hölldobler et al. (2006) present a first-order value iteration algorithm (FOVIA)
using a different restricted language. Karabaev and Skvortsova (2005) extend FOVIA by
combining first-order reasoning about actions with a heuristic search restricted to those
states that are reachable from the initial state. Wang et al. (2008) derive a value iteration
algorithm based on using first-order decision diagrams (FODDs) for goal regression.
They introduce reduction operators for FODDs to keep the representation small, which
may require complex reasoning; an empirical evaluation has not been provided. Joshi
et al. (2009) apply model checking to reduce FODDs and generalize them to arbitrary
quantification.

These techniques form an interesting research direction as they reason exactly about
abstract RMDPs. They employ different methods to ensure exact regression such as
theorem proving, logical simplification, or consistency checking. Therefore, principled
approximations that can discover good policies in more difficult domains are likewise
worth investigating. Sanner and Boutilier (2007, 2009) present a first-order approximate
linear programming approach (FOALP). They approximate the value function based on
linear combinations of first-order functions which they deduce from the relational tran-
sition model by abstract symbolic reasoning without grounding, showing impressive
results on solving RMDPs with millions of states. Other lifted planning approaches
based on relational transition models sample trajectories from ground domain instan-
tiations to induce first-order value function and policy representations. For instance,
Fern et al. (2006) consider a variant of approximate policy iteration (API) where they re-
place the value-function learning step with a learning step in policy space. They make
use of a policy-space bias as described by a generic relational knowledge representation

52 4.1 RELATED WORK ON PLANNING IN STOCHASTIC RELATIONAL DOMAINS

and simulate trajectories to improve the learned policy. Kersting and Driessens (2008)
describe a non-parametric policy gradient approach which can deal with propositional,
continuous and relational domains in a unified way. Gretton and Thiébaux (2004) use
abstract symbolic reasoning to generate a suitable hypothesis language which they then
use for policy induction; thereby, their approach avoids formula rewriting and theorem
proving, while still requiring model-checking.

Planning in the Ground Domain

Instead of working in the abstract representation, one may reason in the ground domain.
This makes it straightforward to account for two special characteristics of NID rules: the
noise outcome and the uniqueness requirement of rules. When grounding an RMDP
which specifies rewards only for a set of goal states, one might in principle apply any
of the traditional AI planning methods used for propositional representations (Weld,
1999; Boutilier et al., 1999). Much research within the planning community has focused
on deterministic domains and thus cannot be applied straightforwardly in stochastic
worlds. A common approach for probabilistic planning, however, is to make the plan-
ning problem deterministic and apply deterministic planners (Kuter et al., 2008). Indeed,
FF-Replan (Yoon et al., 2007) and its extension using hindsight optimization (Yoon et al.,
2008) have shown impressive performance on many probabilistic planning competition
domains. The common variant of FF-Replan considers each probabilistic outcome of
an action as a separate deterministic action, ignoring the respective probabilities. It then
runs the deterministic Fast-Forward (FF) planner (Hoffmann and Nebel, 2001) on the de-
terminized problem. FF uses a relaxation of the planning problem: it ignores the delete
effects of actions and applies clever heuristics to prune the search space. FF-Replan out-
puts a sequence of actions and expected states. Each time an action execution leads to
a state which is not in the plan, FF-Replan has to replan, that is, to recompute a new
plan from scratch in the current state. The good performance of FF-Replan in many
probabilistic domains has been explained by the structure of these problems (Little and
Thiébaux, 2007). It has been argued that FF-Replan should be less appropriate in do-
mains in which the probability of reaching a dead-end is non-negligible and where the
outcome probabilities of actions need to be taken into account to construct a good policy.

Probabilistic Planning Many participants of the most recent probabilistic planning
competition (IPPC, 2008) extend FF-Replan to deal with the probabilities of action out-
comes (see the competition website for brief descriptions of the algorithms). The winner
of the competition, RFF (Teichteil-Konigsbuch et al., 2010), computes a robust policy
offline by generating successive execution paths leading to the goal using FF. The re-
sulting policy has a low probability of failing. LPPFF uses subgoals generated from a
determinization of the probabilistic planning problem to divide it into smaller manage-
able problems. HMDPP’s strategy is similar to the all-outcomes-determinization of FF-
Replan, but accounts for the probability associated with each outcome. SEH (Wu et al.,
2008) extends a heuristic function of FF-Replan to cope with local optima in plans by
using stochastic enforced hill-climbing.

4 PLANNING IN GROUND RELATIONAL DOMAINS 53

A common approach to reasoning in a more general reward-maximization context
which avoids explicitly dealing with uncertainty is to build look-ahead trees by sampling
successor states. Two algorithms which follow this idea, namely SST (Kearns et al., 2002)
and UCT (Kocsis and Szepesvari, 2006), are investigated in this chapter.

Another approach by Buffet and Aberdeen (2009) directly optimizes a parameterized
policy using gradient descent. They factor the global policy into simple approximate
policies for starting each action and sample trajectories to cope with probabilistic effects.

Planning in an uncertain world has also been investigated in more general contexts
(Gray et al., 2000).

Planning using Approximate Inference Instead of sampling state transitions, we pro-
pose the planning algorithm PRADA in this chapter which accounts for uncertainty in a
principled way using approximate inference. Domshlak and Hoffmann (2007) propose
an interesting planning approach which shares ideas with our work. They introduce a
probabilistic extension of the FF planner, using complex algorithms for building prob-
abilistic relaxed planning graphs. They construct dynamic Bayesian networks (DBNs)
from hand-crafted STRIPS operators and reason about actions and states using weighted
model counting. Their DBN representation, however, is inadequate for the type of prob-
abilistic relational rules that we use, for the same reasons why the naive DBN model
discussed in Sec. 3.2 is inappropriate. Planning by inference approaches (Toussaint and
Storkey, 2006), which have been limited to non-relational domains thus far, spread infor-
mation also backwards through DBNs and calculate posteriors over actions (resulting in
policies over complete state spaces). How to use full planning by inference in relational
domains is an open issue which we will briefly explore in this chapter.

Ground Domains with Many Objects All approaches working in the grounded repre-
sentation have in common that the number of states and actions will grow exponentially
with the number of objects. To apply them in domains with very many objects, these ap-
proaches need to be combined with complementary methods that reduce the state and
action space complexity in relational domains. For instance, one can focus on envelopes
of states which are high-utility subsets of the state space (Gardiol and Kaelbling, 2003),
or one can exploit the equivalence of actions (Gardiol and Kaelbling, 2007), which is
particularly useful in combination with ignoring certain predicates and functions of the
relational logic language (Gardiol and Kaelbling, 2008). In this chapter, we investigate
an orthogonal approach which grounds the representation only with respect to relevant
objects.

4.2 Forward Reasoning

The existing approach for planning with probabilistic relational rules, the Sparse Sam-
pling Tree (SST) algorithm (Kearns et al., 2002), reasons in a forward direction by grow-
ing full look-ahead trees in the ground domain. The computational burden to plan just a

54 4.2 FORWARD REASONING

single action with this method in a given situation can be overwhelmingly large due to
the very large action space and the stochasticity of the world. In this section, we propose
two novel methods for efficient forward reasoning in the ground domain with learned
probabilistic relational rules.

First, we apply the existing Upper Confidence bounds applied to Trees (UCT) algorithm
(Kocsis and Szepesvari, 2006) with NID rules. In contrast to full-grown look-ahead trees,
UCT samples actions selectively, thereby cutting suboptimal parts of the tree early. Sec-
ond, we introduce the Probabilistic Relational Action-sampling in DBNs planning Algorithm
(PRADA) (Lang and Toussaint, 2009b, 2010b) which uses probabilistic inference in dy-
namic Bayesian networks to cope with uncertain action outcomes. Instead of growing
look-ahead trees with sampled successor states, PRADA applies approximate inference
techniques to propagate the effects of actions. In particular, we make two contributions
with PRADA: (i) We derive an approximate inference method to cope with the state com-
plexity of a time-slice of the ground relational DBN. Thereby, we can efficiently predict
the effects of action sequences. (ii) For planning based on sampling action-sequences,
we propose a sampling distribution for plans which takes predicted state distributions
into account.

We evaluate our planning approaches in our simulated complex 3D robot manipu-
lation environment with realistic physics (see Sec. 1.1.1), with an articulated humanoid
manipulating objects of different types (see Fig. 4.12). This domain contains billions of
world states and a large number of potential actions. We learn NID rules from experience
in this environment and apply them with our planning approaches in different planning
scenarios of increasing difficulty. Furthermore, we provide results of our approaches on
the planning domains of the most recent international probabilistic planning competi-
tion.

4.2.1 Planning with Look-Ahead Trees

To plan with NID rules, one can treat the domain described by the relational logic vocab-
ulary as a relational Markov decision process as discussed in Sec. 2.1. In the following,
we present two algorithms which employ NID rules as a generative model to build look-
ahead trees starting from the initial state. These trees are used to estimate the values of
actions and states.

Sparse Sampling Trees

The Sparse Sampling Tree (SST) algorithm (Kearns et al., 2002) for MDP planning samples
randomly sparse, but full-grown look-ahead trees of states starting with the given state
as root. This suffices to compute near-optimal actions for any state of an MDP. Given a
planning horizon d and a branching factor b, SST works as follows (see Fig. 4.1): In each
tree node (representing a state), (i) SST takes all possible actions into account, and (ii)
for each action it takes b samples from the successor state distribution using a generative
model for the transitions, in our case the NID rules defining the transition modelM, to
build tree nodes at the next level. Values of the tree nodes are computed recursively from

4 PLANNING IN GROUND RELATIONAL DOMAINS 55

Figure 4.1: The SST planning algorithm samples sparse, but full-grown look-ahead trees
to estimate the values of actions and states.

the leaves to the root using the Bellman equation: in a given node, the Q-value of each
possible action is estimated by averaging over all values of the b children states for this
action; then, the maximizing Q-value over all actions is chosen to estimate the value of
the given node. SST has the favorable property that it is independent of the total number
of states of the MDP, as it only examines a restricted subset of the state space; but it is
exponential in the time horizon taken into account.

Pasula et al. (2007) apply SST for planning with NID rules. When sampling the noise
outcome while planning with SST, they assume to stay in the same state, but discount
the estimated value. We refer to this adaptation when we speak of SST planning in the
remainder of the chapter. If an action does not have a unique covering rule, we use the
noisy default rule rν to predict its effects. It is always better to perform a doNothing
action instead where staying in the same state does not get punished. Hence, in SST
planning one can discard all actions for a given state which do not have unique covering
rules.

While SST is near-optimal, in practice it is only feasible for very small branching
factor b and planning horizon d. Let the number of actions be a. Then the number of
nodes at horizon d is (ba)d. (This number can be reduced if the same outcome of a rule
is sampled multiple times.) As an illustration, assume we have 10 possible actions per
time-step and set parameters d = 4 and b = 4 (the choice of Pasula et al. in their exper-
iments). To plan a single action for a given state, one has to visit (10 ∗ 4)4 = 2, 560, 000
states. While smaller choices of b lead to faster planning, they result in a significant ac-
curacy loss in realistic domains. As Kearns et al. note, SST is only useful if no special
structure that permits compact representation is available. In Sec. 4.2.2, we will intro-
duce an alternative planning approach based on approximate inference that exploits the
structure of NID rules.

56 4.2 FORWARD REASONING

Sampling Trees with Upper Confidence Bounds

The Upper Confidence Bounds applied to Trees (UCT) algorithm (Kocsis and Szepesvari,
2006) also samples a search tree of subsequent states starting with the current state as
root. In contrast to SST which generates b successor states for every action in a state, the
idea of UCT is to choose actions selectively in a given state and thus to sample selectively
from the successor state distribution. UCT tries to identify large subsets of suboptimal
actions early in the sampling procedure and to focus on promising parts of the look-
ahead tree instead.

UCT builds its look-ahead tree by repeatedly sampling simulated episodes from the
initial state using a generative model, for instance the transition modelM. An episode
is a sequence of states, rewards and actions until a limited horizon d: s0, r0, a1, s1, r1, a2

. . . sd, rd. After each simulated episode, the values of the tree nodes (representing states)
are updated online and the simulation policy is improved with respect to the new values.
As a result, a distinct value is estimated for each state-action pair in the tree by Monte-
Carlo simulation.

More precisely, UCT follows the following policy in tree node s: If there exist actions
from swhich have not been explored yet, then UCT samples one of these using a uniform
distribution. Otherwise, if all actions have been explored at least once, then UCT selects
the action that maximizes an upper confidence boundQOUCT (s, a) on the estimated action
value QUCT (s, a),

QOUCT (s, a) = QUCT (s, a) + c

√
log ns
ns,a

, (4.1)

πUCT (s) = argmax
a

QOUCT (s, a) , (4.2)

where ns,a counts the number of times that action a has been selected from state s, and
ns counts the total number of visits to state s, ns =

∑
a ns,a. The bias parameter c defines

the influence of the number of previous action selections and thereby controls the extent
of the upper confidence bound.

At the end of an episode, the value of each encountered state-action pair (st, at),
0 ≤ t < d, is updated using the total discounted rewards:

nst,at ← nst,at + 1 , (4.3)

QUCT (st, at) ← QUCT (st, at) +
1

nst,at
[
d∑
t′=t

γt
′−trt′ −QUCT (st, at)] . (4.4)

The policy of UCT implements an exploration-exploitation tradeoff for planning: It bal-
ances between exploring currently suboptimal-looking actions that have been selected
seldom thus far and exploiting currently best-looking actions to get more precise es-
timates of their values. The total number of episodes controls the accuracy of UCT’s
estimates and has to be balanced with its overall running time.

UCT has achieved remarkable results in challenging domains such as the game of Go
(Gelly and Silver, 2007). To the best of our knowledge, we are the first to apply UCT for

4 PLANNING IN GROUND RELATIONAL DOMAINS 57

planning in stochastic relational domains, using NID rules as a generative model. We
adapt UCT to cope with noise outcomes in the same fashion as SST: we assume to stay
in the same state and discount the obtained rewards. Thus, UCT takes only actions with
unique covering rules into account, for the same reasons as SST does.

4.2.2 Planning with Approximate Inference

Uncertain action outcomes characterize compact transition models of complex envi-
ronments, but make planning in relational domains substantially more difficult. The
sampling-based approaches discussed in the previous subsection tackle this problem by
repeatedly generating samples from the outcome distribution of an action using the tran-
sition probabilities of an MDP. This leads to look-ahead trees that easily blow up with the
planning horizon. Instead of sampling successor states, one may maintain a distribution
over states, a so-called “belief”. In the following, we introduce an approach for plan-
ning in ground stochastic relational domains which propagates beliefs over states in the
sense of state monitoring. We develop an approximate inference method to efficiently
propagate beliefs in the compact graphical model for NID rules of the PRADA-DBN
type described in Sec. 3.2 and shown again in Fig. 4.2 for convenience. Based on our
approximate inference method, we describe our Probabilistic Relational Action-sampling in
DBNs planning Algorithm (PRADA) (Lang and Toussaint, 2009b, 2010b), which samples
action-sequences in an informed way and evaluates these using approximate inference
in DBNs. An example is presented to illustrate the reasoning of PRADA. Finally, we de-
scribe some theoretical considerations concerning PRADA, compare it to the approaches
of the previous subsection, SST and UCT, and introduce a simple extension of PRADA.

Approximate Inference

We are interested in inferring posterior state distributions P (st |a0:t−1) given the se-
quence of previous actions (where we omit conditioning on the initial state for simplic-
ity) in our graphical model type called PRADA-DBN (Fig. 4.2). Exact inference is in-
tractable in this graphical model. When constructing a junction tree, we will get cliques
that comprise whole Markov slices (all variables representing the state at a certain time-
step). Consider eliminating all state variables St+1. Due to moralization, the outcome
variable O will be connected to all state variables in St. After elimination of O, all vari-
ables in St will form a clique. Thus, we have to make use of approximate inference
techniques. General loopy belief propagation (LBP) is unfeasible due to the determin-
istic dependencies in small cycles which inhibit convergence. We also conducted some
preliminary tests in small networks with a damping factor, but without success. It is
an interesting open question whether there are ways to alternate between propagating
deterministic information and running LBP on the remaining parts of the network, for
example, whether methods such as MC-SAT (Poon and Domingos, 2007) can be suc-
cessfully applied in decision-making contexts as ours. Here, we propose a different ap-
proximate inference scheme using a factored frontier (FF). The FF algorithm (Murphy
and Weiss, 2001) describes an inference procedure that computes exact marginals in the

58 4.2 FORWARD REASONING

Figure 4.2: The dynamic Bayesian network “PRADA-DBN” used by our planning algo-
rithm PRADA (see Sec. 3.2).

next time-step subject to a factored approximation of the previous time-step. We take up
this idea in our approximate inference procedure to calculate the beliefs over successor
states: we exploit the model structure of our PRADA-DBNs to come up with formulas
for the state attribute marginals which take into account the central high-dimensional
variables for actions, rules and outcomes. In contrast to LBP and the FF algorithm, we
do not propagate information backwards: our approach does not condition on rewards
(as in full planning by inference) and samples actions, so that backward reasoning is
uninformative.

We follow the idea of the factored frontier (FF) algorithm (Murphy and Weiss, 2001)
and approximate the belief with a product of marginals:

P (st |a0:t−1) ≈
∏
i

P (sti |a0:t−1) . (4.5)

We define

α(sti) := P (sti |a0:t−1) and (4.6)

α(st) := P (st |a0:t−1) ≈
N∏
i=1

α(sti) (4.7)

and derive a FF filter for the PRADA-DBN model. In the following, we focus on the
mathematical derivations. An illustrative example will be provided later. We are inter-
ested in inferring the state distribution at time t+1 given an action sequence a0:t and
calculate the marginals of the state attributes as

α(st+1
i) = P (st+1

i |a0:t) (4.8)

=
∑
rt

P (st+1
i | rt,a0:t−1) P (rt |a0:t) . (4.9)

In Eq. (4.9), we use all rules for prediction, weighted by their respective posteriorsP (rt |a0:t).
This reflects the fact that depending on the state we use different rules to model the same

4 PLANNING IN GROUND RELATIONAL DOMAINS 59

action. The weight P (rt |a0:t) is 0 for all rules not modeling action at. For the remaining
rules which do model at, the weights correspond to the posterior over those parts of the
state space where the according rule is used for prediction.

We compute the first term in (4.9) as

P (st+1
i | rt,a0:t−1) =

∑
sti

P (st+1
i | rt, sti) P (sti | rt,a0:t−1)

≈
∑
sti

P (st+1
i | rt, sti) α(sti) . (4.10)

Here, we sum over all possible values of the variable Si at the previous time-step t. In-
tuitively, we take into account all potential “pasts” to arrive at the value st+1

i at the next
time-step. The resulting term P (st+1

i | rt, sti) enables us to easily predict the probabili-
ties at the next time-step as discussed below. Each such prediction is weighted by the
marginal α(sti) of the respective previous value. The approximation in (4.10) assumes
that sti is conditionally independent of rt. This is not true in general as the choice of a
rule for prediction depends on the current state and thus also on attribute Si. To im-
prove on this approximation one can examine whether sti is part of the context of rt: if
this is the case, we can infer the state of sti from knowing rt. However, we found our
approximation to be sufficient.

As one would expect, we calculate the successor state distribution P (st+1
i | rt, sti) by

taking the different outcomes o of rt into account weighted by their respective probabil-
ities P (o | rt),

P (st+1
i | rt, sti) =

∑
o

P (st+1
i | o, rt, sti) P (o | rt) . (4.11)

This shows us how to update the belief over St+1
i if we predict with rule rt. P (st+1

i | o, rt, sti)
is a deterministic distribution. If o changes the value of Si, st+1

i is set accordingly. Oth-
erwise, the value sti persists.

Let’s turn to the computation of the second term in Eq. (4.9), P (rt |a0:t), the posterior
over rules. The trick is to use the context variables Φ and to exploit the assumption
that a rule r models the state transition if and only if it uniquely covers (at, st), which is
indicated by an appropriate assignment of the Φ. This can then be further reduced to an
expression involving only the marginals α(·). We start with

P (Rt=r |a0:t) =
∑
φt

P (Rt=r |φt,a0:t) P (φt |a0:t)

= I(r∈Γ(at)) P

Φt
r=1,

∧
r′∈Γ(at)\{r}

Φt
r′=0 |a0:t−1


= I(r∈Γ(at)) P (Φt

r=1 |a0:t−1) P

 ∧
r′∈Γ(at)\{r}

Φt
r′=0 |Φt

r=1,a0:t−1

 .

(4.12)

60 4.2 FORWARD REASONING

To simplify the summation over φt, we only have to consider the unique assignment of
the context variables when r is used for prediction: provided it models the action, as
indicated by I(r∈Γ(at)), this is the case if its context Φt

r holds, while the contexts Φt
r′ of

all other “competing” rules r′ for action at do not hold.
We calculate the second term in (4.12) by summing over all states s as

P (Φt
r=1 |a0:t−1) =

∑
st

P (Φt
r=1 | st) α(st) ≈

∑
st

P (Φt
r=1 | st)

∏
j

α(stj) (4.13)

=
∏

j∈π(Φtr)

α(Stj =sr,j) . (4.14)

The approximation in (4.13) is the FF assumption. In (4.14), sr denotes the configuration
of the state variables according to the context of r like in (3.5). We sum out all variables
not in the context of r. Only the variables in r’s context remain: the terms α(Stj = sr,j)
correspond to the probabilities of the respective literals.

The third term in (4.12) is the joint posterior over the contexts of the competing rules
r′ given that r’s context already holds. We are interested in the situation where none of
these other contexts hold. We calculate this as

P

 ∧
r′∈Γ(at)\{r}

Φt
r′=0 |Φt

r=1,a0:t−1

 ≈ ∏
r′∈Γ(at)\{r}

P (Φt
r′=0 |Φt

r=1,a0:t−1) , (4.15)

approximating it by the product of the individual posteriors. The latter are computed as

P (Φt
r′=0 |Φt

r=1,a0:t−1) =
∑
st

P (Φt
r′=0 | st) P (st |Φt

r=1,a0:t−1) (4.16)

≈

1.0 if Φr∧Φr′ → ⊥
1.0−

∏
i∈π(Φt

r′),

i 6∈π(Φtr)

α(Sti =sr′,i) otherwise , (4.17)

where the if-condition expresses a logical contradiction of the contexts of r and r′. If
their contexts contradict, then r′’s context will surely not hold given that r’s context
holds. Otherwise, we know that the state attributes apppearing in the contexts of both
r and r′ do hold as we condition on Φr = 1. Therefore, we only have to examine the
remaining state attributes of r′’s context. Again, we approximate this posterior with the
FF marginals.

Finally, we compute the reward probability straightforwardly as

P (U t=1 |a0:t−1) =
∑
st

P (U t=1 | st)P (st |a0:t−1, s0) ≈
∏

i∈π(Ut)

α(Sti =τi) , (4.18)

where τ denotes the configuration of state variables corresponding to the planning goal
as in (3.10). As above, the summation over states is simplified by the FF assumption
resulting in a product of the marginals of the required state attributes.

4 PLANNING IN GROUND RELATIONAL DOMAINS 61

The overall computational costs of propagating the effects of an action are quadratic
in the number of rules for this action (for each such rule we have to calculate the prob-
ability that none of the others applies) and linear in the maximum numbers of context
literals and manipulated state attributes of those rules.

Our inference framework requires an approximation for the distribution P (s′ |Ωr,0, s)
(cf. Eq. (3.2)) to cope with the noise outcome of NID rules. From the training data used
to learn rules, we estimate which predicates and functions change value over time as
follows: let Sc ⊂ S contain the corresponding variables. We estimate for each rule r the
average number N r of changed state attributes when the noise outcome applies. Due to
our factored frontier approach, we can consider the noise effects for each variable inde-
pendently. We approximate the probability that Si ∈ Sc changes in r’s noise outcome by
Nr

|Sc | . In case of change, all changed values of Si have equal probability.

Planning

The PRADA-DBN representation in Fig. 4.2 together with the approximate inference
method described before enable us to derive a novel planning algorithm for stochastic re-
lational domains: The Probabilistic Relational Action-sampling in DBNs planning Algorithm
(PRADA) plans by sampling action sequences in an informed way based on predicted
beliefs over states and evaluating these action sequences using approximate inference.

More precisely, we sample sequences of actions a0:T−1 of length T . For 0 < t ≤ T , we
infer the posteriors over states P (st |a0:t−1, s0) and rewards P (ut |a0:t−1, s0) (in the sense
of filtering or state monitoring). Then, we calculate the value of an action sequence with
a discount factor 0 < γ < 1 as

Q(s0,a0:T−1) :=
T∑
t=0

γtP (U t=1 |a0:t−1, s0) . (4.19)

We choose the first action of the best sequence a∗ = argmaxa0:T−1Q(a0:T−1, s0), if its value
exceeds a certain threshold θ (for instance, θ = 0). Otherwise, we continue sampling
action-sequences until either an action is found or planning is given up. The quality of
the found plan can be controlled by the total number of action-sequence samples and
has to be traded off with the time that is available for planning.

We aim for a strategy to sample good action sequences with high probability. We
propose to choose with equal probability among the actions that have a unique covering
rule for the current state. Thereby, we avoid the use of the noisy default rule rν which
models action effects as noise and is thus of poor use in planning. For the action at time
t, PRADA samples from the distribution

P tsample(a) ∝
∑
r∈Γ(a)

P

φtr=1,
∧

r′∈Γ(a)\{r}

φtr′=0 |a0:t−1

. (4.20)

This is a sum over all rules for action a: for each such rule we add the posterior that it
is the unique covering rule, that is that its context φtr holds, while the contexts φtr′ of the

62 4.2 FORWARD REASONING

competing rules r′ do not hold. This sampling distribution takes the current state dis-
tribution into account. Thus, the probability to sample an action sequence a predicting
the state sequence s0, . . . , sT depends on the likelihood of the state sequence given a: the
more likely the required outcomes are, the more likely the next actions will be sampled
(see Appendix C.3). Using this policy, PRADA does not miss actions which SST and
UCT explore, as the following proposition states (proof in Appendix A.1).

Proposition 4.2.1 The set of action sequences PRADA samples with non-zero probability is a
super-set of the ones of SST and UCT.

In our experiments, we replan after each action is executed without reusing the
knowledge of previous time-steps. This simple strategy helps to get a general impression
of PRADA’s planning performance and complexity. Other strategies are easily conceiv-
able. For instance, one might execute the entire sequence without replanning, trading
off faster computation times with a potential loss in the achieved reward. In noisy en-
vironments, it might seem a better strategy to combine the reuse of previous plans with
replanning. For instance, one could omit the first action of the previous plan, which has
just been executed, and examine the suitability of the remaining actions in the new state.
While we consider only the single best action sequence, in many planning domains it
might also be beneficial to marginalize over all sequences with the same first action. For
instance, an action a1 might lead to a number of reasonable sequences, none of which
are the best, while another action a2 is the first of one very good sequence, but also many
bad ones—in which case one might favor a1.

Illustrative Example

Let us consider the small planning problem in Table 4.1 to illustrate the reasoning pro-
cedure of PRADA. Our domain is a noisy robot manipulation domain represented by
predicates table(X), cube(X), on(X,Y), inhand(X) and clear(X) ≡ ∀Y.¬on(Y,X) where
a robot can perform two types of actions: it may either lift a cube X by means of ac-
tion grab(X) or put the cube which is held in hand on top of another object X using
puton(X). The start state s0 shown in 4.1(a) contains three cubes a, b and c stacked in
a pile on table t. The goal shown in 4.1(b) is to get the middle cube b on-top of the top
cube a. Our transition model provides three abstract NID rules to predict action effects,
shown in Table 4.1(c). Only the first rule has uncertain outcomes: it models to grab an
object which is below another object. In contrast, grabbing a clear object (Rule 2) and
putting an object somewhere (Rule 3) always leads to the same successor state.

First, PRADA constructs a DBN to represent the planning problem. For this purpose,
it computes the grounded rules with respect to the objects O = {a, b, c, t} shown in
4.1(d). Most potential grounded rules can be ignored: one can deduce from the abstract
rules which predicates are changeable. In combination with the specifications in s0, this
prunes most grounded rules. For instance, we know from s0 that t is the table. Thus,
no ground rule with action argument X = t needs to be constructed as all rules require
cube(X).

4 PLANNING IN GROUND RELATIONAL DOMAINS 63

Table 4.1: Example of PRADA’s factored frontier inference
(a) Start state

s0 = {on(a, b), on(b, c),
on(c, t), cube(a), cube(b),
cube(c), table(t)}

(b) Goal
τ = {on(b, a)}

(c) Abstract NID rules with example situations
Rule 1:
grab(X) : on(Y,X), on(X,Z), cube(X), cube(Y), table(T)

→

 0.5 : inhand(X), on(Y, Z), ¬on(Y,X), ¬on(X,Z)
0.3 : inhand(X), on(Y, T), ¬on(Y,X), ¬on(X,Z)
0.2 : on(X,T), ¬on(X,Z)

Rule 2:
grab(X) : cube(X), clear(X), on(X,Y)

→
{

1.0 : inhand(X), ¬on(X,Y)

Rule 3:
puton(X) : inhand(Y), cube(Y)

→
{

1.0 : on(Y,X), ¬inhand(X)

(d) Grounded NID rules
Grounded Rule Action Substitution
(1, a/bbt) grab(a) {X→a, Y →b, Z→b, T→ t}
(1, a/bct) grab(a) {X→a, Y →b, Z→c, T→ t}
. . .
(1, c/bbt) grab(c) {X→c, Y →b, Z→b, T→ t}
(2, a/b) grab(a) {X→a, Y →b}
(2, a/c) grab(a) {X→a, Y →c}
(2, a/t) grab(a) {X→a, Y → t}
. . .
(2, c/t) grab(c) {X→c, Y → t}
(3, a/b) puton(a) {X→a, Y →b}
(3, a/c) puton(a) {X→a, Y →c}
. . .
(3, t/c) puton(t) {X→a, Y →c}

(e) Inferred posteriors in PRADA’s
FF inference for action-sequence
(grab(b), puton(a))

t = 0 t = 1 t = 2

State marginals α
on(a, b) 1.0 0.2 0.2
on(a, c) 0.0 0.5 0.5
on(a, t) 0.0 0.3 0.3
on(b, a) 0.0 0.0 0.8
on(b, c) 1.0 0.0 0.0
on(b, t) 0.0 0.2 0.2
on(c, t) 1.0 1.0 1.0
inhand(b) 0.0 0.8 0.16
clear(a) 1.0 1.0 0.2
clear(b) 0.0 0.8 0.8
clear(c) 0.0 0.5 0.5
Goal U 0.0 0.0 0.8
P (Φ |a0:t−1)
Φ(1,b/act) 1.0 0.0
Φ(1,b/att) 0.0 0.04
Φ(1,c/btt) 1.0 0.5
Φ(2,a/b) 1.0 0.2
Φ(2,a/c) 0.0 0.5
Φ(2,a/t) 0.0 0.3
Φ(2,b/t) 0.0 0.16
Φ(2,c/t) 0.0 0.5
Φ(3,a/b) 0.0 0.8
Φ(3,c/b) 0.0 0.8
Φ(3,t/b) 0.0 0.8

Unique rule
(1, b/act) 1.0 0.0
(1, b/att) 0.0 0.0336
(1, c/att) 0.0 0.25
(1, c/btt) 1.0 0.0
(2, a/b) 1.0 0.07
(2, a/c) 0.0 0.28
(2, a/t) 0.0 0.12
(2, b/t) 0.0 0.154
(2, c/t) 0.0 0.25
(3, a/b) 0.0 0.8
(3, c/b) 0.0 0.8
(3, t/b) 0.0 0.8
Action coverage
grab(a) 1.0 0.47
grab(b) 1.0 0.187
grab(c) 1.0 0.5
puton(a) 0.0 0.8
puton(c) 0.0 0.8
puton(t) 0.0 0.8
Sample distribution
Psample(grab(a)) 0.33 0.132
Psample(grab(b)) 0.33 0.0526
Psample(grab(c)) 0.33 0.141
Psample(puton(a)) 0.0 0.225
Psample(puton(c)) 0.0 0.225
Psample(puton(t)) 0.0 0.225
P (Rt = rt |a0:t)
Rt = (1, b/act) 1.0 0.0
Rt = (3, a/b) 0.0 0.8
Rt = 0 0.0 0.2

64 4.2 FORWARD REASONING

Based on the DBN, PRADA samples action-sequences and evaluates their expected
rewards. In the following, we investigate this procedure for the sampling of action-
sequence (grab(b), puton(a)). Table 4.1(e) presents the inferred values of the DBN vari-
ables and other auxiliary quantities. The marginals α (Eq. (4.6)) of the state variables
at t = 0 are set deterministically according to s0. We calculate the posteriors over con-
text variables P (Φ |a0:t−1) according to Eq. (4.14). In our example, at t = 0 there is one
rule with probability 1.0 for each of the actions grab(a), grab(b) and grab(c). In con-
trast, there are no rules with non-zero probability for the various puton(·) actions. By the
help of Eq. (4.17), we calculate the probability of each rule r to be the unique covering
rule for the respective action (listed under Unique rule; note that we do not condition
on a fixed action at thus far): this is the case if context Φr of r holds, while all con-
texts Φr′ of the competing rules r′ for the same action do not hold. At t = 0, this is the
same as the posterior of Φr alone. The resulting probabilities are used to calculate the
sampling distribution of Eq. (4.20): first, we compute the probability for each action to
have a unique covering rule which is a simple sum over probabilities of the previous
step (listed under Action coverage in the table); then, we normalize these values to get a
sampling distribution Psample(·). At t = 0, this results in a sampling distribution which
is uniform over the three actions with unique rules. Assume we sample a0 = grab(b)
(grabbing blue cube b). Variable R specifies the ground rules to use for predicting the
state marginals at the next time-step. We can infer its posterior according to Eq. (4.12).
Here, P (R0 = (1, b/act) | a0) = 1.0.

Things get more interesting at t = 1. Here, we observe the effects of the factored
frontier. For instance, consider calculating the posterior over context Φr for ground rule
r = (1, b/att) (grabbing blue cube b in the context that it is on the table t and below the
yellow cube a) using Eq. (4.14),

P (Φ(1,b/att) | a0) ≈ α(on(a, b)) · α(on(b, t)) · α(cube(a)) · α(cube(b)) · α(table(t))

= 0.2 · 0.2 · 1.0 · 1.0 · 1.0 = 0.04.

In contrast, the exact value is P (Φ(1,b/att) | a0) = 0.2, according to the third outcome of
abstract Rule 1 used to predict a0. The imprecision is due to ignoring the correlations:
FF regards the marginals for on(a, b) and on(b, t) as independent, while in fact they are
fully correlated.

At t = 1, the action grab(a) has three ground rules with non-zero context probabilities
(grabbing a from either b, c or t). This is due to the three different outcomes of abstract
Rule 1. As an example, we calculate the probability of rule (2, a/c) (grabbing a from c)
to be the unique covering rule for grab(a) at t = 1 as

P (Φ(2,a/c),¬Φ(2,a/b),¬Φ(2,a/t) | a0)

≈ P (Φ(2,a/c) | a0) · (1.− P (Φ(2,a/b) | a0)) · (1.− P (Φ(2,a/t) | a0))

= 0.5 · (1.− 0.2) · (1.− 0.3) = 0.28 .

After some more calculations, we determine the sampling distribution at t = 1. Assume
we sample action puton(a). This results in rule (3/a, b) (putting b on a) being used for

4 PLANNING IN GROUND RELATIONAL DOMAINS 65

prediction with 0.8 probability—since this is its probability to be the unique covering
rule for action puton(a). The remaining mass 0.2 of the posterior is assigned to those
parts of the state space where no unique covering rule is available for puton(a). In this
case, we use the default rule R = 0 (corresponding to not performing the action) so that
with probability 0.2 the values of the state variables persist.

Finally, let us infer the marginals at t = 2 using Eq. (4.9). As an example, we cal-
culate α(inhand(b)t=2). Let i(b) be brief for inhand(b). We sum over the ground rules
rt=1 taking the potential values i(b)t=1 and ¬i(b)t=1 at the previous time-step t = 1 into
account,

α(i(b)t=2) ≈
∑
rt=1

P (rt=1 |a0:1) (P (i(b)t=2 | rt=1,¬i(b)t=1) α(¬i(b)t=1)

+ P (i(b)t=2 | rt=1, i(b)t=1) α(i(b)t=1))

= 0.8 (0.0 ∗ 0.2 + 0.0 ∗ 0.8) + 0.2 (0.0 ∗ 0.2 + 1.0 ∗ 0.8) = 0.16 .

As discussed above, only the ground rule (3/a, b) (first summand) and the default rule
(second summand) play a role in this prediction. In effect, the belief that b is inhand
decreases from 0.8 to 0.16 after having tried to put b on a, as expected. Similarly, we
calculate the posterior of on(b, a) as 0.8. This is also the expected probability to reach the
goal when performing the actions grab(b) and puton(a). (Here, PRADA’s inferred value
coincides with the true posterior.)

For comparison, the probability to reach the goal is 1.0 when performing the actions
grab(a), puton(t), grab(b) and puton(a), that is, when we clear b before we grab it. This
plan is safer, as it has higher probability, but takes more actions.

Theoretical Considerations concerning PRADA

We provide some basic theoretical considerations concerning PRADA in Appendix C:

• We prove the simple result that PRADA almost surely finds the optimal action se-
quence with an increasing number of samples provided it uses exact inference (in-
stead of the approximate inference procedure described above based on a factored
frontier) (Appendix C.1).

• We present sufficient conditions under which the inference based on a factored
frontier computes exact posteriors (Appendix C.2).

• We claim that PRADA’s sampling strategy exploits the assumption that rewards
are probable if the optimal action sequence a∗ is performed, that is, that P (u |a∗) is
large; we provide some analytical and empirical results in toy scenarios to support
this claim (Appendix C.3).

Comparison of the Forward Reasoning Approaches

The most prominent difference between the presented forward reasoning approaches
is in their way to account for the stochasticity of action effects. On the one hand, SST

66 4.2 FORWARD REASONING

and UCT repeatedly take samples from successor state distributions and estimate the
value of an action by building look-ahead trees. On the other hand, PRADA maintains
beliefs over states and propagates indetermistic action effects forward. More precisely,
PRADA and SST follow opposite approaches: PRADA samples actions and calculates
the posteriors over successor states by (approximate) probabilistic inference, while SST
considers all actions (and thus is exact in its action search) and samples state transitions
to approximate the posteriors. The price for considering all actions is SST’s overwhelm-
ingly large computational cost. UCT remedies this issue and samples action sequences
and thus state transitions selectively: it uses previously sampled episodes to build upper
confidence bounds on the estimates for action values in specific states, which are used to
adapt the policy for the next episode. It is not straightforward to translate this adaptive
policy to PRADA since PRADA works on beliefs over states instead of states directly.
Therefore, we chose the simple policy for PRADA to sample randomly from all actions
with a unique covering rule in a state (in the form of a sampling distribution to account
for beliefs over states).

PRADA returns a whole plan that will transform the world state into one where the
goal is fulfilled with a probability exceeding a given threshold θ, in the spirit of confor-
mant planning or probabilistic planning with no observability (Kushmerick et al., 1995).
Due to their outcome-sampling, SST and UCT cannot return such a plan in a straight-
forward way. Instead, they provide a policy for many successor states based on their
estimates of the action-values in their look-ahead tree. The estimates of states deeper in
the tree are less reliable as they have been built from less episodes. If an action has been
executed and a new state is observed, these estimates can be reused. Thus far, PRADA
does not take any knowledge gained in previous action-sequence samples into account
to adapt its policy. An elegant way to achieve this and to better exploit goal knowledge
might use backpropagation through our DBNs to plan completely by inference (Tous-
saint and Storkey, 2006). This is not straightforward to do in a principled way in the
large state and action spaces of relational domains; we will explore it in Sec. 4.3 and
Sec. 4.5. Alternatively, PRADA could give high weight to the second action of the previ-
ous best plan. Below, we introduce another simple way called A-PRADA to make use of
previous episodes to find better plans.

PRADA can afford its simple action-sampling strategy as it evaluates large numbers
of action-sequences efficiently and does not have to grow look-ahead trees to account for
indeterministic effects. This points at an important difference, illustrated in Fig. 4.3: all
three algorithms are faced with search spaces of action sequences which are exponential
in the horizon. To calculate the value of a given action sequence, however, SST and
UCT still need exponential time due to their outcome sampling. In contrast, PRADA
propagates the state transitions forward and thus is linear in the horizon.

Like all approximate planning algorithms, neither SST, UCT nor PRADA can be ex-
pected to perform ideally in all situations. SST and UCT sample action outcomes and
hence face problems if important outcomes only have small probability. For instance,
consider an agent that wants to escape a room with two locked doors. If it hits the first
door which is made of wood it has a chance of 0.05 to break it and escape. The second

4 PLANNING IN GROUND RELATIONAL DOMAINS 67

Figure 4.3: Two different methods to account for stochastic actions. To evaluate a given ac-
tion sequence a, lookahead-tree methods like SST and UCT sample from the successor
state distribution P (s′ | s, a) for each state; here, two samples are used. This results in
a lookahead-tree which is exponential in the length of a. In contrast, PRADA propa-
gates beliefs α(s) over states and is only linear in the length of a. Maintaining a belief,
however, is exponential in the number of state attributes; this necessitates appropriate
approximate inference techniques.

door is made of iron and has only a chance of 0.001 to break. SST and UCT may take
a very long time to detect that it is 50 times better to repeatedly hit the wooden door.
In contrast, PRADA recognizes this immediately after having reasoned about each of
the actions once as it takes all outcomes into account. On the other hand, in PRADA’s
approximate inference procedure the correlations among state variables get lost while
SST and UCT preserve them as they sample complete successor states. This can impair
PRADA’s planning performance in situations where correlations are crucial. Consider
the following simple domain with two state attributes a and b. The agent can choose
from two actions modeled by the rules

action1 : − →
{

0.5 : a, b
0.5 : ¬a, ¬b , and

action2 : − →
{

0.5 : a, ¬b
0.5 : b, ¬a .

The goal is to make both attributes either true or false, i.e., τ = (a ∧ b) ∨ (¬a ∧ ¬b).
For both actions, the resulting marginals will be α(a) = 0.5, α(¬a) = 0.5, α(b) = 0.5
and α(¬b) = 0.5. Due to its factored frontier, PRADA cannot distinguish between both
actions although action1 will achieve the goal, while action2 will not.

PRADA’s estimated probabilities of states and rewards may differ significantly from
their true values. This does not harm its performance in many domains as our experi-
ments indicate (cf. our evaluation below). We suppose the reason for this is that while
PRADA’s estimated probabilities can be imprecise, they enable a correct ranking of ac-
tion sequences—and in planning, we are interested in choosing the best action instead
of calculating correctly its value.

68 4.2 FORWARD REASONING

A further difference between the proposed algorithms is in their way to handle the
noise outcome of rules: PRADA assigns very small probability to all successor states—in
the spirit of the noise outcome. In contrast, for SST and UCT it does not make sense to
sample from such a distribution over all possible states, as any single successor state has
extremely low probability and will be inadequate to estimate state and action values.
Hence, they use the described workaround to assume to stay in the same state, while
discounting obtained rewards.

It is straightforward for PRADA to deal with uncertain initial states. Uncertainty of
initial states is common in complex environments and may for instance be caused by
partial observability or noisy sensors. This uncertainty has its natural representation in
the belief state PRADA works on. In contrast, SST and UCT cannot account for uncertain
initial states directly, but would have to sample from the prior distribution.

An Extension: Adaptive PRADA

We present a simple extension of PRADA to increase its planning accuracy. We exploit
the fact that PRADA evaluates complete sequences of actions—in contrast to SST and
UCT where the actions taken at t > 0 depend on the sampled outcomes. Adaptive
PRADA (A-PRADA) (Lang and Toussaint, 2009b, 2010b) examines the best action se-
quence found by PRADA. While PRADA chooses the first action of this sequence with-
out further reasoning, A-PRADA inspects each single action of this sequence and decides
by simulation whether it can be deleted. The resulting shortened sequence may lead to
an increased expected reward. This is the case if actions do not have significant effects on
achieving the goal or if they decrease the success probability. If such actions are omitted,
the states with high reward are reached earlier and their rewards are discounted less. For
instance, consider the goal to grab a blue ball: an action sequence that grabs a red cube,
puts it onto the table and only then grabs the blue ball can be improved by omitting the
first two actions which are unrelated to the goal.

More precisely, A-PRADA takes PRADA’s action sequence aP with the highest value
(which is not necessarily the optimal action sequence) and investigates iteratively for
each action whether it can be deleted. An action can be deleted from the plan if the
resulting plan has a higher reward likelihood. This idea is formalized in Algorithm 1.
The crucial calculation of this algorithm is to compute values Q(s0,a0:T−1) as defined in
Eq. (28) and restated here for convenience:

Q(s0,a0:T−1) =
T∑
t=1

γtP (U t=1 |a0:t−1, s0) .

PRADA’s approximate inference procedure is particularly suitable for calculating all re-
quired P (U t = 1 |a0:t−1, s0). It performs this calculation in time linear in the length T of
the action sequence, while SST and UCT would require time exponential in T because of
their outcome sampling.

4 PLANNING IN GROUND RELATIONAL DOMAINS 69

Algorithm 1 Adaptive PRADA (A-PRADA)
Input: PRADA’s plan aP

Output: A-PRADA’s plan aA

1: aA ← aP

2: for t = 0 to t = T − 1 do
3: while true do
4: Let a be a plan of length T .
5: a0:t−1 ← a0:t−1

A B Omit at

6: at:T−2 ← at+1:T−1
A

7: aT−1 ← doNothing
8: if Q(s0,a) > Q(s0,aA) then
9: aA ← a

10: else
11: break
12: end if
13: end while
14: end for
15: return aA

4.2.3 Evaluation

We have implemented all presented forward reasoning algorithms and the learning al-
gorithm for NID rules in C++1. We evaluate our approaches in two different scenarios.
The first is an intrinsically noisy complex simulated environment where we learn NID
rules from experience and use these to plan. Second, we apply our algorithms on the
benchmarks of the Uncertainty Part of the International Planning Competition 2008.

Robot Manipulation Domain

We perform experiments in our simulated complex robot manipulation environment (see
Sec. 1.1.1) where a robot manipulates objects scattered on a table. Due to its intrinsic
noise and its complexity, this simulated robot manipulation scenario is a challenging
domain for both learning compact transition models as well as planning.

We use the rule learning algorithm of Pasula et al. (2007) with the same parameter
settings to learn three different sets of fully abstract NID rules. Each rule-set is learned
from independent training sets of 500 experience triples (s, a, s′) that specify how the
world changed from state s to successor state s′ when an action a was executed, assum-
ing full observability. Training data to learn rules are generated in a world of six cubes
and four balls of two different sizes by performing random actions with a slight bias to
build high piles. Our resulting rule-sets contain 9, 10 and 10 rules respectively. These
rule-sets provide approximate partial transition models. They generalize over the situa-
tions of the experiences, but may not account for situations that are completely different
from what the agent has seen before. To enforce compactness and avoid overfitting, rules
are regularized; hence, the learning algorithm may sometimes favor to model rarely ex-

1Our code is available at http://userpage.fu-berlin.de/tlang/prada/.

70 4.2 FORWARD REASONING

perienced state transitions as low-probability outcomes in more general rules, thereby
trading off accuracy for compactness. This in combination with the general noisiness of
the world causes the need to carefully account for the probabilities of the world when
reasoning with these rules.

We perform three series of experiments with planning tasks of increasing difficulty.
In each series, we test the planners in different worlds with varying numbers of cubes
and balls. Thus, we transfer the knowledge gained in the training world to different,
but similar worlds by using abstract NID rules. For each object number, we create five
different worlds. Per rule-set and world, we perform three independent runs with dif-
ferent random seeds. To evaluate the different planning approaches, we compute the
mean performances and planning times over the fixed (but randomly generated) set of
45 trials (3 learned rule-sets, 5 worlds, 3 random seeds).

We choose the parameters of the planning algorithms as follows. For SST, we report
results for different branching factors b, as far as the resulting runtimes allow. Simi-
larly, UCT and (A-)PRADA each have a parameter that balances their planning time and
the quality of their found actions. For UCT this is the number of episodes, while for
(A-)PRADA this is the number of sampled action-sequences. Depending on the experi-
ment, we set both heuristically such that the tradeoff between planning time and quality
is reasonable. In particular, for a fair comparison we pay attention that UCT, PRADA
and A-PRADA get about the same planning times, if not reported otherwise. Further-
more, for UCT we set the bias parameter c to 1.0 which we found heuristically to perform
best. For all planners and experiments, we set the discounting factor for future rewards
to γ = 0.95. A crucial parameter is the planning horizon d, which heavily influences
planning time. Of course, d cannot be known a-priori. Therefore, if not reported other-
wise, we deliberately set d larger than required for UCT and (A-)PRADA to suggest that
our algorithms are also effective when d can only be estimated. Indeed, we found in all
our experiments that as long as d is not too small, its exact choice does not have signifi-
cant effects on UCT’s and (A-)PRADA’s planning quality—unlike its effects on planning
times. In contrast, we set the horizon d for SST always as small as possible, in which case
its planning times are still very large. If a planning algorithm does not find a suitable
action in a given situation, we restart the planning procedure: SST builds a new tree,
UCT runs more episodes and (A-)PRADA takes new action-sequence samples. If in a
given situation after 10 planning runs a suitable action still is not found, the trial fails.

Furthermore, we use FF-Replan (Yoon et al., 2007) as a baseline. As discussed in
detail with the related work in Sec. 4.1, FF-Replan determinizes the planning prob-
lem, thereby ignoring outcome probabilities. FF-Replan has shown impressive results
on the domains of the probabilistic planning competitions. These domains are care-
fully designed by humans: their action dynamics definitions are complete, accurate and
consistent and are used as the true world dynamics in the according experiments—
in contrast to the learned NID rules we use here which estimate approximate partial
models of our robot manipulation domain. To be able to use the derived predicate
clear(X) in the FF-Replan implementation of our experiments, we included the appro-
priate literals of this predicate by hand in the outcomes of the rules—while our SST,

4 PLANNING IN GROUND RELATIONAL DOMAINS 71

UCT and (A-)PRADA implementations infer these values automatically from the defi-
nition of clear(X). We report results of FF-Replan with these (slightly modified) learned
rules using the all-outcomes determinization scheme, denoted by FF-Replan-All below.
(Using single-outcome schemes always led to worse performance.) Some of these rules
are very general (putting only few restrictions on the arguments and deictic references);
in this case, more actions appear applicable in a given state than make sense from an
intuitive human perspective which hurts FF-Replan much more than the other methods,
resulting in large planning times for FF-Replan. For instance, a rule may model the top-
pling over of a small tower including object X when trying to put an object Y on top of
the tower: one outcome with a small probability might specify Y to end up below X .
While this is only possible if Y is a cube, of course, the learning algorithm may choose
to omit a typing predicate cube(X) due to regularization, as it prefers compact rules and
none of its experiences might require this additional predicate. As this may pose severe
problems for FF-Replan, we created modified rule-sets by hand where we introduced
typing predicates where appropriate to make contexts more distinct. Below, we denote
our results with these modified rule-sets as FF-Replan-All* and FF-Replan-Single*, using
all-outcomes and single most-probable outcome determinization schemes.

High Towers In our first series of experiments, we investigate building high towers
which was the planning task in the work of Pasula et al. (2007). More precisely, the
reward in a state is defined as the average height of objects. This constitutes an easy
planning problem as many different actions may increase the reward (object identities
do not matter) and a small planning horizon d is sufficient. We set SST to horizon d= 4
(Pasula et al. ’s choice) with different branching factors b and UCT and (A-)PRADA to
horizon d= 6. In our experiments, initial states do not contain already stacked objects,
so the reward for performing no actions is 0. Table 4.2 and Fig. 4.4 present our results.
SST is not competitive. For a branching factor b > 1, it is slower than UCT and (A-
)PRADA by at least an order of magnitude. For b = 1, its performance is poor. In this
series of experiments, we designed the worlds of 10 objects to contain many big cubes.
This explains the relatively good performance of SST in these worlds, as the number
of good plans is large. As mentioned above, we control UCT, PRADA and A-PRADA
to have about the same times available for planning. All three approaches perform far
better than SST in almost all experiments. The difference between UCT, PRADA and
A-PRADA is never significant.

This series of experiments indicates that planning approaches using full-grown look-
ahead trees like SST are inappropriate even for easy planning problems. In contrast,
approaches that exploit look-ahead trees in a clever way such as UCT seem to be the best
choice for easy tasks which require a small planning horizon and can be solved by many
alternative good plans. The performance of the planning approaches using approximate
inference, PRADA and A-PRADA, however, comes close to the one of UCT, showing
also their suitability for such scenarios.

FF-Replan focuses on exploiting conjunctive goal structures and cannot deal with
quantified goals. As the grounded reward structure of this task consists of a disjunction

72 4.2 FORWARD REASONING

Table 4.2: High towers problem. Reward denotes the discounted total reward for different
numbers of objects (cubes/balls and table). The reward for performing no actions is 0.
All data points are averages over 45 trials created from 3 learned rule-sets, 5 worlds and
3 random seeds. Standard deviations of the mean estimators are shown. FF-Replan-All*
and FF-Replan-Single* use hand-made modifications of the original learned rule-sets. Fig. 4.4
visualizes these results.

Objects Planner Reward Trial time (s)

6+1

FF-Replan-All 6.65 ± 1.01 41.07 ± 9.63
FF-Replan-All* 6.29 ± 0.80 7.54 ± 4.09
FF-Replan-Single* 4.48 ± 0.94 4.61 ± 2.75

SST (b=1) 11.68 ± 1.19 9.03 ± 0.80
SST (b=2) 12.90 ± 1.01 121.40 ± 11.12
SST (b=3) 12.80 ± 0.94 595.43 ± 55.95
UCT 16.01 ± 0.99 7.45 ± 0.19
PRADA 15.54 ± 1.25 6.01 ± 0.07
A-PRADA 16.12 ± 1.27 6.36 ± 0.07

8+1

FF-Replan-All 5.10 ± 1.01 76.86 ± 20.98
FF-Replan-All* 3.08 ± 0.87 28.65 ± 16.81
FF-Replan-Single* 2.82 ± 0.87 1.72 ± 0.27

SST (b=1) 9.62 ± 1.07 23.57 ± 3.48
SST (b=2) 12.36 ± 1.21 335.5 ± 52.4
SST (b=3) 11.09 ± 0.87 1613.3 ± 249.2
UCT 17.11 ± 1.07 15.54 ± 0.40
PRADA 16.10 ± 1.21 15.24 ± 0.27
A-PRADA 16.29 ± 1.47 16.30 ± 0.27

10+1

FF-Replan-All 6.97 ± 1.21 121.99 ± 27.43
FF-Replan-All* 7.36 ± 1.07 33.45 ± 12.80
FF-Replan-Single* 5.76 ± 1.21 4.14 ± 1.08

SST (b=1) 15.12 ± 1.34 119.26 ± 10.59
SST (b=2) 14.48 ± 1.20 1748.7 ± 170.2
SST (b=3) 16.48 ± 1.19 8424 ± 851
UCT 17.71 ± 1.08 31.71 ± 5.83
PRADA 16.21 ± 1.07 31.58 ± 1.14
A-PRADA 16.78 ± 1.14 35.22 ± 0.40

of different tower combinations, FF-Replan has to pick an arbitrary tower combination
as its goal. Therefore, to apply FF-Replan we sample tower combinations according to
the rewards they achieve (i.e., situations with high towers are more probable) and do not
exclude combinations with balls at the bottom of towers as they are not prohibited by
the reward structure. As Yoon et al. (2007) note, “the obvious pitfall of this [goal formula
sampling] approach is that some groundings of the goal are not reachable or are much
more expensive to reach from the initial state”. When FF-Replan cannot find a plan, we
do not execute an action, but sample a new ground goal formula at the next time-step,
preserving already achieved tower structures.

FF-Replan performs significantly worse than the previous planning approaches. The
major reason for this is that FF-Replan often comes up with plans exploiting low-probability
outcomes of rules—in contrast to SST, UCT and (A-)PRADA which reason over the prob-
abilities. To illustrate this, consider the example rule in Table 3.3 (page 36) which models

4 PLANNING IN GROUND RELATIONAL DOMAINS 73

 5

 10

 15

 6 8 10

Objects

D
is

co
un

te
d

to
ta

l r
ew

ar
d

(a) Reward

 1

 10

 100

 1000

 10000

 6 8 10

Objects

T
ria

l t
im

e
(s

)

FF-Replan-All
FF-Replan-All*

FF-Replan-Single*
SST b=1
SST b=2
SST b=3

UCT
PRADA

A-PRADA

(b) Time

Figure 4.4: High towers problem. Visualization of the results presented in Table 4.2. The
reward for performing no actions is 0. All data points are averages over 45 trials created
from 3 learned rule-sets, 5 worlds and 3 random seeds. Error bars for the standard
deviations of the mean estimators are shown. Please note the log-scale in (b).

putting a ball on top of a cube. It has two explicit outcomes: the ball usually ends up
on the cube; sometimes, however, it falls on the table. FF-Replan can misuse this rule as
a tricky way to put a ball on the table—ignoring that this often will fail. As the results
of FF-Replan-Single* show, taking only most probable outcomes into account does not
remedy this problem: there are often two to three outcomes with similar probabilities so
such a choice seems unjustified; sometimes, the “intuitively expected” outcome is split
up into different outcomes with low probabilities, which however vary only in features
irrelevant for the planning problem (such as upright(·)).

Clearance The task in our second series of experiments is to clear up the desktop. Ob-
jects are lying scattered all over the table in the beginning. An object is cleared if it is part
of a tower containing all other objects of the same class. An object class is simply defined
in terms of color which is additionally provided to the state representation of the robot.
The reward of the robot is defined as the number of cleared objects. In our experiments,
classes contain 2-4 objects with at most 1 ball (in order to enable successful piling). Our
starting situations contain some piles, but only with objects of different classes. Thus, the
reward for performing no actions is 0. This clearance task is more difficult than building
high towers, as the number of good plans yielding high rewards is significantly reduced.

We set the planning horizon d = 6 optimal for SST which is required to clear up a
class of 4 objects, namely grabing and putting three objects. As above, by contrast we
set d = 10 for UCT and (A-)PRADA to show that they can deal with overestimation
of the usually unknown optimal horizon d. Table 4.3 and Fig. 4.5 present our results.
The horizon d = 6 overburdens SST as can be seen from its large planning times. Even
for b = 1, SST takes almost 40 minutes on average in worlds of 6 objects, while over 2
hours in worlds of 8 objects. Therefore, we did not try SST for greater b. In contrast, the

74 4.2 FORWARD REASONING

Table 4.3: Clearance problem. Reward denotes the discounted total reward for different
numbers of objects (cubes/balls and table). The reward for performing no actions is 0.
All data points are averages over 45 trials created from 3 learned rule-sets, 5 worlds and
3 random seeds. Standard deviations of the mean estimators are shown. FF-Replan-All*
and FF-Replan-Single* use hand-made modifications of the original learned rule-sets. Fig. 4.5
visualizes these results.

Obj. Planner Reward Trial time (s)

6+1

FF-Replan-All 3.81 ± 0.67 19.1 ± 6.5
FF-Replan-All* 5.86 ± 0.87 1.1 ± 0.7
FF-Replan-Single* 6.53 ± 1.07 0.7 ± 0.8

SST (b=1) 5.35 ± 0.75 1382.6 ± 80.4
UCT 9.60 ± 0.86 52.2 ± 0.7
PRADA 10.94 ± 0.86 40.9 ± 0.7
A-PRADA 12.79 ± 0.80 42.3 ± 0.7

8+1

FF-Replan-All 5.93 ± 1.00 29.8 ± 8.7
FF-Replan-All* 6.21 ± 1.05 3.5 ± 0.6
FF-Replan-Single* 6.02 ± 0.94 0.8 ± 0.7

SST (b=1) 8.43 ± 2.01 8157 ± 978
UCT 10.29 ± 1.08 151.4 ± 2.0
PRADA 14.63 ± 1.54 154.5 ± 1.9
A-PRADA 14.87 ± 1.57 157.4 ± 2.0

10+1

FF-Replan-All 3.30 ± 0.74 60.9 ± 12.1
FF-Replan-All* 3.53 ± 0.87 20.7 ± 5.4
FF-Replan-Single* 3.91 ± 0.86 5.2 ± 1.3

SST (b=1) – > 8h
UCT 10.13 ± 0.80 415.7 ± 7.4
PRADA 12.81 ± 1.14 385.3 ± 4.7
A-PRADA 13.91 ± 1.12 394.5 ± 4.0

planning times of UCT, PRADA and A-PRADA, again controlled to be about the same
and to enable reasonable performance, are two orders of magnitude smaller, although
overestimating the planning horizon: for a trial they take on average about 45s in worlds
of 6 objects, 21

2 minutes in worlds of 8 objects and 6-7 minutes in worlds of 10 objects.
Nonetheless, UCT, PRADA and A-PRADA perform significantly better than SST. In all
worlds, PRADA and A-PRADA in turn outperform UCT, in particular in worlds with
many objects. A-PRADA finds the best plans among all planners. All planners gain
more reward in worlds of 8 objects in comparison to worlds of 6 objects, as the number
of objects that can be cleared increases as well as the number of classes and thus of good
plans. The worlds of 10 objects contain the same numbers of object classes like the worlds
of 8 objects, but with more objects, making planning more difficult.

Overall, our findings in the Clearance experiments indicate that while SST is inappro-
priate, UCT achieves good performance in planning scenarios which require medium
planning horizons and where there are several, but not many alternative plans. Ap-
proaches using approximate inference like PRADA and A-PRADA, however, seem to be
more appropriate in such scenarios of intermediate difficulty.

Furthermore, our results indicate that FF-Replan is inadequate for the clearance task.

4 PLANNING IN GROUND RELATIONAL DOMAINS 75

 2

 4

 6

 8

 10

 12

 14

 16

 6 8 10

Objects

D
is

co
un

te
d

to
ta

l r
ew

ar
d

(a) Reward

 1

 10

 100

 1000

 10000

 6 8 10

Objects

T
ria

l t
im

e
(s

)

FF-Replan-All
FF-Replan-All*

FF-Replan-Single*
SST b=1

UCT
PRADA

A-PRADA

(b) Time

Figure 4.5: Clearance problem. Visualization of the results presented in Table 4.3. The
reward for performing no actions is 0. All data points are averages over 45 trials created
from 3 learned rule-sets, 5 worlds and 3 random seeds. Error bars for the standard
deviations of the mean estimators are shown. Note the log-scale in (b).

We sample target classes randomly to provide a goal structure to FF-Replan; the tower
structure within a target class in turn is also randomly chosen. The bad performance of
FF-Replan is due to the reasons described in the previous experiments; in particular the
plans of FF-Replan often rely on low-probability outcomes.

Reverse Tower To explore the limits of UCT, PRADA and A-PRADA, we conducted a
final series of experiments where the task is to reverse towers of C cubes which requires
at least 2C actions (each cube needs to be grabbed and put somewhere at least once).
Apart from the long planning horizon, this is difficult due to the noise in the simulated
world: towers can become unstable and topple over with cubes falling off the table. To
decrease this noise slightly to obtain more reliable results, we forbid the robot to grab
objects that are not clear (i.e., below other objects). We set a limit of 50 executed actions
on each trial. If thereafter the reversed tower still is not built, the trial fails. The trial also
fails if one of the required objects falls off the table.

Table 4.4 presents our results. We cannot get SST with optimal planning horizon
d = 10 to solve this problem even for five cubes. Although the space of possible ac-
tions is reduced due to the mentioned restriction, SST has enormous runtimes. With
b= 1, SST does not find suitable actions (no leaves with the goal state) in several start-
ing situations—the increased planning horizon leads to a high probability of sampling
at least one unfavorable outcome for a required action. For b ≥ 2, a single tree traver-
sal of SST takes more than a day. We found UCT to also require large planning times
in order to achieve a reasonable success rate. Therefore, we set the planning horizons
optimal for UCT. In worlds of 5 cubes, UCT with optimal d = 10 has a success rate of
about 40% while taking on average more than 40 minutes in case of success. For 6 cubes,
however, UCT with optimal d = 12 never succeeds even when planning times exceed 4

76 4.2 FORWARD REASONING

Table 4.4: Reverse tower problem. The trial times and numbers of executed actions are
given for the successful trials for different numbers of objects (cubes and table). All
data points are averages over 45 trials created from 3 learned rule-sets, 5 worlds and 3
random seeds. Standard deviations of the mean estimators are shown. FF-Replan-All*
and FF-Replan-Single* use hand-made modifications of the original learned rule-sets.

Objects Planner Success rate Trial time (s) Executed actions

5+1

FF-Replan-All 0.02 7.1 ± 0.0 12.0 ± 0.10
FF-Replan-All* 1.00 26.7 ± 2.7 13.1 ± 0.9
FF-Replan-Single* 0.67 7.0 ± 0.9 13.6 ± 1.1

SST (b=1) 0.00 - -
SST (b=2) 0.00 >1 day -
UCT 0.38 2504.9 ± 491.1 19.5 ± 4.0
PRADA 0.71 27.0 ± 1.8 13.2 ± 0.7
A-PRADA 0.82 25.4 ± 0.8 10.9 ± 0.8

6+1

FF-Replan-All 0.00 - -
FF-Replan-All* 1.00 589.2 ± 73.7 12.0 ± 0.8
FF-Replan-Single* 0.64 52.7 ± 5.3 17.3 ± 2.1

UCT 0.00 >4 h -
PRADA 0.47 66.4 ± 3.9 13.6 ± 0.9
A-PRADA 0.56 77.5 ± 8.3 14.4 ± 2.5

7+1

FF-Replan-All 0.00 - -
FF-Replan-All* 0.42 2234.2 ± 81.1 15.1 ± 1.3
FF-Replan-Single* 0.56 687.4 ± 86.4 17.5 ± 2.0

PRADA 0.24 871.3 ± 126.6 18.2 ± 1.2
A-PRADA 0.23 783.7 ± 132.6 15.1 ± 1.8

hours. In contrast, we can afford an overestimating horizon d = 20 for PRADA and A-
PRADA. In worlds of 5 cubes, PRADA and A-PRADA achieve success rates of 71% and
82% respectively in less than half a minute. A-PRADA’s average number of executed
actions in case of success is almost optimal. In worlds of 6 cubes, the success rates of
PRADA and A-PRADA are still about 50%, taking a bit more than a minute on average
in case of success. When their trials fail, this is most often due to cubes falling off the
table and not because they cannot find appropriate actions. Cubes falling off the table
is also a main reason why the success rates of PRADA and A-PRADA drop to 23% and
24% respectively in worlds of 7 cubes when towers become rather unstable. Planning
times in successful trials, however, also increase to more than 13 minutes indicating the
limitations of these planning approaches. Nonetheless, the mean number of executed
actions in successful trials is still almost optimal for A-PRADA.

Overall, the Reverse tower experiments indicate that planning approaches using look-
ahead trees fail in tasks that require long planning horizons and can only be achieved by
very few plans. Given the huge action and state spaces in relational domains, the chances
that UCT simulates an episode with exactly the required actions and successor states
are very small. Planning approaches using approximate inference like PRADA and A-
PRADA have the crucial advantage that the stochasticity of actions does not affect their
runtime exponentially in the planning horizon. Of course, their search space of action-
sequences still is exponential in the planning horizon so that problems requiring long

4 PLANNING IN GROUND RELATIONAL DOMAINS 77

horizons are hard to solve also for them. Our experiments show that by using the very
simple, though principled extension A-PRADA, we can gain significant performance
improvements.

Our results also show that FF-Replan fails to provide good plans when using the
original learned rule-sets. This is surprising as the characteristics of the Reverse tower
task seem to favor FF-Replan in comparison to the other methods: there is a single con-
junctive goal structure and the number of good plans is very small while these plans
require long horizons. As the results of FF-Replan-All* and FF-Replan-Single* indicate,
FF-Replan can achieve a good performance with the adapted rule-sets that have been
modified by hand to restrict the number of possible actions in a state. While this consti-
tutes a proof of concept of FF-Replan, it shows the difficulty of applying FF-Replan with
learned rule-sets.

Summary Our results demonstrate that successful planning with learned transition
models (here in the form of rules) may require to explicitly account for the quantification
of predictive uncertainty. More concretely, methods applying look-ahead trees (UCT)
and approximate inference ((A-)PRADA) outperform FF-Replan on different tasks of
varying difficulty. Furthermore, (A-)PRADA can solve planning tasks with long hori-
zons, where UCT fails. Only if one post-processes the learned rules by hand to clarify
their application contexts and the planning problem uses a conjunctive goal structure
and requires few and long plans, FF-Replan performs better than UCT and (A-)PRADA.

IPPC 2008 Benchmarks

In the second part of our evaluation, we apply our proposed approaches on the bench-
marks of the latest international probabilistic planning competition, the Uncertainty Part
of the International Planning Competition in 2008 (IPPC, 2008). The involved domains
differ in many characteristics, such as the number of actions, the required planning hori-
zons and the reward structures. As the competition results show, no planning algorithm
performs best everywhere. Thus, these benchmarks give an idea for what types of prob-
lems SST, UCT and (A-)PRADA may be useful. We convert the PPDDL domain specifi-
cations into NID rules along the lines described in Appendix B. The resulting rule-sets
are used to run our implementations of SST, UCT and (A-)PRADA on the benchmark
problems.

Each of the seven benchmark domains consists of 15 problem instances. An instance
specifies a goal and a starting state. Instances vary not only in problem size, but also
in their reward structures (including action costs), so a direct comparison is not always
possible. In the competition, each instance was considered independently: planners
were given a restricted amount of time (10 minutes for problems 1-5 of each domain and
40 minutes for the others) to cover as many repetitions of the very same problem instance
as possible up to a maximum of a 100 trials. Trials differed in the random seeds resulting
in potentially different state transitions. The planners were evaluated with respect to the
number of trials ending in a goal state and the collected reward averaged over all trials.

78 4.2 FORWARD REASONING

Eight planners entered in the competition (see Sec. 4.1), including FF-Replan which
was not an official participant. For their results, which are too voluminous to be pre-
sented here, we refer the reader to the website of the competition. Below, we provide
a qualitative comparison of our methods to the results of these planners. We do not
attempt a direct quantitative comparison for several reasons. First, the different hard-
ware prevents timing comparisons. Second, competition participants have frequently
not been able to successfully cover trials of a single or all instances of a domain. It is
difficult to tell the reasons for this from the results tables: the planner might have been
overburdened by the problem, might have faced temporary technical problems with the
client-server architecture framework of the competition or could not cope with certain
PPDDL constructs which could have been rewritten in a simpler format.

Third and most importantly, we have not optimized our implementations to reuse
previous planning efforts. Instead, we fully replan for each single action (within a trial
and across trials). The competition evaluation scheme puts replanners at a disadvan-
tage (in particular those which replan each single action). Instead of replanning, a good
strategy for the competition is to spend most planning time before starting the first trial
and then reuse the resulting insights (such as conditional plans and value functions) for
all subsequent trials with a minimum of additional planning. Indeed, this strategy has
often been adopted as many trial time results indicate. We acknowledge that this is a
fair procedure to evaluate planners which compute policies over large parts of the state-
space before acting. We feel, however, that this is counter to the idea of our approaches:
UCT and (A-)PRADA are meant for flexible planning with varying goals and different
situations. Thus, what we are interested in is the average time to compute good actions
and successfully solve a problem instance when there is no prior knowledge available.

Therefore, for each single problem instance we perform 100 trials with different ran-
dom seeds using full replanning. A trial is aborted if a goal state is not reached within
some maximum number of actions varying slightly for each benchmark (about 50 ac-
tions). We present the success rates and the mean estimators of trial times, executed ac-
tions and rewards with their standard deviations in Table 4.5 for the problem instances
where at least one trial was successfully covered in reasonable time.

Search and Rescue (Table 4.5(a)) is the only domain where SST (with branching fac-
tor 1) is able to find plans within reasonable time—with significantly larger runtimes
than UCT and (A-)PRADA. The success rates and the rewards indicate that PRADA and
A-PRADA are superior to UCT and scale up to rather big problem instances. To give
an idea w.r.t. the IPPC evaluation scheme: UCT solves successfully 54 trials of the first
instance within 10 minutes with full replanning, while PRADA and A-PRADA solve all
trials with full replanning. In fact, despite of replanning each single action, PRADA and
A-PRADA show the same success rates as the best planners of the benchmark except for
the very large problem instances (within the competition, only the participants FSP-RBH
and FSP-RDH achieved comparably satisfactory results). We conjecture that the success
of our methods is due to that fact that this domain requires to account carefully for the
outcome probabilities, but does not involve very long planning horizons.

Triangle-Tireworld (Table 4.5(b)) is the only domain where UCT outperforms PRADA

4 PLANNING IN GROUND RELATIONAL DOMAINS 79

Table 4.5: Benchmarks of the IPPC 2008. The first column of a table specifies the problem
instance. Suc. is the success rate. The trial time and the number of executed actions
are given for the successful trials. Where applicable, the average reward for all trials is
shown. All results are achieved with full replanning within a trial and across trials.

(a) Search and Rescue

Planner Suc. Trial Time (s) Actions Reward

01

SST 100 37.9±0.1 9.2±0.2 1440±90
UCT 54 1.4±0.1 11.4±0.3 900±70

PRADA 100 1.1±0.1 10.5±0.4 1460±89
A-PRADA 100 1.1±0.1 10.4±0.4 1460±89

02

SST 100 220.2±0.1 9.8±0.2 1560±83
UCT 56 4.1±0.3 12.2±0.6 880±100

PRADA 100 1.6±0.1 12.9±0.7 1460±89
A-PRADA 100 1.6±0.1 12.8±0.4 1440±90

03

SST 71 955.5±0.5 9.8±0.2 1662±85
UCT 57 12.9±0.6 13.6±0.6 680±63

PRADA 99 1.4±0.1 18.0±1.0 1480±88
A-PRADA 99 1.4±0.1 17.9±1.1 1480±88

04
UCT 61 24.9±1.6 16.1±0.8 7200±57

PRADA 100 1.4±0.0 11.9±0.4 1460±89
A-PRADA 100 1.4±0.0 11.5±0.3 1500±87

05
UCT 46 40.1±2.1 16.8±1.4 600±64

PRADA 89 6.8±0.3 21.8±0.9 1240±83
A-PRADA 92 6.5±0.3 21.0±0.9 1320±81

06
UCT 39 71.7±5.6 19.5±1.3 410±59

PRADA 83 10.1±0.9 24.3±1.3 1240±90
A-PRADA 84 10.0±0.9 23.7±1.2 1240±90

07
UCT 53 230.3±13.2 21.5±1.4 540±62

PRADA 98 10.1±0.4 18.5±0.8 1470±88
A-PRADA 98 9.9±0.4 18.0±0.8 1490±87

08
UCT 34 332.9±24.1 21.71±1.5 360±59

PRADA 59 20.2±0.8 30.4±1.7 910±82
A-PRADA 59 19.9±0.8 29.9±1.7 910±82

09
UCT 30 752.8±72.3 26.4±2.4 360±48

PRADA 63 30.2±1.2 27.5±1.6 930±80
A-PRADA 65 30.0±1.1 27.5±1.6 1010±84

10 PRADA 21 97.9±10.2 26.8±2.8 180±27
A-PRADA 21 92.1±9.8 26.7±2.8 180±27

11 PRADA 17 151.7±12.3 30±2.5 250±29
A-PRADA 18 154.1±11.9 30.2±2.6 250±29

12 PRADA 38 210.8±72.1 30.1±10.5 636±253
A-PRADA 21 219.8±28.5 30.7±2.8 556±55

(b) Triangle-Tireworld

Planner Suc. Trial Time (s) Actions

01

SST 0 – –
UCT 100 9.9±0.3 6.9±0.2

PRADA 100 8.5±0.2 6.4±0.2
A-PRADA 100 8.0±0.2 6.1±0.2

02
UCT 100 64.1±2.2 12.4±0.3

PRADA 57 30.1±0.7 9±0.2
A-PRADA 65 33.7±0.8 11.4±0.3

03
UCT 89 390.5±8.5 18.6±0.4

PRADA 19 119.2±4.9 12.3±0.5
A-PRADA 21 121.0±5.3 14.3±0.7

04
UCT 82 1497±19 26.0±0.5

PRADA 6 2967±143 17.5±1.1
A-PRADA 4 244.2±43.6 15.5±2.8

(c) Blocksworld

Planner Suc. Trial Time (s) Actions Reward

01

SST 0 – – –
UCT 0 – – –

PRADA 53 17.8±0.4 23.0±0.7 0.8±0.0
A-PRADA 63 18.4±0.5 22.3±0.8 0.6±0.0

03 PRADA 10 57.0±3.3 21.5±1.8 -9.6±0.0

(d) Boxworld

Planner Suc. Trial Time (s) Actions Reward

01

SST 0 – – –
UCT 0 – – –

PRADA 100 257.8±6.3 46.8±1.0 1.00±0.0
A-PRADA 100 143.8±3.1 43.1±1.1 1.00±0.0

02 PRADA 100 285.2±7.8 46.2±1.3 20.00±0.0
A-PRADA 100 215.8±4.2 39.6±0.9 20.00±0.0

03
UCT 100 1285.2±8.1 32.8±0.0 929.8±2.1

PRADA 100 165.7±2.9 52.5±1.1 865.1±3.3
A-PRADA 50 457.8±7.1 35.0±0.7 754.1±21.5

04 PRADA 28 959.0±35.5 76.1±3.2 0.3±0.5
A-PRADA 60 519.2±15.3 72.0±2.4 0.6±0.1

05
UCT 54 9972±776 37.9±3.5 606±149

PRADA 61 345.4±8.5 68.4±1.6 465±24
A-PRADA 2 528.6±38.8 38.0±0.0 411±34

08 PRADA 3 3361±88 87.0±2.3 0.19±0.1
A-PRADA 10 1579±48 85.3±2.7 0.29±0.3

09 PRADA 28 1449±25 85.9±1.5 1365±31
A-PRADA 0 – (1750.3) – 1126±30

(e) Exploding Blocksworld

Planner Suc. Trial Time (s) Actions

01

SST 5 8607±1224 9.6±0.6
UCT 3 111.8±14.0 9.3±0.4

PRADA 62 3.6±0.0 8.6±0.8
A-PRADA 61 3.9±0.0 8.4±0.8

02 PRADA 28 11.9±0.3 14.4±0.5
A-PRADA 29 12.7±0.2 13.2±0.5

03 PRADA 36 14.3±0.3 12.6±0.6
A-PRADA 30 16.8±0.3 12.5±0.5

04 PRADA 27 30.3±1.2 14.8±0.5
A-PRADA 26 14.9±1.1 15.2±0.5

05 PRADA 100 5.5±0.1 6.6±0.1
A-PRADA 100 5.5±0.1 6.6±0.1

06 PRADA 51 128.5±2.9 16.9±0.7
A-PRADA 61 97.5±5.3 17.3±0.8

07 PRADA 14 125.0±6.9 15.3±0.4
A-PRADA 72 154.8±5.5 17.6±1.0

80 4.2 FORWARD REASONING

and A-PRADA, although at a higher computational cost. The more depth-first-like style
of planning of UCT seems useful in this domain. To give an idea w.r.t. the IPPC eval-
uation scheme: UCT performs 60 successful trials of the first instance within 10 min-
utes, while PRADA and A-PRADA achieve 72 and 74 trials resp. using full replanning;
but UCT solves more trials in the more difficult instances. The required planning hori-
zons increase quickly with the problem instances. Our approaches cannot cope with the
large problem instances, which only three competition participants (RFF-BG, RFF-PG,
HMDPP) could cover.

Our methods face problems when the required planning horizons are very large,
while the number of plans with non-zero probability is small. This becomes evident
in the Blocksworld benchmark (Table 4.5(c)). This domain is different from the robot
manipulation environment used in our first evaluation described above. The latter is
considerably more stochastic and provides more actions in a given situation (e.g., we
may grab objects within a pile). Blocksworld is the only domain where our approaches
are inferior to FF-Replan. To give an idea w.r.t. the IPPC evaluation scheme: UCT does
not perform a single successful trial of the first instance within 10 minutes, while PRADA
and A-PRADA achieve 16 and 17 trials resp. using full replanning.

In the Boxworld domain (Table 4.5(d)), our approaches can exploit the fact that the
delivery of boxes is (almost) independent of the delivery of other boxes (in most prob-
lem instances this is further helped by the intermediate rewards for delivered boxes). In
contrast to UCT, PRADA and A-PRADA scale up to relatively large problem instances.
PRADA and A-PRADA solve all 100 trials of the first problem instance, requiring on
average 4.3 min and 2.4 min resp. with full replanning. Only two competition partic-
ipants solved trials successfully in this domain (RFF-BG and RFF-PG). To give an idea
w.r.t. the IPPC evaluation scheme: UCT does not perform a single successful trial within
10 minutes, while PRADA completes 2 and A-PRADA 4 trials. This small number can
be explained by the large plan lengths where each single action is computed with full
replanning.

Finally, in the Exploding Blocksworld domain (Table 4.5(e)) PRADA and A-PRADA
perform better or as good as the competition participants. To give an idea w.r.t. the IPPC
evaluation scheme: UCT achieves only a single successful trial within 10 minutes, while
PRADA and A-PRADA complete 56 and 61 trials resp..

We did not perform any experiments in either the SysAdmin or the Schedule do-
main. Their PPDDL specifications cannot be converted into NID rules due to the in-
volved universal effects. In contrast, this has been possible for the Boxworld domain
despite of the universal effects there: in the Boxworld problem instances, the universally
quantified variables always refer to exactly one object which we exploit for conversion to
NID rules. (Note that this can be understood as a trick to implement deictic references in
PPDDL by means of universal effects. The according action operator, however, has odd
semantics: boxes could end up in two different cities at the same time.) Furthermore, we
ignored the Rectangle-Tireworld domain, which together with the Triangle-Tireworld
domain makes up the 2-Tireworlds benchmark, as its problem instances have faulty goal
descriptions: They should include not(dead) (this has not been critical to name a winner

4 PLANNING IN GROUND RELATIONAL DOMAINS 81

in the competition as personally communicated by Olivier Buffet).

Summary The majority of the PPDDL descriptions of the IPPC benchmarks can be con-
verted into NID rules, indicating the broad spectrum of planning problems which can be
covered by NID rules. Our results demonstrate that our approaches perform compara-
bly to or better than state-of-the-art planners on many traditional hand-crafted planning
problems. This hints at the generality of our methods for probabilistic planning beyond
the type of robotic manipulation domains considered above. Our methods perform par-
ticularly well in domains where outcome probabilities need to be carefully accounted
for. They face problems when the required planning horizons are very large, while the
number of plans with non-zero probability is small; this can be avoided by intermediate
rewards.

4.2.4 Conclusions and Future Work

We have presented two approaches for planning based on forward reasoning with prob-
abilistic relational rules in ground relational domains. Our methods are designed to
work on learned rules which provide approximate partial models of noisy worlds. Our
first approach is an adaptation of the UCT algorithm which samples look-ahead trees
to cope with action stochasticity. Our second approach, called PRADA, models the un-
certainty over states explicitly in terms of beliefs and employs approximate inference
in graphical models for planning. When we combine our planning algorithms with an
existing rule learning algorithm, an intelligent agent can (i) learn a compact transition
model of the dynamics of a complex noisy environment and (ii) quickly derive appropri-
ate actions for varying goals. Results in a complex simulated robotics domain show that
our methods outperform the state-of-the-art planner FF-Replan on a number of different
planning tasks. In contrast to FF-Replan, our methods reason over the probabilities of
action outcomes. This is necessary if the world dynamics are noisy and only partial and
approximate transition models are available.

However, our planners also perform remarkably well on many traditional proba-
bilistic planning problems. This is demonstrated by our results on IPPC benchmarks,
where we have shown that PPDDL descriptions can be converted to a large extent to the
kind of rules our planners use. This hints at the general-purpose character of particu-
larly PRADA and the potential benefits of its techniques for probabilistic planning. For
instance, our methods can be expected to perform similarly well in large propositional
MDPs which do not exhibit a relational structure.

So far, our planning approaches deal in reasonable time with problems containing
up to 10-15 objects (implying billions of world states) and requiring planning horizons
of up to 15-20 time-steps. Nonetheless, our approaches are still limited in that they rely
on reasoning in the ground representation. If very many objects need to be represented,
our approaches need to be combined with other methods that reduce state and action
space complexity (confer Sec. 4.4).

In its current form, the approximate inference procedure of PRADA relies on the

82 4.3 PROBABILISTIC BACKWARD AND FORWARD REASONING

specific compact DBNs compiled from rules. The development of similar factored fron-
tier filters for arbitrary DBNs, for example derived from more general PPDDL descrip-
tions, is promising. Similarly, the adaptation of PRADA’s factored frontier techniques
into existing probabilistic planners is worth of investigation. An important direction for
improving PRADA is to make it adapt its action-sequence sampling strategy to the expe-
rience of previous samples. We have introduced a very simple extension, A-PRADA, to
achieve this, but more sophisticated methods are conceivable. Learning rule-sets online
and exploiting them immediately by our planning method is also an important direction
of future research in order to enable acting in the real world, where we want to behave
effectively right from the start. Approaches in this direction are presented in Chapter 5.

We explore two promising extensions of using approximate inference for planning
in the next sections. In Sec. 4.3, we investigate using probabilistic relational rules and
inference for backward reasoning. In Sec. 4.5, we investigate relational planning by in-
ference which conditions on rewards and uses inference to compute a policy in form of
posteriors over actions, instead of using inference to evaluate action sequences as done
by PRADA.

4.3 Probabilistic Backward and Forward Reasoning

Combining forward with backward reasoning has the potential to greatly improve plan-
ning accuracy and efficiency. First, backward reasoning may drastically prune the search
space of action sequences, as illustrated in Fig. 4.6(a): instead of search spaces which are
exponential in the length d of the complete plans, we only have to consider search spaces
which are exponential in d

2 . Furthermore, backward reasoning is particularly useful in
problems where the number of possible actions close to goal states is small in compari-
son to the start state, as illustrated in Fig. 4.6(b). Consider for instance the goal to build
a tower from objects which are initially scattered over a table. The last action has to put
the top object on the tower, while in the initial state any object could be grabbed.

So far, however, backward reasoning in ground relational domains has largely fo-
cused on non-probabilistic domains where action outcomes are not probabilistically de-
termined. Classical approaches use regression techniques to map action operators and
state variables to formulas describing the conditions under which a variable becomes
true (Rintanen, 2008).

Bidirectional inference in graphical models has emerged as a promising technique for
planning in non-relational domains. The forward reasoning approach PRADA described
in the previous section uses forward inference in dynamic Bayesian networks compiled
from learned probabilistic relational rules. Backward reasoning in ground relational do-
mains using probabilistic inference has not been investigated yet. Previous approaches
such as the forward-backward algorithm in Hidden Markov models (HMMs) (Rabiner,
1989) and the planning by inference paradigm (Toussaint and Storkey, 2006) in non-
relational MDPs work in limited small state spaces and are not applicable in DBNs for
ground relational domains, where exact inference is infeasible. The factored frontier in-
ference of PRADA cannot be used directly for backpropagation, either. A core challenge

4 PLANNING IN GROUND RELATIONAL DOMAINS 83

(a) (b)

Figure 4.6: Backward reasoning can improve the accuracy and efficiency of planning
from a start state s0 to a goal state U through the search space of states (light yellow
areas). (a) Instead of the larger space of forward only search (left), combined forward and
backward reasoning (right) has to search only through two search spaces exponential in
d
2 (A is the number of actions) . (b) The number of potential actions close to goal states,
that is the search space around U, may be smaller than close to s0.

is how to condition the state distribution at the last time-step on receiving a high re-
ward when using approximate inference. This problem arises in particular for complex
abstract reward dependencies such as partial goal descriptions.

We make three contributions to overcome these problems (Lang and Toussaint, 2010a):
(i) We show how to use NID rules to learn a probabilistic backward model. (ii) We model
arbitrary (partial) goal descriptions with a mixture state distribution and derive a prob-
abilistic backward reasoning procedure. (iii) We introduce a two-filter (Solo, 1982) infer-
ence method to use bidirectional reasoning for planning in stochastic relational domains.
We perform experiments in the robot manipulation domain (see Sec. 1.1.1). Empirical
results show that bidirectional probabilistic reasoning can lead to more efficient and ac-
curate planning in comparison to pure forward reasoning.

We proceed as follows. In Sec. 4.3.1, we present our two-filter using backward rea-
soning with NID rules. In Sec. 4.3.2, we introduce the bidirectional reasoning approach.
Then, we show our experimental results in Sec. 4.3.3, before we discuss the main points.

4.3.1 Two-Filter Smoothing using Backward NID Rules

We propose to adapt PRADA for backward reasoning using NID rules. Then, we can
exploit the knowledge about the reward for planning.

Backward Messages for a Two-Filter

Existing approaches for combining probabilistic backward and forward reasoning cal-
culate smoothed state posteriors conditioned on a sequence of observed variables. Ex-
amples are the forward-backward algorithm in HMMs (Rabiner, 1989) or Expectation-
Maximization used for planning by inference in small state spaces (Toussaint and Storkey,
2006). Here, we want to calculate posteriors P (st, UT |a0:T−1) where T is the last time-

84 4.3 PROBABILISTIC BACKWARD AND FORWARD REASONING

(a) Forward DBN (b) Backward DBN

Figure 4.7: (a) PRADA converts NID rules into a forward DBN to predict the effects of
action sequences. (b) For backward reasoning, we use a second DBN with the same state,
action and reward variables, but different rule variables (ΦB

i , ΓB and OB) according to
the backward rules.

step which we can use to evaluate an action-sequence by

P (UT |a0:T−1) =
∑
st

P (st, UT |a0:T−1) .

These posteriors can be calculated by means of forward messages

αa0:t−1(st) := P (st |a0:t−1)

and backward messages

βat:T−1(st) := P (UT | st,at:T−1)

such that P (UT , st |a0:T−1) = αa0:t−1(st) · βat:T−1(st).
It is intractable to calculate these messages exactly in relational domains due to the

immense state spaces. PRADA calculates the forward messages α approximately using
a factored frontier filter. Unfortunately, PRADA’s specific factored frontier equations
only work for forward reasoning in the graphical model re-shown for convenience in
Fig. 4.7(a) and cannot be applied for calculating the likelihood backward messages β. We
might use rejection sampling in PRADA’s forward DBN, but this is highly inefficient. It
is in general unclear how to calculate the β even approximately in a tractable way in all
but the smallest state spaces. Therefore, as an alternative we propose a filtering approach
for backward reasoning. We use PRADA in reversed order, providing us with messages
β̂at:T−1(st) := P (st |at:T−1, UT). This requires a set of backward NID rules from which
we can build a backward DBN as shown in Fig. 4.7(b) and apply PRADA’s factored
frontier inference.

A two-filter (Solo, 1982; Briers et al., 2009) uses the resulting messages β̂ to approxi-

4 PLANNING IN GROUND RELATIONAL DOMAINS 85

mate the likelihood messages β,

βat:T−1(st) = P (UT | st,at:T−1)

=
P (st |UT ,at:T−1)P (UT |at:T−1)

P (st |at:T−1)

=
P (st |UT ,at:T−1)P (UT |at:T−1)

P (st)

≈ P (st |UT ,at:T−1)P (UT)

P (s)

∝ P (st |UT ,at:T−1) = β̂at:T−1(st) .

The approximations of this two-filter are due to the intractable state distributions P (st) at
specific time-steps t, also required to account for the dependencies of UT on at:T−1. Since
in planning we are interested in ranking different action sequences a, we can drop the
likewise intractable reward marginal P (UT), as we can drop P (s) assuming a uniform
state prior.

Backward Rules

To use PRADA for backward filtering, we require a set of backward NID rules to define
a distribution P (s | s′, a) over predecessor states s if an action a was applied before the
current state s′. These rules take exactly the same form as in the forward case, only the
semantics are changed. Given a forward model, one might try to invert the according
rules. How to account for the special characteristics of NID rules such as uniqueness and
noise outcomes in this case is unclear, however. As our forward models are learned and
thus in any event approximations of the true underlying dynamics, we propose to learn
the backward rules directly from data as well. This has the advantage that we can use
the same algorithm which we already use for learning the forward rules. We only have
to provide the experience triples in reversed order (s′, a, s).

Depending on the domain, state transitions may be easier to model in one direction
than the other. This may affect the deictic references in NID rules which may be unique
only in one direction. Consider for instance the unary predicate pickup(X) (Fig. 4.8).
A forward rule could use a deictic reference Y to describe where X was taken from
which is required to conclude ¬on(X,Y) for the successor state. When reasoning back-
ward, looking only at the successor state s′, it is impossible to determine Y . This can
be solved by increasing the arity of the action predicate so that less deictic references
need to be resolved. For this reason, in our experiments we will use binary action pred-
icates takefrom(X,Y) and dropabove(X,Y) instead of pickup(X) and puton(Y)—while
still allowing for deictic referencing to third or fourth objects. An exemplary rule for
dropabove(X,Y) is shown in Table 4.6.

At first glance, one might suspect that extending the action predicate arity increases
the planning complexity due to the increased action space. This is resolved, however,
when using a policy that only considers actions with unique rules. As we regularize

86 4.3 PROBABILISTIC BACKWARD AND FORWARD REASONING

Figure 4.8: Using a unary action predicate pickup(a), it is impossible to deduce from the
successor state (via a deictic reference) whether awas taken from b or c. This information
is captured explicitly in the binary action predicate takefrom(a, b). Due to its action
sampling strategy, extending the arity of actions does not influence PRADA’s planning
efficiency.

our rule learning procedure, the learned rules model typical state transitions. Thus, a
planner using these rules takes actions only in frequently observed contexts into account,
effectively pruning large parts of the action space in a given situation. Furthermore,
determining all unique covering rules has the same computational cost, independently
of whether Y is used as a second action argument or as a deictic reference.

4.3.2 Backward-Forward Reasoning

We use a two-filter to plan in stochastic relational domains. Given a backward model
B ≡ P (s | s′, a) in form of NID rules for a state s, an action a and successor state s′, we
apply PRADA first to reason backward to estimate a distribution of states backward-
reachable from goal states. Then, we use a second set of NID rules specifying a forward
model A ≡ P (s′ | s, a) to reason forward from the initial state to find action sequences
leading to states close to a goal state.

Table 4.6: Example NID rule for a robot manipulation scenario with binary actions,
which models dropping an object X over an object Y in a situation where Y is below
an object Z (deictic referencing). With high probability, X will land on Z, but might also
fall on the table. With a small probability something unpredictable happens.

dropabove(X,Y) : inhand(X), on(Z, Y), table(T)

→

 0.6 : on(X,Z), ¬inhand(X)
0.3 : on(X,T), ¬inhand(X)
0.1 : noise

4 PLANNING IN GROUND RELATIONAL DOMAINS 87

Goal State Distributions

For probabilistic backward reasoning, we require a state distribution at the last time-step
T . We are interested in states achieving a high reward, namely

β̂T (s) := P (s |UT) .

In contrast to previous work on planning by inference, we cannot calculate β̂T (s) exactly
in relational domains due to the large state spaces. Thus, we approximate it with a
factored frontier β̂T (s) ≈

∏
i β̂

T (si).
If the goal fully specifies the final state, setting the marginals β̂T (si) to their determin-

istic values is straightforward. If the goal is defined in terms of a partial state description
in form of a conjunction ξ of literals, only some state attributes sξ ⊂ s have deterministic
values. The situation becomes more difficult to deal with if the goal is specified in terms
of literals of a derived predicate, corresponding to formulas over primitive predicates,
such as existentially quantified goals. Consider for instance the goal to stack the cubes
{a, b, c} in any order. In this case, the clearly dissimilar states s1 = {on(a, b), on(b, c)}
and s2 = {on(c, b), on(b, a)} yield the same reward. If we approximate the final state be-
lief by marginals, we lose the crucial correlations among the variables. This is a general
problem in backward reasoning and arises likewise in non-probabilistic and proposi-
tional domains. A common strategy there is to pick arbitrary grounded forms of the
goal, for instance choosing s1 in the example above. This has the pitfall that some goal
groundings may not be reachable or more costly to reach from the given state. To avoid
these problems and achieve a closer approximation of the goal state distribution β̂T , we
approximate it by means of a mixture model with individual components β̂Tc ,

β̂T (sT) ≈ 1

C

C∑
c=1

β̂Tc (sT). (4.21)

The components c are built from conjunctions ξc over ground literals of primitive pred-
icates and functions which partially describe world states achieving high reward. For
instance, ξc might define the tower in s2 above. We choose these formulas ξc without
taking the initial state s0 or knowledge about actions in terms of rules into account—to
separate this clearly from planning. Concerning unspecified properties of the final state,
we use a prior PF (s) and define the component β̂Tc as

β̂Tc (s) ∝ δs,ξc P
F (s), δs,ξc =

{
1 if s
 ξc
0 otherwise

.

We choose PF (s) such that states close to the initial state s0 are highly probable. This
is inspired by traditional AI backward reasoning: there, state variables not in ξc are left
unspecified until either they need to be set as required by the preconditions of a rule
during backward search or until the initial state is achieved in which case all unspecified
variables in the final state implicitly get set to their values in the initial state. This as-
sumption is also advantageous for the factored frontier as the repeated multiplication of
small probabilities (such as uninformed 0.5 for binary variables) may lead to very small
rule context probabilities, decreasing the probabilities of unique rules.

88 4.3 PROBABILISTIC BACKWARD AND FORWARD REASONING

Backward Messages

For each component β̂Tc of the mixture model approximation of β̂T given in Eq. (4.21),
we sample N backward action sequences bci = (bT−1

ci , . . . , bT−D←ci) of horizon D← using
PRADA and the backward model B, where we set β̂Tc as the initial state distribution.
One such sample bci results in the distribution β̂tbci(s

t) = P (st |bci, ξc, UT). We do not
want to evaluate a forward action sequence a with each backward action sequence bci
individually. Hence, we approximate state posteriors β̂t(st) = P (st |UT) generalizing
over concrete action sequences as

β̂t(st) ≈ 1

C

C∑
c=1

1

N

N∑
i=1

β̂tbci(s
t) .

The resulting β̂ define the probability of states according to backward reasoning from
the goal state mixture distribution β̂T using PRADA’s action sampling strategy. They
quantify which states are actually backward reachable from goal states.

Evaluating Forward Sequences

Having calculated the backward messages β̂t(st), we sample forward action sequences
a0:t−1 using the forward modelA and PRADA yielding messagesαa0:t−1(st) = P (st |a0:t−1).
For each a we are interested in its suitability to achieve a goal state at time T with t ≤ T .
We use the two-filter of Sec. 4.3.1 with the backward state distribution from above to
calculate

P (UT |a0:t−1) =
∑
st

P (st |a0:t−1)P (UT | st)

∝
∼

∑
st

αa0:t−1(st) β̂T−t(st) .

Representing the messages by means of factored frontiers α(s) =
∏
i α(si) and β̂(s) =∏

i β̂(si) (dropping indices for clarity), where i ranges over the individual state attributes,
we calculate this sum over message products as∑

s

α(s)β̂(s) =
∑
s

∏
i

α(si)β̂(si)

=
∏
i

∑
si

α(si)β̂(si)

=
∏
i

∑
si

α(si)
1

C

C∑
c=1

β̂c(si)

=
∏
i

1

C

∑
si

α(si)

C∑
c=1

β̂c(si) .

4 PLANNING IN GROUND RELATIONAL DOMAINS 89

Action Selection

For a set A = {a1, . . . ,aM} of forward action sequence samples of length D→, we deter-
mine the best action sequence a∗ defined as

a∗ = argmax
a∈A

P (U |a)

= argmax
a∈A

max
0<t≤D→

∑
T

P (T) P (UT |a0:t−1),

≈ argmax
a∈A

max
0<t≤D→

∑
T

γT
∑
st

αa0:t−1(st)β̂T−t(st) ,

where we take different horizons T to achieve a goal state into account, discounting them
with P (T) = γT with 0 < γ < 1 to favour smaller horizons.

4.3.3 Evaluation

We compare our backward-forward reasoning approach PRADA� to the purely for-
ward approaches Upper Confidence Bounds on Trees (UCT) (Kocsis and Szepesvari,
2006), PRADA→ and A-PRADA→ (see Sec. 4.2). If rules contain probabilistically domi-
nant outcomes, UCT can be viewed as almost making the corresponding state transitions
deterministic. Our test domain is the robot manipulation scenario where a robot manip-
ulates cubes, balls and boxes scattered on a table.

We employ the rule learning algorithm of Pasula et al. with the same parameter set-
tings to learn forward and backward action models in form of fully abstract NID rules
from training sets of 500 experience triples each. Training data to learn rules are gener-
ated in a world of two boxes, six cubes and four balls of two different sizes by performing
random actions with a slight bias to build high piles. Learning a backward model is more
difficult as deictic references can often not be uniquely resolved (cf. Sec. 4.3.1). We sus-
pect this to be a domain-specific characteristic rather than a general directional bias (see
Massey (1999) for a discussion of the metaphysics of directionality in planning). The re-
sulting backward models are compact and cover the standard situations that arise in the
tasks (such as lifting a clear object). We learn one backward model (9 abstract rules) and
three different forward models (12-14 abstract rules) from independent training data.

We perform three experiments. In each experiment, we investigate different worlds
with varying numbers of objects. For each object number we create five start situations
with different objects. Per rule-set combination and start situation, we perform three
independent runs with different random seeds. For evaluation, we compute the mean
planning times and performances over the fixed (but randomly generated) set of 45 test
scenarios (3 learned forward rule-sets, 1 learned backward rule-set, 5 situations, 3 random
seeds). In all experiments, we use deliberately overestimated planning horizons D as
these can’t be known apriori. For PRADA�, we set D← and D→ each equal to 1

2D.

Clearance The goal in our first experiment is to clear up the objects which are scattered
over the desktop. An object is defined to be cleared if it is piled with all objects of the

90 4.3 PROBABILISTIC BACKWARD AND FORWARD REASONING

Table 4.7: Clearance problem. Obj. denotes the object number (cubes/balls and table) and
Reward the discounted total reward, which is 0 for performing no actions. PRADA� is
the proposed bidirectional reasoning approach.

Obj. Planner Reward Trial time (s)

6+1 UCT 32.13±0.41 31.85±1.47
6+1 PRADA→ 53.76±0.45 7.64±1.34
6+1 A-PRADA→ 53.11±0.35 17.11±1.34
6+1 PRADA� 54.10±0.48 14.48±1.41

8+1 UCT 15.05±0.70 166.05±6.36
8+1 PRADA→ 31.33±0.94 65.90±1.00
8+1 A-PRADA→ 32.23±0.97 76.97±1.47
8+1 PRADA� 33.12±1.09 65.91±2.01

10+1 UCT 32.15±0.97 1148.81±29.83
10+1 PRADA→ 97.25±1.96 426.84±16.41
10+1 A-PRADA→ 88.40±1.75 444.46±11.10
10+1 PRADA� 111.34±1.96 399.04±6.04

Table 4.8: Reverse tower problem. Suc. is the success rate and Actions the number of used
actions in case of success. PRADA� is the proposed bidirectional reasoning approach.

Obj. Planner Suc. Trial time (s) Actions
5+1 UCT 0.0 > 1h –
5+1 PRADA→ 0.91 16.38±1.74 11.85±1.21
5+1 A-PRADA→ 0.89 18.12±1.88 12.43±1.27
5+1 PRADA� 0.93 10.69±0.47 10.12±0.47

6+1 PRADA→ 0.80 24.27±1.27 12.06±0.67
6+1 A-PRADA→ 0.89 27.59±2.28 12.62±0.93
6+1 PRADA� 0.83 18.20±0.80 12.26±0.47

7+1 PRADA→ 0.62 129.83±8.44 14.75±0.80
7+1 A-PRADA→ 0.60 123.20±5.70 13.70±0.60
7+1 PRADA� 0.58 99.91±5.23 14.77±0.87

same color. In our experiments, 2-4 objects have the same color with at most 1 ball (to
enable successful piling). The starting situations contain piles, but only with objects of
different colors. We let the robot perform 20 actions in worlds of 6 objects (in addition
to the table), 30 for 8 and 40 for 10 objects. We emphasize that we did not use any
world knowledge to set the goal state mixture distribution for PRADA�. In particular,
the mixtures also contain clearly impossible situations (as could be deduced from the
rules), for examples piles where balls are the lowest objects. Table 4.7 shows our results.
UCT performs worst even when admitted very long planning times. We controlled the
other approaches to have about the same planning time. In this rather easy planning
problem not requiring long horizons, the additional computational overhead of combing
forward and backward reasoning starts to pay off in worlds of 10 objects. Then, the
planning problem has achieved a certain level of complexity (a very large state space)
and PRADA� performs significantly better than the pure forward approaches.

4 PLANNING IN GROUND RELATIONAL DOMAINS 91

Table 4.9: Box tower problem. Obj. denotes the number of objects (cubes/balls, boxes and
table), Suc. the success rate and Actions the number of used actions in case of success.
PRADA� is the proposed bidirectional reasoning approach.

Obj. Planner Suc. Trial time (s) Actions

3+3+1 UCT 0.29 331.94±2.13 7.62±0.27
3+3+1 PRADA→ 0.84 12.64±0.20 11.53±1.14
3+3+1 A-PRADA→ 0.82 11.89±0.17 10.51±0.94
3+3+1 PRADA� 0.91 10.09±0.22 14.66±2.14

4+3+1 UCT 0.0 > 1h –
4+3+1 PRADA→ 0.67 29.33±0.51 17.50±1.94
4+3+1 A-PRADA→ 0.67 31.52±0.39 14.90±1.21
4+3+1 PRADA� 0.73 22.98±0.46 12.36±1.68

5+3+1 PRADA→ 0.40 72.09±1.39 25.22±2.35
5+3+1 A-PRADA→ 0.38 64.58±1.68 21.88±2.75
5+3+1 PRADA� 0.51 61.03±1.06 17.35±1.55

Reverse Tower The goal is to reverse a tower of c cubes. This is a difficult planning task
requiring a long planning horizon. (Depending on the available rule-sets, the minimum
horizon may be less than 2c as the robot may predict that a cube on top of the grabbed
cube may land on the table.) We set a limit of 50 actions on each trial. Table 4.8 presents
our results. UCT cannot be used for this task requiring over an hour for a trial. To achieve
about the same performance as PRADA�, the forward PRADA approaches need 25-70%
more planning time. Backward reasoning prunes the search-space and hence speeds up
planning.

Box Tower The goal is to build a specific tower of cubes and balls on one of three
available boxes, no matter which one. All boxes are closed in the beginning. One of
them contains the object which shall be on top of the goal tower. All the other objects are
scattered on the table. This is a difficult planning problem as the robot may erroneously
start building the desired tower just on the filled box before taking out the required
object. As above, no specific world knowledge is used to construct the goal state mixture
of PRADA� which may also contain components where the desired tower is built on
the filled box, increasing planning difficulty. The minimum number of required actions
is 1 + 2 · o where o is the number of objects (besides the box) in the target tower. We
set a limit of 50 actions on each trial. Table 4.9 presents our results. As above, UCT
is not competitive. PRADA� always has the highest success rate—while at the same
time requiring the smallest planning times. Backward reasoning is particularly useful
in this scenario as the number of possible actions is comparatively small in goal states
in comparison to start states. This is also reflected in the smaller number of executed
actions to achieve a goal state in worlds with many objects.

92 4.4 RELEVANCE GROUNDING

4.3.4 Conclusions and Future Work

We have introduced an approach for bidirectional reasoning in ground stochastic re-
lational domains based on probabilistic two-filter inference which combines forward
and backward reasoning. Our empirical results show that by exploiting the knowledge
about high reward states, we can significantly increase both planning accuracy and effi-
ciency. Finding appropriate mixture models to approximate goal state beliefs to account
for partial goal descriptions is a major topic of future research. Also, in a more tradi-
tional planning sense one might investigate using the backward messages as proposal
distribution for biasing the forward messages for search. Furthermore, investigating the
relationships to lifted backward reasoning as is done in symbolic dynamic programming
(Boutilier et al., 2001) would provide many insights.

4.4 Relevance Grounding

Complex environments typically contain very many objects. Consider for example a
household robot that has to represent all kinds of furniture, dishes, house inventory and
the like together with their properties and relationships. Such realistic domains comprise
state spaces that are exponential in the number of represented objects and large sets of
stochastic actions. Probabilistic relational models describe the action effects and state
transitions compactly in terms of abstract logical formulas, but how to exploit this model
compactness for planning remains a major challenge. Planning in the fully grounded
representation can become inefficient if the number of objects grows very large. This
problem is often simply ignored by designing the domain carefully to only contain those
domain aspects which are relevant for successful planning. For truly autonomous agents
operating continuously with changing tasks, however, we require principled ways to
make planning in complex environments tractable.

Models of human cognition provide an inspiring idea of how one may plan in a
highly complex world. Humans are often assumed to possess declarative world knowl-
edge about the types of objects they encounter in daily life (Anderson, 1993) which is
presumably stored in the long-term memory. For instance, they know that piling dishes
succeeds the better the more exactly aligned these dishes are. This abstract knowledge
is independent of any concrete dish instance or other unrelated objects (such as lamps
and cars) and is akin to abstract probabilistic relational models. When planning, human
beings may reason about objects according to their abstract world knowledge (Botvinick
and An, 2009) by grounding their abstract world model with respect to these objects
(Fig. 4.9). Such reasoning is often assumed to take place in the working memory, a cog-
nitive system functioning as a work-space in which recently acquired sensory informa-
tion and information from long-term memory are processed for further action such as
decision-making (Baddeley, 1999; Ruchkin et al., 2003). This system has limited capacity
and thus humans are limited in their capacity to concurrently reason about or mentally
manipulate several explicit objects at the same time.2 But concurrent reasoning about

2For instance, the classical literature on the working memory capacity for concurrent reasoning speaks

4 PLANNING IN GROUND RELATIONAL DOMAINS 93

Figure 4.9: A model of human cognition. To solve a planning task, humans use their abstract
knowledge in the long-term memory to build a concrete working model with the task-
relevant objects.

very many objects may—in real-world tasks—not be necessary. Rather, successful plan-
ning typically involves only a small subset of relevant objects: humans only take those
objects into account which they deem relevant for the problem at hand. For example,
when planning to prepare a cup of tea, they do not consider the frying pan in the shelf
or a soccer ball in the garage. One can view this as grounding the abstract world knowl-
edge only with respect to these relevant objects, thereby enabling tractable planning. In
the planning-by-inference paradigm this corresponds to the approach of instantiating
(grounding) the abstract knowledge only for a limited number of explicit objects to form
a grounded dynamic Bayesian network.

In this section, we take up this idea and exploit the great advantage of abstract re-
lational world models to be applicable to arbitrary subsets of objects and introduce the
framework of relevance grounding (Lang and Toussaint, 2009a). First, we define ob-
ject relevance in terms of a graphical model. This allows us then to prove consistency
between repeated planning in partially grounded models restricted to relevant objects
and planning in the fully grounded model. Thereby, we reformulate the original in-
tractable problem into tractable versions where we can apply any efficient planning
method to solve our problem at hand, enabling real-time planning and planning with
quickly changing goals. Empirical results in our robotic manipulation scenario using a
learned world model show the effectiveness of our approach.

The remainder of this section is organized as follows. In the next section, we intro-
duce a formal model of relevance grounding in terms of a graphical model. In Sec. 4.4.2,
we provide a definition of object relevance. In Sec. 4.4.3, we present our algorithm which
exploits relevance grounding. We briefly touch on learning object relevance in Sec. 4.4.4
and then provide an empirical evaluation. Finally, in Sec. 4.4.6 we discuss related work
before we conclude.

of the “magic number” being about seven (Miller, 1956). Many more modern studies argue for different
numbers in different contexts, but confirm the capacity limitation in principle.

94 4.4 RELEVANCE GROUNDING

4.4.1 A Formal Model of Relevance Grounding

Grounding a relational representation language L w.r.t. all objects O of a domain re-
sults in a state space that is exponential in |O|. Thus, evaluating an action sequence is
exponential in |O|. Furthermore, the set of ground actions and thus the search space of
plans scales with the number of objects. (Planning is even further complicated due to the
stochasticity of actions.) Planning is only tractable in case |O| is very small. In most real-
istic scenarios, |O| is rather large, however. Fortunately, it often suffices to take only the
objects that are relevant for the planning problem into account. In the following model,
we formalize the idea relevance grounding in a systematic way. We introduce a proba-
bilistic model which expresses the coupling between state sequences, action sequences,
objects and rewards. This model will help to formalize what planning with subsets of
objects implies. In particular, we will be able to derive results on planning with subsets
of objects—which corresponds to conditioning on object sets o.

By Γ we denote the model grounded for all objects, including the complete state
and action space (all ground atoms w.r.t.O), which defines the state transition dynamics
according to some given relational transition model M. Let a = (a1, . . . , aT) denote a
plan, i.e., a sequence of actions. Let s = (s1, . . . , sT) denote a sequence of encountered
states. We assume that in a given trial (s,a) certain objects are relevant while others
are not. For example, an object o is relevant if it is an argument of one of the actions
in a. We give a concrete definition of object relevance in Sec. 4.4.2. For now, we only
assume that, in general, object relevance can be expressed by a conditional probability
P (o|s,a) where o is a random variable referring to a subset of O. Let u denote the event
of achieving a reward at the end of a trial3. We assume the following joint distribution
over these random variables representing the graphical model shown in Fig. 4.10:

P (u,o, s,a; Γ) = P (u | s,a; Γ)P (o | s,a; Γ)P (s |a; Γ)P (a; Γ) . (4.22)

Note that all conditional distributions depend on the model Γ. In absence of goals or
rewards, we assume a uniform prior over plans P (a; Γ), discounted by their length T by
a discount factor 0<γ< 1 (see footnote 3). In the following, we will eliminate s, that is,
we consider

P (u,o,a; Γ) =
∑
s

P (u,o, s,a; Γ) = P (u |o,a; Γ)P (o |a; Γ)P (a; Γ) ,

where u now conditionally depends on o.
Generally, planning requires finding the maximizing argument a∗ of the following

distribution:

P (a |u; Γ) ∝ P (u |a ; Γ)P (a; Γ) .

Finding plans with high P (a |u; Γ) is a difficult task for the following reasons: (i) the
search space of a scales with the number of objects; (ii) evaluating P (u |a; Γ) is difficult

3When we assume a geometric prior on the trial length, the expected reward is equivalent to the sum
of discounted rewards when rewards are given in each time-step—see Toussaint and Storkey (2006) for
details.

4 PLANNING IN GROUND RELATIONAL DOMAINS 95

Figure 4.10: The graphical model of relevance grounding couples actions a, states s,
objects o and the reward u.

as Γ’s state space is exponential in the number of objects O. To overcome this problem,
we observe that we can decompose

P (a |u; Γ) =
∑
o

P (a |o, u; Γ)P (o |u; Γ) (4.23)

where P (o |u; Γ) is defined as

P (o |u ; Γ) ∝
∑
a

P (u |o,a ; Γ)P (o |a; Γ)P (a; Γ) . (4.24)

P (o |u; Γ) is a measure for the relevance of object sets with respect to the reward. Note
that this posterior favors small object sets due to the prior over plan lengths in P (a; Γ). If
every successful plan makes use of object o, then for each o with P (o |u ; Γ) > 0 we have
o ∈ o . In this case, we call o necessary for u. Using this formalization of the relevance
of object sets, Eq. (4.23) provides us a way to decompose the above planning problem
into two stages: (i) sampling of object sets using P (o |u; Γ); (ii) finding plans with high
P (a |o, u; Γ) corresponding to planning conditioned on a set of relevant objects. The
key idea is that the conditioning on o in stage (ii) may significantly reduce the cost of
planning, as we will discuss below.

4.4.2 A Sufficient Definition of Relevance

In the following, we provide a definition of P (o | s,a) which we have neglected thus far.
For a given pair (s,a), we define the set Ω of relevant object sets as

Ω(s,a) = {o ⊆ O | ∀t, 0≤ t<T : P (st+1 | st, at; Γ) = P (st+1 | st, at; Γo)

∧ ∀o′⊂o,o′ 6=o ∃t, 0≤ t<T : P (st+1 | st, at; Γ) 6= P (st+1 | st, at; Γo′)} (4.25)

where Γo is the reduced model including only the objects o with their ground atoms.
P (st+1 | st,at; Γo) is defined such that all atoms with at least one argument o 6∈ o per-
sist from st and are ignored while calculating transition probabilities, and we define the
action prior in the reduced model as P (a; Γo) = P (a |o; Γ). Ω(s,a) comprises minimal
object sets that are required to predict the state transitions correctly for a specific trial
(s,a). Note that |Ω(s,a)| ≥ 1 for all (s,a). We define P (o | s,a) as

P (o | s,a) :=
I(o ∈ Ω(s,a))

|Ω(s,a)|
. (4.26)

96 4.4 RELEVANCE GROUNDING

Intuitively, relevant object sets are those that are taken into account to calculate the tran-
sition probabilities in s for a given a. Clearly, they include the objects which are manipu-
lated, i.e., whose properties or relationships change. We call these actively relevant. There
are also passively relevant objects which are taken into account by the transition modelM.
For instance, imagine the task to go to the kitchen and prepare a cup of tea. The tea bag,
the cup and the water heater are actively relevant objects. If the kitchen has two doors
and one of them is locked, then the latter is passively relevant: we cannot manipulate,
that is open, it, but it plays a role in planning as its being locked determines the other
door to be necessary. A more technical example of object relevance is given below.

In general, there might be alternative interesting definitions of object relevance, for
example where the transition probabilities in Eq. (4.25) only hold approximately. We
chose the above definition because it is sufficient to a certain consistency for planning in
reduced models (the proof can be found in Appendix A.2):

Lemma 4.4.1 When conditioning on a subset o of relevant objects, the following probabilities in
the reduced model Γo are the same as in the full model Γ:

• State sequences: P (s |o,a; Γ) = P (s |a; Γo)

• Rewards: P (u |o,a; Γ) = P (u |a; Γo)

• Action sequences: P (a |o, u; Γ) = P (a |u; Γo)

From Lemma 4.4.1 and Eq. (4.23) the following proposition follows directly:

Proposition 4.4.2 Given the joint in Eq. (4.22) and the definition of P (o | s,a) in Eq. (4.26), it
holds:

P (a |u; Γ) =
∑
o

P (a |u; Γo) P (o |u; Γ) .

Illustrative Example of Object Relevance

The scenario in Table 4.10 illustrates active and passive object relevance. Two small cubes
a and b are on top of a big cube c. Our goal is to hold b inhand. This can be achieved by
means of a plan consisting of a single action grab(b). Our transition modelM contains
two rules to model the grab-action. Rule 1 applies if the target cube is the only cube
on top, in which case grab always succeeds. Rule 2 applies if the target cube is not the
only cube on top. In this case, grab only succeeds with probability 0.8; otherwise with
probability 0.2, grabbing fails due to lack of space and the target cube is pushed off the
big cube instead. Clearly, in our situation we have to use Rule 2. Cubes b and c are ma-
nipulated and thus are actively relevant, whereas a is passively relevant as it determines
Rule 2 to apply. If a was ignored, we would use Rule 1—yielding an erroneous higher
success probability. Similar scenarios are typical in physical worlds: the probabilities of
successful planning change when objects (for example, potential obstacles) are added to
or removed from the scene even when they are not actively manipulated.

4 PLANNING IN GROUND RELATIONAL DOMAINS 97

Action: grab(B)

Rule 1:
grab(X) : on(X,Y), ∀Z 6=X :¬on(Z, Y)

→ 1.0 : inhand(X), ¬on(X,Y)

Rule 2:
grab(X) : on(X,Y), on(Z, Y)

→ 0.8 : inhand(X), ¬on(X,Y)

0.2 : ¬on(X,Y)

Table 4.10: Example of active and passive object relevance. Objects b and c are actively
relevant as their properties are changed. a is passively relevant as it determines Rule 2
to model the transition. If a was ignored, Rule 1 would be used instead yielding wrong
state transition probabilities.

Figure 4.11: A model of relevance grounding. Analogous to the model of human cognition
shown in Fig. 4.9, the abstract model Γ is grounded with respect to a set o of task-relevant
objects resulting in a reduced model Γo with smaller state and action spaces. In our case,
the abstract model consists of probabilistic relational rules, while the concrete model is a
ground DBN.

4.4.3 Planning with Relevant Objects

Our definition of object relevance and the subsequent discussion led to a crucial obser-
vation: to find plans with high P (a |u; Γ), it is not necessary to use the full model Γ
including all objects O. As Proposition 4.4.2 shows, an alternative is to find plans in the
reduced models P (a |u; Γo) for object sets o with high relevance P (o |u; Γ). This makes
planning more efficient due to the reduced state and action spaces in Γo. The analogy to
the model of human cognition of Fig. 4.9 is visualized in Fig. 4.11.

Obviously, we do not know P (o |u; Γ). If we knew the reward likelihoods for all
plans, in other words, if we had already planned, we could calculate this quantity ac-
cording to Eq. (4.24). However, planning is just the problem we are trying to solve. Thus,
we have to estimate this quantity by some distribution q(·) over object sets resulting in

98 4.4 RELEVANCE GROUNDING

Algorithm 2 Relevance grounding
Input: objectsO, goal τ , relational transition modelM, relevance distribution q(·), num-

ber of relevance groundings Nrel, number of verifications Nver

Output: action sequence a
1: for i = 1 to Nrel do B Relevance grounding
2: Sample object set oi ⊂ O according to q
3: Build reduced model Γoi

4: ai = plan(τ ; Γoi ,M) B Plan in reduced model
5: ψ(αi) = P (u |ai; Γoi ,M) B Value in reduced model
6: end for
7: for i = 1 to Nver do B Verifying in original model
8: Let a denote plan with i-th largest ψ
9: Calculate Ψ(a) = P (u |a;M,M) B Value in original model

10: end for
11: return argmaxaΨ(a)

the approximate distribution Q(·) over plans defined as

Q(a;u,Γ) =
∑

o P (a |u; Γo) q(o;u,Γ) ≈ P (a |u; Γ) . (4.27)

The quality of Q(·) depends on the quality of the approximate relevance distribution
q(·). If q(·) is not exact, then a plan found in Γo may have lower success probability
when planning in Γ instead (see the example in Table 4.10). Therefore, it is a good idea
to verify the quality of the proposed plan in the original model Γ or in a less reduced
model Γo′ with o ⊂ o′. This requires algorithms that can exploit the transition modelM
to efficiently calculate P (u |a) also in large models.

Algorithm 2 presents our complete relevance grounding method. Given an estimator
for object set relevance q(·), we can find plans with approximately high P (a |u; Γ) as
follows: (i) we take samples o from q(·); (ii) we plan in the reduced models Γo; (iii) we
verify the resulting plans in the original or a less reduced model; (iv) we return the plan
with the best verified value. In our experiments, we employ NID rules as transition
modelM and use the PRADA algorithm for planning which is in particular appropriate
for verification as it evaluates an action sequence in time linear in its length.

4.4.4 Learning Object Relevance

A crucial part in our proposed method is the relevance estimator of object sets. Learning
such an estimator is a novel and interesting machine learning problem. For a given goal
τ , we can use our transition modelM to create training instances (σ0, τ,o, P (o |u)). σ0

is a description of the start state s0 and may involve all types of information, such as
discrete, relational and continuous features. We can employ any regressor that can make
use of the chosen features to learn a function q(o;σ0, τ) → R, mapping an object set o
to its reward likelihood P (o |u) and parameterized according to the start situation σ0

4 PLANNING IN GROUND RELATIONAL DOMAINS 99

and the goal τ . As we are using relational representations, we can generalize over ob-
ject identities in our planning goals τ and start situations σ0 and transfer the knowledge
gained in previous planning trials to new, but similar problems. We can create the train-
ing instances (σ0, τ,o, P (o |u)) from reasoning based on M without acting. Thus, we
can learn object relevance based on nothing more than internal simulation (in contrast
to “real” experiences)—akin to human reflection about a problem. A full approach to
learning object relevance is beyond the scope of this section, but in our first experiment
we will present an example of how to learn object relevance in a straightforward way,
based purely on internal simulation.

4.4.5 Evaluation

We test our relevance grounding approach in our robot manipulation scenario (see Sec. 1.1.1).
We use NID rules to model the state transitions. We employ the rule learning algorithm
of Pasula et al. (2007) with the same parameter settings to learn three different sets of
fully abstract NID rules from independent training sets of 500 experience triples each.
Training data to learn rules are generated in a world of ten objects (six cubes, four balls)
of two different sizes by performing random actions with a slight bias to build high piles.
The resulting rule-sets contain 11, 12 and 12 rules respectively. We use the PRADA al-
gorithm (Sec. 4.2) for planning. We test our approach in worlds with varying numbers
of cubes and balls of two different sizes. In each experiment, for each object number we
create five start situations with different objects. Per rule-set and start situation, we per-
form three independent runs with different random seeds. In all scenarios, we make the
assumption that relevant object sets contain 5 objects. We investigate different estima-
tors to determine these 5 objects. To evaluate each approach, we compute the planning
times and the mean performance over the fixed (but randomly generated) set of 45 test
scenarios (3 learned rule-sets, 5 situations, 3 seeds).

High Towers In our first experiment, we investigate building high piles. Our starting
situations are chosen such that all objects have height 0 (are on the table) and our reward
is the total change in object heights. We let the algorithm run for 10 time-steps. We set
PRADA’s planning horizon to d = 6 and use a discount factor of γ = 0.95. If the world
was deterministic and objects could be stacked perfectly (such that objects could also be
stacked on balls), the optimal discounted total reward would be 37.04.

We investigate three different relevance estimators to determine the sets of relevant
objects. The random estimator samples objects randomly and independently. The hand-
made heuristic assigns high probability to big cubes (since these are best to build with)
and to objects that are either part of a high pile or on the table (in order to build higher
piles). Once it has sampled an object, it assigns high probability to objects within the
same pile as these might be required for deictic referencing in the NID rules (passive
object relevance).

Furthermore, we investigate a simple learned estimator of object relevance from which
we sample objects independently. We use linear regression to learn from discrete and

100 4.4 RELEVANCE GROUNDING

Table 4.11: High towers problem: (a) Mean rewards (changes in tower heights), (b) plan-
ning times, (c) details over 45 runs (3 rule-sets, 5 start situations, 3 seeds). Error bars for
the rewards give the std. dev. of the mean estimator. Nrel denotes the number of relevant
reduced models (cf. Algorithm 2). Performing no actions gives a reward of 0.

 10

 20

 30

 10 20 30

Objects

D
is

co
un

te
d

to
ta

l r
ew

ar
d

random N1
random N5

heuristic N1
heuristic N5
learned N1
learned N5

full-grounding

(a)

 1

 10

 100

 1000

 10000

 10 20 30

Objects

T
im

e
(s

)

random N5
heuristic N5
learned N5

full-grounding

(b)

Obj. Config Reward Time

10

random Nrel=1 7.85 ± 0.70 0.37 ± 0.03
random Nrel=5 10.94 ± 0.73 1.84 ± 0.18
random Nrel=10 14.59 ± 1.20 3.63 ± 0.26
heuristic Nrel=1 16.42 ± 1.10 0.38 ± 0.02
heuristic Nrel=5 20.43 ± 1.47 1.89 ± 0.11
heuristic Nrel=10 20.83 ± 1.32 3.78 ± 0.23
learned Nrel=1 16.07 ± 0.85 0.39 ± 0.02
learned Nrel=5 19.07 ± 1.23 1.91 ± 0.11
learned Nrel=10 18.63 ± 1.12 3.76 ± 0.29
full-grounding 19.26 ± 1.38 59.51 ± 10.72

20

random Nrel=1 9.20 ± 0.62 0.39 ± 0.03
random Nrel=5 12.38 ± 0.69 1.87 ± 0.15
random Nrel=10 14.93 ± 0.74 3.78 ± 0.21
heuristic Nrel=1 17.77 ± 0.99 0.39 ± 0.02
heuristic Nrel=5 20.34 ± 0.91 1.93 ± 0.11
heuristic Nrel=10 20.69 ± 1.16 3.85 ± 0.15
learned Nrel=1 14.53 ± 0.77 0.42 ± 0.03
learned Nrel=5 18.26 ± 0.94 1.90 ± 0.13
learned Nrel=10 18.34 ± 0.82 3.81 ± 0.11
full-grounding 21.12 ± 1.21 561.78 ± 186.76

30

random Nrel=1 9.16 ± 0.76 0.38 ± 0.03
random Nrel=5 11.90 ± 0.64 1.93 ± 0.12
random Nrel=10 14.00 ± 0.69 3.84 ± 0.25
heuristic Nrel=1 16.23 ± 1.05 0.39 ± 0.02
heuristic Nrel=5 21.08 ± 1.03 2.01 ± 0.13
heuristic Nrel=10 20.21 ± 1.10 3.84 ± 0.16
learned Nrel=1 16.45 ± 0.77 0.42 ± 0.04
learned Nrel=5 17.72 ± 0.88 1.99 ± 0.04
learned Nrel=10 18.44 ± 0.75 3.78 ± 0.24
full-grounding 19.99 ± 1.11 1770.55 ± 916.44

(c)

logical object features, namely object size, type, color, height and clearedness. Training
data are generated solely by internal simulation with the PRADA algorithm (in contrast
to using the “real” ODE simulator) as follows: for a given situation, we randomly sample
5 objects and derive a plan in the partially grounded network; this plan is then evalu-
ated in the full network and the resulting value is used as relevance estimate for these 5
objects. Note that this procedure does not require real experiences as it is fully based on
internal reasoning about which features make an object relevant according to the learned
world model (the NID rules in our case). The resulting learned estimator ignores object
color as expected, but takes all other features into account, favoring clear big cubes at
high heights. We compare these three relevance estimators to the full-grounding baseline
which plans in the fully grounded model.

Table 4.11 presents our results. The mean performance of the heuristic is comparable
to the full-grounding baseline. The performance of the learned estimator is compara-
ble or only slightly worse than the heuristic, depending on the number of objects and

4 PLANNING IN GROUND RELATIONAL DOMAINS 101

Table 4.12: Clearance problem: (a) Mean rewards, (b) planning times, (c) details over 45
runs (3 rule-sets, 5 start sit., 3 seeds). Error bars for the rewards give the std. dev. of the
mean estimator. Nr is the number of relevant reduced models Nrel, Nv of partial plans
Nver verified in a less reduced model. Performing no actions gives a reward of 0.

 0

 20

 40

 60

 80

 100

 10 20 30

Objects

D
is

co
un

te
d

to
ta

l r
ew

ar
d

random Nr1
random Nr5

random Nr10
heuristic Nr1
heuristic Nr5

heuristic Nr10
full-grounding

(a)

 1

 20

 400

 8000

 160000

 10 20 30

Objects

T
im

e
(s

)

random Nr1
random Nr5

random Nr10
heuristic Nr1
heuristic Nr5

heuristic Nr10
full-grounding

(b)

Obj. Config Reward Time

10

random Nr=1 9.33 ± 1.67 15.26 ± 0.21
rand. Nr=5 4.59 ± 0.78 75.73 ± 1.53
rand. Nr=10 2.58 ± 0.73 153.86 ± 3.37
rand. Nr=5, Nv=3 17.54 ± 1.92 84.63 ± 2.42
rand. Nr=10, Nv=3 14.76 ± 1.85 162.25 ± 7.60
heuristic Nr=1 34.50 ± 2.44 15.31 ± 0.27
heur. Nr=5 41.88 ± 3.08 75.02 ± 1.64
heur. Nr=10 38.48 ± 2.67 151.92 ± 2.94
heur. Nr=5, Nv=3 46.46 ± 3.12 84.98 ± 1.83
heur. Nr=10, Nvr=3 49.15 ± 2.81 161.79 ± 3.63
full-grounding 29.77 ± 2.02 153.93 ± 13.51

20

random Nr=1 4.68 ± 1.07 16.24 ± 0.44
rand. Nr=5 0.88 ± 0.45 78.92 ± 1.08
rand. Nr=10 0.16 ± 0.11 163.21 ± 4.93
rand. Nr=5, Nv=3 2.62 ± 0.90 90.25 ± 1.74
rand. Nr=10, Nv=3 0.72 ± 0.58 168.91 ± 3.31
heuristic Nr=1 42.77 ± 3.19 15.89 ± 0.48
heur. Nr=5 47.72 ± 2.96 80.24 ± 1.38
heur. Nr=10 43.34 ± 2.60 158.53 ± 2.06
heur. Nr=5, Nv=3 51.03 ± 3.12 88.94 ± 1.99
heur. Nr=10, Nv=3 56.76 ± 2.68 172.27 ± 5.01
full-grounding 29.19 ± 1.98 1537.37 ± 225.96

30

random Nr=1 3.09 ± 1.09 16.06 ± 0.41
rand. Nr=5 0.52 ± 0.26 80.11 ± 1.47
rand. Nr=10 0.02 ± 0.02 162.17 ± 6.34
rand. Nr=5, Nv=3 1.16 ± 0.51 92.17 ± 2.52
rand. Nr=10, Nv=3 0.16 ± 0.10 178.96 ± 3.56
heuristic Nr=1 42.31 ± 3.06 16.47 ± 0.43
heur. Nr=5 59.79 ± 3.33 81.34 ± 3.87
heur. Nr=10 53.29 ± 3.50 159.01 ± 3.39
heur. Nr=5, Nv=3 55.00 ± 3.54 90.26 ± 3.46
heur. Nr=10, Nv=3 58.01 ± 3.42 168.51 ± 5.16
full-grounding 22.42 ± 2.14 5893.81 ± 1006.56

(c)

the number Nrel of partially grounded models, but always significantly better than the
random estimator. The performance of all estimators improves with increasing Nrel, but
this effect diminishes if Nrel is large. Planning in the fully grounded model is hopelessly
inefficient, in particular for large worlds. The same performance levels can be achieved
by means of Relevance Grounding in only tiny fractions of this planning time, which is
independent of the object number and thus constant over all investigated domain sizes.

Clearance The goal in our second experiment is to clear up the desktop (see Fig. 4.12).
Objects are lying scattered all over the desktop. An object is cleared if it is part of a pile
containing all other objects of the same class, which can be defined as

cleared(X) ≡ ∀Y : sameClass(X,Y)→ samePile(X,Y) . (4.28)

102 4.4 RELEVANCE GROUNDING

Figure 4.12: Clearance task with relevance grounding. The robot has to clear up the desktop
by piling objects of the same size and color. Focusing on relevant objects permits efficient
reasoning in this scenario containing many objects.

A class is defined in terms of color and size, but not type so that a class contains both
cubes and balls. In our experiments, classes are made up of 2-4 objects with at most 1 ball
(in order to enable successful piling). Our starting situations contain some piles, but only
with objects of different classes. We let the algorithm run for 30 time-steps. For planning,
we set PRADA’s planning horizon to d = 20 and use a discount factor of γ = 0.95. If
the world was deterministic and objects could be stacked perfectly, the optimal values
would be 86.91 for worlds with 10 objects and 110.85 for worlds with 20 and 30 objects.
We investigate two relevance estimators. The random estimator samples randomly and
independently among all objects. The heuristic estimator chooses randomly among the
objects which are not cleared yet and then takes all other objects of the same class into
account. Nearest neighbors are used to fill up the object set. While this heuristic is hand-
made, its idea can be derived from the logical reward description in Eq. (4.28) which
states the importance of classes in relevant object sets on the left side of the implication.
How this can be done in principled ways is a major direction of future work.

Table 4.12 presents our results. The random estimator performs poorly since its re-
duced models contain mostly only single instances of a class. This is disadvantageous
as planning requires at least a second object of the same class and singleton instances
are always cleared within reduced models which are thus a bad approximation of the
full model. The mean performance of the heuristic estimator is significantly better than
the full-grounding baseline, in particular in worlds with many objects. Note that the
full-grounding baseline cannot find an optimal solution due to the huge search space.
In contrast to planning in the fully ground model, the relevance grounding planning ap-
proaches are independent of the number of objects and thus several orders of magnitude
faster.

We also investigate the use of verification of the plans found in the reduced models
(cf. Algorithm 2). We evaluate the Nver = 3 best reduced-model plans in a less reduced
model containing 10 objects where the missing 5 slots are filled in by nearest neighbors.
Thereby, information about objects within the same piles may be taken into account. Our
results show that this improves the mean performance for both relevance estimators

4 PLANNING IN GROUND RELATIONAL DOMAINS 103

significantly at only a small increase in computational cost. In particular, this greatly
increases the performance of the random estimator in worlds with 10 objects. In larger
worlds, the random estimator almost never finds good plans in which case verification
cannot help.

4.4.6 Related Work on Reduced Ground Relational Models

An alternative strategy to relevance grounding for reasoning in a ground relational model
is to consider only a small relevant subset of the state space which is derived from the
start state and the planning goal. In contrast to our approach, the resulting subspace still
represents all objects, thus the action space size is not decreased. A straight-forward way
to create such a subspace are look-ahead trees for the start state that estimate the value
of an action by taking samples of the corresponding successor state distribution (as done
by the algorithms SST and UCT described in Sec. 4.2.1). Another idea is to maintain an
envelope of states, a high-utility subset of the state space which can be used to define a
relational MDP (Gardiol and Kaelbling, 2003). This envelope can be further refined by
incorporating nearby states in order to improve planning quality. A crucial part of this
approach is the initialization of the envelope which is based on an initial straight-line
path from the start state to a goal state using a heuristic forward planner (for example,
by making this planning problem deterministic by only considering the most-probable
successor state of an action). The envelope-based approach depends strongly on the ef-
ficiency and quality of this initial planner which is still faced with the complexity of the
action space and its dependence on the number of objects, thus being applicable only for
rather small planning horizons.

Action space complexity can be decreased by noting that if the identities of objects
do not matter but only their relationships, then different equivalent actions may lead
to equivalent successor states (Gardiol and Kaelbling, 2007). These are states where the
same relationships hold, but not necessarily with the same objects. Relevance grounding
accounts for this idea by defining different object subsets to be relevant for the planning
problem at hand. Action equivalence can be exploited during planning by only consid-
ering one sampled action per action equivalence class which significantly reduces the
search space. If identity matters for a large number of objects, however, then this ap-
proach does not yield significant improvements. Another way to reduce the state space
complexity is to look only at a subset of the logical vocabulary, that is, to ignore cer-
tain predicates and functions (Gardiol and Kaelbling, 2008). This is inspired by work
on abstract decision-theoretic planning in factored propositional MDPs where omitting
state features to build abstract MDPs and policies has been shown to lead to great com-
putational savings, while guarantees on the found solution can still be provided (Dear-
den and Boutilier, 1997). Ignoring predicates and functions helps in particular when
combined with the action equivalence approach as state descriptions become shorter
and more approximate and the number of state equivalences increases. All these meth-
ods just discussed are complementary to our approach and when applied in a reduced
ground model within the relevance grounding framework might yield a promising way

104 4.5 RELATIONAL PLANNING BY INFERENCE

to plan efficiently in highly complex domains.

4.4.7 Conclusions and Future Work

We have presented an approach for efficient planning in stochastic relational worlds
based on exploiting object relevance. In particular in environments with very many ob-
jects (> 1000) we believe that organizing goal-directed behavior without such a focus on
relevant objects is infeasible. We define object relevance in terms of a graphical model.
We have derived a systematic framework to plan in partially grounded models which
we have proven to be consistent with planning in the fully grounded model. Empiri-
cal results show our approach to be effective in complex relational environments. Also,
we have argued that our approach has interesting analogies to human cognition. Our
framework is independent of the concrete planning algorithm used within the reduced
models. In particular, it can well be combined with other approaches to increase plan-
ning efficiency in stochastic relational domains that have recently been introduced, such
as envelope-based methods (Gardiol and Kaelbling, 2003). Our approach is orthogonal
to the goal of developing (lifted) inference methods that can cope with many objects.

A key part for our framework and the major direction of future research is the esti-
mator of object relevance. We have provided a successful example of how relevance can
be learned from object features by means of nothing more than internal simulation, but
this is clearly only preliminary. In our point of view, learning to estimate the relevance
of objects is a formidable problem for machine learning, as a huge variety of methods
using discrete, continuous, and logical features can be applied. Clearly, this is a difficult
problem, bearing in mind that human beings often take a long time until they master
certain types of planning problems. However, estimating object relevance appears to us
to be a crucial prerequisite to be able to plan in the highly complex real world.

4.5 Relational Planning By Inference

Our algorithm PRADA described in Sec. 4.2 uses approximate inference for forward rea-
soning. It builds a graphical model, the PRADA-DBN, from a set of NID rules and the
domain objects O; conditioning on actions, it propagates the effects of actions by means
of a factored frontier filter; the actions are sampled according to an informed sampling
strategy; it evaluates several sampled action-sequences and chooses the one with the
highest expected reward. In contrast, full planning-by-inference approaches condition
on rewards, propagate information also backwards, infer posteriors over actions and
thereby calculate a policy. For this purpose, the underlying graphical models require a
coupling between predecessor states and actions. Learning a policy amounts to calculat-
ing the parameters of this coupling: these parameters define the conditional probability
functions in DBNs and the factors in factor graphs.

Full planning-by-inference is a hard task in relational domains due to the very large
state and action spaces. Exact inference is infeasible as the majority of state variables

4 PLANNING IN GROUND RELATIONAL DOMAINS 105

typically gets correlated after inference over only few time-steps: each variable repre-
senting a ground atom can be manipulated by several actions and for combinatorial
reasons beliefs over many, if not all variables, need to be maintained. Thus, we need
approximate inference techniques such as loopy belief propagation (LBP). As described
above, LBP fails in the graphical models of the PRADA-DBN type, even when using a
damping factor. We attribute this to the centralized structure of PRADA-DBN with its
central high-dimensional nodes for actions, rules and outcomes.

As an alternative, here we explore approximate inference in the highly decomposed
factor graph presented in Sec. 3.2 and shown in Fig. 3.3(d) on page 40. We perform tests
with this graphical model structure in a simple world of cubes using the following two
NID rules to describe the transition dynamics,

move(X,Y, Z) : on(X,Y), clear(X), clear(Z), cube(Y)

→
{

0.8 : on(X,Z), clear(Y), ¬on(X,Y), ¬clear(Z)
0.2 : − and

moveFromTable(X,Y, Z) : on(X,Y), clear(X), clear(Z), table(Y)

→
{

0.8 : on(X,Z), ¬on(X,Y), ¬clear(Z)
0.2 : − ,

where the first rule describes moving a cubeX from a second cube Y to a position on-top
of object Z while in the second rule the origin object Y is the table (the table is always
“clear”). Our planning task is to build specific towers. We assign full evidence on the
first and last time-slices in the factor graph, corresponding to the first state and the goal
state (hence, the belief at the last time-step corresponds to the posterior P (sT |UT = 1)
when U assigns reward for exactly one goal state). We apply standard LBP to infer the
posteriors over action variables.

In a tiny domain consisting of 3 objects (2 cubes, 1 table) a state consists of 12 state
variables (9 for on-atoms, 3 for clear-atoms, omitting typing predicates). LBP works per-
fectly for a single state transition where the planning problem involves moving exactly
one cube: the correct action has clearly the highest posterior. LBP still works in a slightly
bigger problem consisting of 4 objects (3 cubes, 1 table) and 2 state transitions: the correct
actions have the highest posteriors, but some false actions also have large posteriors. In
problems with more than 4 objects and more than two state transitions, however, LBP in
our graphical model fails: too many actions have high posteriors then. We played with
the usage of damping, but it did not help to get LBP working in these bigger settings. In
other test domains, we experienced similar problems.

A known problem of LBP is coping with deterministic graph structures. This might
also affect our setting since the only non-deterministic information in our graphs is in
the outcome factors. To get a better understanding of our problems with approximate
inference, we examined the messages calculated during LBP: it appears that the approx-
imation in particular of the backward messages is disadvantageous; also it seems to be
particularly harmful for the approximate inference in our graphs that LBP ignores corre-
lations.

106 4.6 RELATIONAL PLANNING ON A REAL ROBOT

These problems indicate that it may not be straightforward to apply LBP techniques
to DBNs representing ground relational domains. Nonetheless, we think that the sym-
metries inherent in relational domains and the decoupling of nodes in our graphical
models pose a great potential for the development of efficient techniques for relational
planning-by-inference. Modified graphical models and different inference methods, in
particular lifted methods, are worth investigation.

4.6 Relational Planning on a Real Robot

Autonomous robots deal with information on different levels of abstraction: they pro-
cess low-level sensory input to gain the perceptual information they are interested in,
reason about their high-level goals and actions, and translate abstract actions into low-
level motor control. A central problem of modern robotics is how to integrate these
different levels of abstraction for decision-making, planning and control, which requires
a coherent principle of information processing. A general framework for information
processing is provided by inference in graphical models which provides a principled
way to define the couplings of variables with the corresponding uncertainties. Inference
can be viewed as internal simulation for control, planning and decision making (see
Sec. 2.3). In previous work, this approach has been applied on low-level motor control
(Toussaint and Goerick, 2007; Toussaint, 2009a). In this thesis, we introduce probabilistic
inference methods for high-level planning. So far, we performed successful experiments
in simulated environments.

In this section, we describe a real-world demonstration where a robot integrates
information across multiple levels of abstraction (Toussaint, Plath, Lang, and Jetchev,
2010). Our contribution to this demonstration is the high-level abstract reasoning capac-
ity of the robot. We focus on qualitative aspects: our goal here is to demonstrate the gen-
eral feasibility of the inference approach in a real-world scenario where an autonomous
robot manipulates several objects in a goal-directed way. A quantitative investigation
with multiple experiments and runs requires major efforts with respect to the non-high-
level aspects of the robot (such as vision and motor control) which are beyond the scope
of this thesis.

Our target scenario is a real blocksworld (Fig. 4.13): a robot with a 14 degrees-
of-freedom (DoF) Schunk arm and hand with tactile sensors and a stereo camera ma-
nipulates objects on top of a table. By addressing this scenario we want to bring the
blocksworld, perhaps the most popular scenario in classical AI since the 1970s, to real
life. We decompose the problem of acting in the real blocksworld according to the dif-
ferent levels of abstraction and apply appropriate algorithms based on approximate in-
ference on the level of motor control and trajectory optimization as well as of high-level
planning.

We proceed as follows. First, we describe our target scenario in more detail. We
present the different methods of our approach in Sec. 4.6.2. In Sec. 4.6.3, we discuss our
qualitative evaluation on a real robot before we conclude. A video of the experiments
and additional material such as source code can be found at the following web-page:

4 PLANNING IN GROUND RELATIONAL DOMAINS 107

Figure 4.13: The robot has successfully put objects with green and red labels into separate
piles, using probabilistic inference on different levels of abstraction for planning and
control.

http://userpage.fu-berlin.de/mtoussai/10-ICRA/ .

4.6.1 Target Scenario

Our overall goal is autonomous goal-directed manipulation in environments with mul-
tiple objects. In this chapter, we have introduced methods for planning in stochastic
relational worlds and demonstrated these methods in physically simulated robot ma-
nipulation problems like clearing the desktop or building towers from objects of differ-
ent sizes and shapes. Here we want to address similar scenarios, but on a real robotic
platform. To solve the scenario we require a series of methods for learning, perception,
planning and control: Eventually, the robot will need to

1. learn a high-level stochastic model of the effects of actions like grabbing and plac-
ing an object,

2. use vision to identify and localize objects,

3. use a stochastic relational planner to compute a sequence of actions,

4. use trajectory optimization to compute dynamically smooth reaching and pre-grasp
motions,

5. use a controller to follow the computed trajectories,

6. and use a tactile feedback controller to execute the grasp.

Our robotic platform is shown in Figure 4.13 and includes the following hardware
components:

• Schunk Light Weight Arm (LWA) with 7 DoF

108 4.6 RELATIONAL PLANNING ON A REAL ROBOT

• Schunk Dextrous Hand (SDH) with 7 DoF

• 6× 14 tactile arrays on each of the 6 finger segments

• Bumblebee stereo camera

4.6.2 Methods

High-level Relational Planning

We employ the same symbolic representation as in the previous sections to describe our
domain, using predicates such as inhand(·), upright(·), on(·, ·) and functions such as
size(·) for world states and predicates such as grab(·) and puton(·) for actions. We learn
NID rules (Sec. 3.1.3) from simulation to define a transition model M and plan with
PRADA (Sec. 4.2) (Lang and Toussaint, 2009b, 2010b).

A major challenge in developing intelligent robots is how to couple high-level rea-
soning with sensors and low-level motor control. We approach the first problem by a
set of simple heuristics to translate object information from vision and tactile sensors
into our symbolic representation. For instance, we derive on(a, b) if the x/y-coordinates
of objects a and b are sufficiently similar while b’s z-coordinate is slightly smaller, and
inhand(b) if b is closest to the robot’s fingers and we get significant tactile feedback. To
translate the high-level action symbols to concrete robot action, we set them to trigger
the execution of the corresponding low-level motor control routines for grasping and
placing.

Low-level Control and Sensing

The control framework follows in detail the approach of Toussaint (2010). We control the
robot on a dynamic level. Let qt ∈ R14 be the vector of all joint angles in the LWA arm
and SDH hand at time t. The control operates on the phase state

xt = (qt, q̇t) ∈ R28 (4.29)

comprising joint angles and velocities. The control framework is based on having many
task variables concurrently active with various precisions. Such task variables are used
to define goal and constraints on robot movements. We use the Approximate Inference
Control (AICO) algorithm (Toussaint, 2009a) for trajectory planning, optimizing reach,
pre-grasp and place trajectories, following the optimized trajectories and grasping and
releasing objects. AICO solves a stochastic optimal control problem based on proba-
bilistic inference. It uses planning-by-inference to compute a posterior over the whole
trajectory conditioned on all desired task variables. For robot vision, the identification
and localization of objects is based on SURF interest points and descriptors (Bay et al.,
2008).

4 PLANNING IN GROUND RELATIONAL DOMAINS 109

4.6.3 Evaluation

Our experiments are designed to focus on qualitative aspects: we investigate whether
the different methods can indeed be successfully applied in a real world domain and
our approach is suitable to fully control an autonomous robot to achieve its goals. A
quantitative investigation with multiple experiments and runs is beyond the scope of
this thesis as explained in the introduction. For quantitative studies with respect to the
individual methods, we refer the reader for a comparison and discussion of different
low-level robot control approaches to the respective papers (Toussaint, 2009a; Toussaint
and Goerick, 2007) and for high-level reasoning to the previous sections.

In our experimental setup, the Schunk robot is placed in front of a table with cylindric
objects of two different sizes and colors. In the scenario of the cited video, the goal is to
“clear up” the desktop: to stack objects of the same color onto each other. There are two
big and one small red object and two big green objects stacked in three piles, where two
piles contain two objects of different colors. To achieve the goal of a cleared desktop, the
robot needs to grab and place three objects in total.

The first problem is to localize the objects using the stereo camera which is placed
next to the robot arm. The objects have individual patterns which are used to identify
them. Once the objects are recognized, their coordinates are calculated and a symbolic
world state representation is derived. Then, the robot uses the PRADA algorithm (Lang
and Toussaint, 2009b, 2010b) to derive a high-level plan of actions to achieve a cleared
desktop. A set of 11 abstract NID rules has been learned beforehand using the algorithm
of Pasula et al. (2007) with the same parameter settings from a set of 500 experiences of
state transitions. We have generated these experiences in a 3D rigid-body dynamics sim-
ulator (ODE) of the scenario including the robot, the objects and the table by performing
random actions with a slight bias to build high towers.

After a suitable plan has been found, the individual abstract actions trigger the re-
spective low-level motor control routines, namely AICO, to generate grasp and placing
trajectories. Fig. 4.14 (left) illustrates the start posture (central hand position) and the
end posture of an optimized reach and pre-grasp trajectory. The pictures are taken from
the simulator that is internally used by AICO. The red distance markers illustrate the
output of the collision (distance proximity) detection engine. The end posture is a good
pre-grasp with the fingers wrapping around the object with about 3 cm distance. When
this pre-grasp posture has been reached the grasp is executed based on a tactile feedback
loop. Fig. 4.14 (right) displays the start posture (hand at left pile) and end posture (hand
at center pile) of an object placing movement.

The video shows a complete demonstration to solve the clearance task with five ob-
jects. PRADA found the correct sequence of actions necessary to stack the two objects
with green labels on one pile. To reach this state, two objects with red labels first have
to be removed from them by placing them on the center pile for the red-labeled objects.
Fig. 4.13 shows the end posture after the whole trial.

The experiments also revealed limitations on the precision of our kinematic model
of the arm and the object localization, causing some placed objects not to align as per-
fectly as they do in the simulation. This is exactly one of the situations why stochastic

110 4.6 RELATIONAL PLANNING ON A REAL ROBOT

Figure 4.14: Visualization of start and end postures of calculated trajectories. The blue
bars are the stereo camera (to the right of the robot) and a laser scanner (not used in
these experiments, mounted on the arm close to the hand). (left) A grab action mov-
ing the hand from the center to the right pile. (right) A place action moving the hand
with the object from the left to the center pile. The red distance markers indicate critical
proximities between collidable objects.

action models are investigated in reinforcement learning and probabilistic reasoning is
necessary.

4.6.4 Conclusions and Future Work

Our work is the first step towards fully integrated autonomous acting in an environment
with multiple objects. We have focused on qualitative aspects and shown the general fea-
sibility of using inference in graphical models to integrate information across multiples
levels of abstraction in a real-world scenario. We chose the blocksworld scenario in anal-
ogy to typical AI benchmarks to demonstrate that the methods developed in this thesis,
such as PRADA, can be transferred to the real world. While the fields of robot learning
and probabilistic robotics have focused mainly on problems such as motor skill learning,
system identification and state estimation, our work is among the first approaches to
robot learning of abstract knowledge and object manipulation on the level of relational
models. Related recent work has investigated robot navigation based on policy learn-
ing using relational decision trees (Cocora et al., 2006) and learning kinematic structures
from physical interaction (Katz and Brock, 2009, 2008; Sturm et al., 2009), which may
likewise be considered as a first form of relational learning on real robots.

Future work should apply our approach to scenarios that are more challenging for
both the high-level planning as well as the low-level control: scenarios which include
different types of objects and more cluttered scenes with big obstacles the robot has to
avoid. It is worth examining how our approach can handle perceptional uncertainty
which could lead to movement failures such as accidentally pushing objects off piles;
this has direct consequences on reasoning with stochastic relational models.

4 PLANNING IN GROUND RELATIONAL DOMAINS 111

4.7 Discussion

In natural environments with many objects, an autonomous agent needs to plan with
a given or learned probabilistic relational model to achieve its goals or actively explore
its domain. In this chapter, we have investigated planning approaches reasoning on the
level of concrete objects in the ground relational domain. Existing state-sampling based
search methods such as SST (Kearns et al., 2002) and UCT (Kocsis and Szepesvari, 2006)
have difficulties to scale to the exponential spaces of relational domains. Likewise, ex-
act planning-by-inference in a fully grounded relational model is infeasible. Therefore,
we have proposed the algorithm PRADA for forward reasoning in stochastic relational
domains which converts learned noisy probabilistic relational rules to a ground DBN
representation and uses approximate inference in the DBN for planning. PRADA is the
first practical planning method for learned relational rules and we have demonstrated
its high performance in simulated complex robot manipulation domains of balls, cubes
and boxes, where rules have been learned from experience, and on benchmarks of the
international planning competition, where hand-made rules are provided. We have ex-
tended PRADA to a bidirectional reasoning method where we apply its approximate
inference also for backward reasoning. Our experimental results show that by exploit-
ing the knowledge about high reward states, we can significantly increase both planning
accuracy and efficiency. We also succeeded in a first demonstration of probabilistic infer-
ence methods for organizing sequential manipulation on a real-world robotics platform,
where the model was learned from simulator experiences (but used on the real robot)
and high-level planning was achieved with PRADA.

Abstracting from the details of PRADA, we believe the reason for the success of
PRADA is the way knowledge is transformed from a rule-based representation (suit-
able for learning) to a graphical-model-based representation (suitable for inference and
planning). In our view, such transformations of knowledge between different repre-
sentations, each suitable for different computational tasks, are fundamentally impor-
tant for finding efficient solutions. In our case, the learner of compact rule-sets by Pa-
sula et al. (2007) motivated the probabilistic rule-based representation; the planning-
by-inference theory motivated the graphical-model representation for planning. The
success of PRADA hints at the great potential of (approximate) inference techniques
for reasoning in stochastic relational domains and opens the door to a large variety of
methods based on inference in different representations. We have briefly explored full
planning-by-inference in factor graphs which decompose the structure of ground rela-
tional domains. We have seen that in principle relational planning-by-inference using
approximation techniques is possible, but that dealing with the large state and action
spaces of relational domains requires more study. In particular, more advanced tech-
niques for lifted inference in factor graphs, such as lifted belief propagation, have the
potential to greatly improve efficiency and thus effectiveness of relational planning.

All our methods reason in the ground relational domain. Such methods may become
inefficient with very large numbers of represented objects. Inspired by psychological
concepts of human cognition, we have proposed the framework of relevance grounding

112 4.7 DISCUSSION

to avoid this problem where we ground a relational domain only with respect to task-
relevant objects. Thereby, our planning methods become applicable also to worlds with
very large object numbers. In our view, the relevance of objects is of vital importance
for organizing goal-directed behavior. Surprisingly, research in artificial intelligence and
machine learning has largely ignored this important concept. Future work should in-
vestigate potential priors for object relevance in real world manipulation tasks as well as
other domains. An obvious candidate is spatial proximity to goal objects, but there are
surely other potential priors. We have shown first promising results on learning models
of object relevance.

The effectiveness of our methods for planning in the real world is determined by
the underlying transition model. Thus, future research on planning should investigate
extensions of the rule framework or other representations to account for more powerful
features as well as algorithms to learn them. This would in turn require appropriate
modifications of our techniques. For instance, instead of using a noisy default rule, one
may use mixture models to deal with actions with several (non-unique) covering rules,
or in general use parallel rules that work on different aspects of the underlying system
or on different hierarchical levels, permitting for instance multi-time-step abstraction.

The planning approaches introduced in this chapter assume that a transition model
of the effects of the agent’s actions is provided. Typically, an autonomous agent is not
given such a model in advance and instead has to learn it from interaction with the
environment. How an environment with many objects can be explored efficiently is the
focus of the next chapter.

Chapter 5

Relational Exploration

In reinforcement learning, an autonomous agent’s learning task is to find a policy for
action selection that maximizes its reward over the long run. In the following, we as-
sume the agent is told about the states where it receives reward, but has no idea in the
beginning how its actions change the state of the world and how it can get to high re-
ward states. We pursue a model-based approach where the agent learns models of the
transition process from its interactions with the environment. These models are then
analyzed to compute plans to drive active exploration, achieve high reward states and
thereby perform tasks.

Typically, the agent solves tasks in similar situations of the same unknown environ-
ment. While doing so, the agent may find a good model based on its experience up
to the current moment, but there might be an even better model based on states and
actions unexplored so far. Thus, one of the key challenges in reinforcement learning
is the exploration-exploitation tradeoff, which strives to balance two competing types
of behavior of an autonomous agent in an unknown environment: the agent can either
make use of its current knowledge about the environment to maximize its cumulative re-
ward (that is, to exploit), or sacrifice short-term rewards to gather information about the
environment (that is, to explore) in the hope of increasing future long-term return, for
instance by improving its current world model. This exploration-exploitation tradeoff
has received considerable attention in unstructured domains and several powerful tech-
niques have been developed such as E3 (Kearns and Singh, 2002), Rmax (Brafman and
Tennenholtz, 2002) and Bayesian reinforcement learning (Poupart et al., 2006). However,
while these methods give a clear idea of how in principle exploration and exploitation
can be organized, the corresponding basic algorithms only work on enumerated state
spaces—toy worlds. In this chapter, we take up the principle ideas of these methods and
investigate how we can realize efficient exploration in non-trivial relational representa-
tions.

The environment of the agent typically contains varying numbers of objects and re-
lations among them. Learning and acting in such large relational domains is the second
key challenge in reinforcement learning. Such relational domains are hard—or even
impossible—to represent meaningfully using an enumerated state space. For instance,

113

114

consider a hypothetical household robot which is taken out of its shipping box, switched
on and then has to get acquainted with its new environment to be able to fulfill its duties.
Without a compact knowledge representation that supports abstraction and generaliza-
tion of previous experiences to the current state and potential future states, it seems to
be difficult—if not hopeless—for such a “robot-out-of-the-box” to explore one’s home in
reasonable time. There are too many objects such as doors, plates and water-taps. For
instance, after having opened one or two water-taps in bathrooms, the priority for ex-
ploring further water-taps in bathrooms, and also in other rooms such as the kitchen,
should be reduced. This is impossible to express in a propositional setting where we
would simply encounter a new and therefore non-modeled situation.

So far, however, the important problem of exploration in stochastic relational worlds
has received little attention. This is exactly the problem we address in this chapter. Ap-
plying existing, propositional exploration techniques is likely to fail: what in a proposi-
tional setting would be considered a novel situation and worth exploration may in the
relational setting be an instance of a well-known context in which exploitation is promis-
ing. This is the key insight of the current chapter:

The inherent generalization of learned knowledge in the relational representation has
profound implications also on the exploration strategy.

Consequently, we develop relational exploration strategies (Lang, Toussaint, and Kerst-
ing, 2010, 2011) in this chapter, inspired by Kearns and Singh’s basic exploration tech-
nique E3 (Explicit Explore or Exploit, discussed in detail below). In more detail, this
includes the following steps:

• We develop a relational model-based reinforcement learning framework lifting
ideas from E3 to the relational case.

• We apply relational density estimation to estimate a smoothed empirical density
for relational data which we exploit in our relational exploration strategies. While
the problem of relational density estimation has general importance in many ap-
plications, we present different methods to use it in the reinforcement learning
context to formalize the novelty of relational states and actions.

• We present our algorithm REX, the first complete practical and implemented so-
lution to exploration and model-based reinforcement learning in relational do-
mains with explicit explore-exploit mechanism. We integrate our relational plan-
ner PRADA (Chapter 4) and a learner of probabilistic relational rules (Pasula et al.,
2007) into our framework. Based on actively generated training trajectories, the
exploration strategy and the relational planner together produce in each round a
learned transition model and in turn a policy that either reduces uncertainty about
the environment and improves the current model, or exploits the current knowl-
edge to maximize the utility of the agent.

Our extensive experimental evaluation in our robot manipulation domain and in do-
mains of the international planning competition IPPC shows that our approaches can
solve tasks in complex worlds where non-relational methods fail.

5 RELATIONAL EXPLORATION 115

We proceed as follows. After having described related work, we discuss the exist-
ing E3 framework for exploration in enumerated state spaces in Sec. 5.2. We develop
our relational density estimation techniques to estimate the interestingness of relational
states and actions in Sec. 5.3 which we use then in our relational exploration framework
introduced in Sec. 5.4. As an instantiation of this theoretical framework, we propose a
complete relational model-based reinforcement learning algorithm called REX in Sec. 5.5.
We finish this chapter with drawing conclusions and pointing at future work.

Our contributions in this chapter are the following (Lang, Toussaint, and Ker-
sting, 2010, 2011):

• We develop a relational model-based reinforcement learning frame-
work generalizing over states, actions and objects (Sec. 5.4).

• We introduce the problem of relational density estimation in relational
exploration strategies and present different methods to use it in a rein-
forcement learning context to formalize the novelty of relational states and
actions (Sec. 5.3).

• We present our relational exploration algorithm REX, the first complete
practical and implemented relational model-based reinforcement learning
algorithm with explicit explore-exploit mechanism (Sec. 5.5).

5.1 Related Work on Exploration

Exploration has been studied intensely in the classical reinforcement learning scenario
based on non-relational representations, but has been largely ignored thus far in rela-
tional reinforcement learning as our following presentation of related work shows. We
also take a look at active learning which will be important for our relational density
estimation framework and at the field of robotics.

Exploration in Non-relational Domains

The first studies on effective exploration in multi-state control problems developed a
number of concepts for describing explorative behavior, including curiosity (Schmid-
huber, 1991a), seeking to minimize the variance of action value estimates (Kaelbling
et al., 1996) and counters on the occurrences of states and actions (Thrun, 1992). There-
after, (near-)optimal exploration solutions have been developed for unstructured propo-
sitional and continuous domains where the environment is represented as an enumer-
ated or vector space. Bayesian reinforcement learning (Poupart et al., 2006) provides an
optimal solution to the exploration-exploitation problem in a Bayesian framework by
taking all potential models weighted by their posteriors into account at once. This solu-
tion is comparable to optimal experimental design in statistics or operations research, but

116 5.1 RELATED WORK ON EXPLORATION

typically infeasible to compute. An alternative approach to optimal exploration are algo-
rithms studied in the probabilistically approximately correct (PAC) framework applied
to Markov decision processes (MDPs). The seminal algorithms E3 (Kearns and Singh,
2002) and Rmax (Brafman and Tennenholtz, 2002) achieve near-optimal polynomial run-
times in enumerated domains. These powerful theoretical limits refer to the number of
states, however, and thus E3 and Rmax still scale exponentially in the number of objects.
E3 has been extended to parameter learning in factored propositional MDPs with a fixed
structure (Kearns and Koller, 1999) where it scales polynomially in the number of param-
eters of the underlying DBN. A further concern why such algorithms are hard to apply
in practice is that they rely on efficient (polynomial) approximate planers which provide
compact µ-optimal policies—however, general algorithms with these guarantees are not
known. Therefore, Guestrin et al. (2002) propose an exploration strategy for factored
propositional MDPs which is directed towards a specific planning algorithm based on
linear programming. Epshteyn et al. (2008) investigate active reinforcement learning in
enumerated domains to focus the exploration on the regions of the state space to which
the optimal policy is most sensitive.

Relational Reinforcement Learning

In recent years, there has been a growing interest in using rich representations such as
relational languages for reinforcement learning (RL). Most work in this context has fo-
cused on model-free approaches (estimating a value function) and has not developed re-
lational exploration strategies. Essentially, a number of relational regression algorithms
have been developed for use in these relational RL systems such as relational regres-
sion trees (Džeroski et al., 2001) and Gaussian processes with graph kernels (Driessens
et al., 2006). Kersting and Driessens (2008) introduce relational policy gradients. All
of these approaches use some form of ε-greedy strategy to handle exploration; no spe-
cial attention has been paid to the exploration-exploitation problem as done in the cur-
rent chapter. Driessens and Džeroski (2004) propose the use of “reasonable policies” in
model-free relational RL to provide guidance, that is, to increase the chance to discover
sparse rewards in large relational state spaces, also known as reward shaping. While
our approach described in this chapter can make use of such guidance, it decides au-
tonomously for actions which reveal the relevant structures of the world and thus does
not depend on a teacher. Sanner (2005, 2006) combines feature discovery with relational
reinforcement learning but does not discuss the problem of relational density estimation
for the exploration-exploitation tradeoff in general terms which will form the backbone
of our approach. Ramon et al. (2007) present an incremental relational regression tree
algorithm that is capable of dealing with concept drift and showed that it enables a re-
lational Q-learner to transfer knowledge from one task to another. They, however, do
not learn a model of the domain and, again, relational exploration strategies were not
developed.

5 RELATIONAL EXPLORATION 117

Exploration with Relational Models

The early approaches on deterministic action schema learning (Benson, 1996; Wang,
1995; Gil, 1994) in relational representations can be seen as first attempts to relational
model-based RL. They apply learning techniques from inductive logic programming
(ILP) (Nienhuys-Cheng and de Wolf, 1997), which studies the supervised learning of
relational concepts from sets of positive and negative examples of relational predicates.
ILP algorithms often try to represent the most specific concept that covers the positive
training data and excludes the negative data (which are usually separable so uncertainty
is no concern). Exploration, however, was no special focus in the first approaches on
action schema learning or experience was provided by a teacher. Croonenborghs et al.
(2007) learn a probabilistic relational transition model online in form of relational proba-
bility trees for individual state attributes and sample look-ahead trees of state transitions
to give the agent more informed estimates of the values of action sequences. Exploration
is based on sampling random actions instead of informed exploration. The pioneering
work of Walsh (2010) is the one closest to ours. Walsh provides the first principled inves-
tigation into the exploration-exploitation tradeoff in relational domains and establishes
sample complexity bounds for specific relational MDP learning problems, lifting ideas
from Rmax to relational domains. These bounds scale polynomially in the number of pa-
rameters and components of the models describing the transitions of the relational do-
main, such as the number of action schemata and effects, and thus sublinearly in the size
of the state space. In contrast to his work, our conceptual focus here is on the relational
exploration strategies themselves. Furthermore, our algorithms use a more expressive
language and we provide the first empirical evaluation for relational model-based RL
with fully learned models. We also show that relational representations are a promising
technique to formalize the idea of curriculum learning (Bengio et al., 2009) where first
simpler tasks are explored before more difficult tasks are tackled. Our work has interest-
ing parallels in cognitive science: Windridge and Kittler (2010) employ ideas of relational
exploration for cognitive bootstrapping, that is, to progressively learn more abstract rep-
resentations of an agent’s environment based on its action capabilities. In Chapter 4, we
have shown that successful planning typically involves only a small subset of relevant
objects, and Joshi et al. (2010) have shown that it typically also involves only a small
subset of relevant states and how to make use of this fact to speed up symbolic dynamic
programming significantly. A principled approach to exploration, however, has not been
developed.

Active Learning

The question of optimal exploration in model-based RL where we learn a transition
model has similarities to the problem of active learning (Cohn et al., 1996; Fedorov, 1972).
In statistical relational learning (SRL) (Getoor and Taskar, 2007; de Raedt et al., 2008; de
Raedt, 2008), active learning has only recently started to attract attention. Bilgic et al.
(2010) investigate the use of relations to identify uncertain regions in the learning space
by means of characteristic representatives. Xu et al. (2010) present an active exploration

118 5.2 BACKGROUND ON E3 IN ENUMERATED STATE SPACES

scheme for link-based preference learning. Nevertheless, the idea of relational density
estimation in active concept learning can be traced back to Cussens (1998).

Exploration in Robotics

In a robotics learning context in continuous domains, active exploration has been inves-
tigated for localization and mapping (Stachniss et al., 2005). In developmental robotics
addressing the idea of building systems and robots that mimic human and animal devel-
opment (Weng et al., 2001; Weng, 2004; Lungarella et al., 2003), the drive for exploration
is typically assumed to rely on some form of maximization of the learning progress,
which implicitly leads the system to aim for novel situations (Oudeyer et al., 2007). Many
of the ideas developed in this area can, in retrospect, be viewed as instances of the the-
oretically grounded recent work on exploration-exploitation in reinforcement learning.
The empirical demonstrations of development and exploration have been limited to do-
mains of low-level sensorimotor contingencies (Oudeyer et al., 2007). It remains an open
challenge to organize robot exploration and learning on higher levels of abstraction that
reflect the relational structure of natural environments. This is what we pursue in this
chapter.

5.2 Background on E3 in Enumerated State Spaces

The E3 (Explicit Explore or Exploit) algorithm (Kearns and Singh, 2002) provides a near-
optimal model-based solution to the exploration-exploitation problem in unstructured
enumerated state spaces. It distinguishes explicitly between exploitation and explo-
ration phases. The central concept are known states where all actions have been observed
sufficiently often. For this purpose, E3 maintains state-action counts for all state-action
pairs (s, a). A sketch of the algorithm is provided in Algorithm 3; the situations when
the concept of known states plays a role in the sketch are emphasized. IfE3 enters an un-
known state, it takes the action it has tried the fewest times there (direct exploration). If it
enters a known state, it tries to calculate a high-value policy within an MDP built from all
known states where its model estimates are sufficiently accurate. If it finds such a pol-
icy which stays with high probability in the set of known states, this policy is executed
(exploitation). Otherwise, E3 plans in a different MDP in which the unknown states are
assumed to have maximal value (“optimism in the face of uncertainty”), ensuring that
the agent explores unknown states efficiently (planned exploration).

One can prove that with high probability E3 performs near optimally for all but
a polynomial number of time-steps. The theoretical guarantees of E3 and similar al-
gorithms such as Rmax are strong. In practice, however, the required numbers of ex-
ploratory actions are large so that in case of large state spaces it is unrealistic to meet
the theoretical thresholds of state visits. Furthermore, the polynomial bounds of E3 on
the sample complexity refer to the number of states. In relational domains, however, the
state space is exponential in the number of objects, and hence, E3 scales exponentially in
the number of objects. To address this drawback, variants ofE3 for factored but proposi-

5 RELATIONAL EXPLORATION 119

Algorithm 3 Sketch of E3

Input: State s
Output: Action a

1: if s is known then
2: Plan in space of known states Bwhere model estimates are sufficiently accurate
3: if resulting plan has value above some threshold then
4: return first action of plan B exploitation
5: else
6: Plan in modified state space where unknown states get maximum reward
7: return first action of plan B planned exploration
8: end if
9: else

10: return action with the least observations in s B direct exploration
11: end if

tional MDP representations have been explored (Kearns and Koller, 1999; Guestrin et al.,
2002). Our evaluations will include variants of factored exploration strategies where
the factorization is based on ground relational formulas. However, factored MDPs still
do not enable generalization over objects. In this chapter, we are investigating explo-
ration strategies for relational representations and lift E3 to relational domains. This
may strongly improve the efficiency and the performance of a reinforcement learning
agent. The central idea is to generalize the state-action counts of the original E3 algo-
rithm over states, actions and objects. We achieve this by modeling the novelty of states
and actions as a relational density estimation problem. This is described in the next
section.

5.3 A Density Estimation View on Known States and Actions

The theoretical derivations of the non-relational near-optimal exploration algorithms E3

and Rmax show that the concept of known states is crucial. On the one hand, the confi-
dence in estimates in known states drives exploitation. On the other hand, exploration
is guided by seeking for novel (yet unknown) states and actions. For instance, the direct
exploration phase in E3 chooses novel actions, which have been tried the fewest; the
planned exploration phase seeks to visit novel states, which are labeled as yet unknown.

In the case of the original E3 algorithm (and Rmax and similar methods) operating
in an enumerated state space, states and actions are considered known based directly on
the number of times they have been visited. In relational domains, there are two reasons
for why we should go beyond simply counting state-action visits to estimate the novelty
of states and actions:

1. The size of the state space is exponential in the number of objects. If we base our
notion of known states directly on visitation counts, then the overwhelming ma-
jority of all states will be labeled yet-unknown and the exploration time required
to meet the criteria for known states of E3 even for a small relevant fraction of the

120 5.3 A DENSITY ESTIMATION VIEW ON KNOWN STATES AND ACTIONS

Figure 5.1: In active learning, a density model of previously seen points (crosses) is used
to estimate which areas of the input space are known. Here, Gaussians, placed at the
observations, enable a smooth estimate of known input points. This density is used to
quantify the confidence in the estimated target function (green line with yellow strap).

state space becomes exponential in the number of objects.

2. The key benefit of relational learning is the ability to generalize over yet unob-
served instances of the world based on relational abstractions. This implies a fun-
damentally different perspective on what is novel and what is known and permits
qualitatively different exploration strategies compared to the propositional view.

A constructive approach to pinpoint the differences between propositional and re-
lational notions of exploration, novelty and known states is to focus on a density esti-
mation view. This is also inspired by the work on active learning (Fedorov, 1972) which
typically selects points that, according to some density model of previously seen points,
are novel (see for example Cohn et al. (1996) where the density model is an implicit mix-
ture of Gaussians). This is illustrated in Fig. 5.1. Given some observations, the goal is to
estimate a smoothed empirical density which defines the areas of the input space where
we are confident about our target function estimates. Usually, we are confident (that is,
the density is high) in areas which are close to an observation based on some distance
function, while in areas far from any observations we are uncertain (the density is low).

A popular way to estimate densities are probabilistic models using mixture distribu-
tions. Given sets of mixture components fk and mixture weights wk, a mixture model
can be written as

p(x) ∝
∑
k

wkfk(x) . (5.1)

The components can be understood as describing different features of x and can be
arbitrary—for instance, relational as in our case: binary tests that have value 1 if some
relational query is true for x; otherwise they have value 0. Estimating such mixture
models is a type of unsupervised learning or clustering and involves two problems: es-
timating the feature functions fk (structure learning) and estimating the feature weights
wk (parameter learning).

5 RELATIONAL EXPLORATION 121

While the use of relational features offers a great compactness and generalization
it complicates the feature selection (structure learning) problem: relational features are
non-parametric functional representations. There are no prior restrictions on their length
and complexity and hence we have essentially infinitely many factors to choose from.
Consider a given relational feature respectively query. The longer the query is and the
more variables it contains, the larger is the number of possible ways to bind the variables
and the larger is the set of refined features that we potentially have to consider.

In addition, the space of the instances x is very large in our case. Recall that even very
small relational models can have hundreds of ground atoms and it would be impossi-
ble to represent all possible states and in turn the exact distribution, which in its fully
enumerated form would require roughly one probability entry for every distinct truth
assignment to ground atoms. For 100 ground atoms, this would require approximately
2100 distinct probability entries, which is clearly intractable. Thus, we need to focus on
a compact, factored representation of the density. Unfortunately, we have only a finite
set of positive examples, that is experienced states. From this set we have to generalize
to other states, but run the risk of over-generalization: it is unclear to which states we
do not want to generalize in order not to over-generalize. Thus, in a very large space
we essentially face the problem of structure learning from positive examples only (Mug-
gleton, 1997) that is known to be more difficult than the traditional relational learning
setting that additionally assumes that negative, that is impossible, examples are given.

If the feature functions are given, however, the density estimation becomes simpler:
only the weights need to be learned. For instance, in 1-class SVMs assumptions about
the feature structure are embedded in the kernel function; in the mixture of Gaussians
model, the functional form of Gaussians is given a-priori and provides the structure.
Triggered by this simple insight, we propose a “patch up” approach in this chapter1. We
examine different choices of feature functions in the relational setting whose weights can
be estimated based on empirical counts. While they are only approximations, we then
show that we can “patch up” and improve some of these approximations, namely the
context-based features (see below) through learning NID rules. In our relational model-
based RL algorithms as well as in our evaluation, we focus on context-based features.
In other words, our methods solve both structure and parameter learning from positive
examples only.

Let us now introduce different choices of feature functions for relational density es-
timation. From this, we derive different approaches to model a distribution of known
states and actions in a relational RL setting. These methods estimate which relational
states are considered known with some useful confidence measure according to a set of
experiences E and a modelM of the transition dynamics.

We formalize the problem of relational density estimation of known states s in the fol-
lowing general model based on queries q ∈ Q (the density estimation of known actions

1In general, the problem of relational density estimation in an online fashion is an important open and
intriguing problem with many applications. It has only briefly been touched in previous work (Cussens,
1998).

122 5.3 A DENSITY ESTIMATION VIEW ON KNOWN STATES AND ACTIONS

Table 5.1: Three relational states in a robot manipulation domain

s1 = { on(o1, o2), on(o2, t),
on(o3, t), inhand(o4),
ball(o1), cube(o2), cube(o3),
cube(o4), table(t) }

s2 = { on(o3, t), on(o4, t),
on(o5, o4), inhand(o2),
cube(o2), cube(o3),
cube(o4), ball(o5), table(t) }

s3 = { on(o1, t), on(o2, t),
on(o3, o2), on(o6, o3),
ball(o1), cube(o2), cube(o3),
cube(o6), table(t) }

is analogous):

PQ(s) ∝
∑

q∈Q cE(q) I(∃σ : s |= σ(q)) (5.2)
with cE(q) =

∑
(se,ae,s′e)∈E I(∃σ : se |= σ(q)) . (5.3)

I(·) is the indicator function which is 1 if the argument evaluates to true and 0 otherwise.
What is the set of queries Q? It is a set of relational formulas, usually in the form of a
conjunction of ground or abstract atoms. We discuss different choices of Q in detail
below. The substitution σ examines whether the query q is fulfilled in s, potentially
grounding q. A state s has a high probability PQ(s) to be known if it satisfies queries
q ∈ Q with large counts cE(q). The counts cE(q) are based on the previously experienced
states in the agent’s set of observed state transitions E = {(st, at, st+1)}T−1

t=1 and denote
the number of times query q held in predecessor states of the experiences. This density
implies that all states with low P (s) are considered novel and should be explored, as in
E3. In the following, we discuss different choices for queries q and the accompanying
density estimates which emphasize different aspects of relational data. As our running
example we use the three states shown in Table 2.1 and for convenience shown again in
Table 5.1. We assume that our experiences consist of exactly State 1, that is E = {s1},
while State 2 and State 3 have not been experienced.

Enumerated: Let us first consider briefly the propositional enumerated setting from
a density estimation point of view. We have a finite enumerated state space S and action
space A. The set of queries,

Qenum = {s | ∃(se, ae, s′e) ∈ E : se = s} ,

corresponds to predecessor states s ∈ S which have been visited in E . Thus, queries are
long conjunctions of ground atoms. This translates directly to the density

Penum(s) ∝ cE(s) , with cE(s) =
∑

(se,ae,s′e)∈E
I(se = s) . (5.4)

The count cE(q) in Eq. (5.4) counts the number of occasions state s has been visited in E
(in the spirit of Thrun (1992)). There is no generalization in this notion of known states.

5 RELATIONAL EXPLORATION 123

Similar arguments can be applied on the level of state-action counts and the joint density
P (s, a). For instance, in Table 2.1 both states s2 and s3 are equally unknown and novel
as they are both not the experienced state s1.

Literal-based: Given a relational structure with the set of logical predicates P , an
alternative approach to describe what are known states is based on counting how often
a literal (a potentially negated atom) has been observed true or false in the experiences
E (all statements equally apply to functions F , but we neglect this case here). A literal
l for predicate P ∈ P containing variables is abstract in that it represents the set of
all corresponding ground, that is variable-free, literals for P . Ground literals then play
the role of the traditional factors used in mixture models. First, we consider the set of
ground literals LG with arguments taken from the domain objects O. This leads to the
set of queries Qlit = LG and in turn to the density

Plit(s) ∝
∑

l∈LG cE(l) I(s |= l) (5.5)
with cE(l) =

∑
(se,ae,s′e)∈E I(se |= l).

Each query l ∈ LG examines whether l has the same truth values in s as in experienced
states. This implies that a state is considered familiar (with non-zero Plit(s)) if a ground
literal that is true (false) in this state has been observed true (false) before. Thus abstrac-
tion over states can be achieved by means of ground literals. We can follow the same
approach for abstract literals LA and set Qlit = LA. For l ∈ LA and a state s, we exam-
ine whether there are groundings of the logical variables in l such that s covers l. More
formally, we replace s |= l by ∃σ : s |= σ(l) in the indicator function. For instance, we
may count how often the blue ball was on top of some other object. If this was rarely the
case this implies a notion of novelty which guides exploration. For example, in Table
5.1 states s1 and s3 share the ground literal on(o2, t) while this literal does not hold in
s2. Thus, if Qlit = {on(o2, t)} and s1 is the sole experienced state, then s3 is perceived
as better known than s2. In contrast, if we use the abstract query inhand(X) (expressing
there was something held inhand) and set Qlit = {inhand(X)}, then s3 is perceived as
more novel, since in both s1 and s2 some object was held inhand. Note that this second
query abstracts from the identities of the inhand held objects.

Context-based / query-based: Assume that we are given a finite set Φ of contexts,
which are queries consisting of formulas over predicates and functions. While many re-
lational knowledge representations have some notion of context or rule precondition, in
our running example of NID rules these may correspond to the set of NID rule contexts
{φr}. These are learned from the experiences E and have specifically been optimized to
be a compact context representation (Sec. 3.1.3). Given a set Φ of such queries, setting
QΦ = Φ results in the density

PΦ(s) ∝
∑

φ∈Φ cE(φ) I(∃σ : s |= σ(φ)) (5.6)
with cE(φ) =

∑
(se,ae,s′e)∈E I(∃σ : se |= σ(φ)).

cE(φ) counts in how many experiences E the context respectively query φ was covered
with arbitrary groundings. Intuitively, contexts/queries may be understood as describ-

124 5.3 A DENSITY ESTIMATION VIEW ON KNOWN STATES AND ACTIONS

ing situation classes based on whether the same abstract prediction models can be ap-
plied. Taking this approach, states are considered novel if they are not covered by any
existing context/query (PΦ(s) = 0) or covered by a context/query that has rarely oc-
curred in E (PΦ(s) is low). That is, the description of novelty which drives exploration
is lifted to the level of abstraction of these relational contexts. Similarly, we formulate
a density estimation over states and actions based on state-action contexts/queries. For
instance, in the case of a set Γ of NID rules, each rule defines a state-action context,
resulting in the density

PΦ(s, a) ∝
∑

r∈Γ cE(r) I(r = r(s,a)), with cE(r) = |E(r)|, (5.7)

which is based on counting how many experiences are covered by the unique covering
rule r(s,a) for a in s. E(r) denotes the experiences which are covered by r. Thus, the
number of experiences covered by the rule r(s,a) modeling (s, a) can be understood as
a measure of confidence in r(s,a) and thus determines PΦ(s, a). We will use PΦ(s, a) in
our proposed algorithm below. In the example of Table 5.1, assume in s1 we put the
inhand cube o4 successfully on o3. From this experience, we learn a rule for the action
puton(X) with the context φ = inhand(Y)∧clear(X). This context is covered in s2, while
in s3 nothing is held inhand and thus the context is not covered there. Therefore, s3 is
perceived as more novel than s2, as the effects of less actions can be predicted.

Kernel-based: Different methods to estimate the similarity of relational states exist.
For instance, Driessens et al. (2006) and Halbritter and Geibel (2007) present relational
reinforcement learning approaches which use relational graph kernels to estimate the
similarity of relational states. These can be used for relational density estimation (in the
sense of 1-class SVMs) which, when applied in our context, would readily imply alter-
native notions of novelty and thereby exploration strategies. Applying such a method to
model P (s) from E implies that states are considered novel (with low P (s)) if they have
a low kernel value (high “distance”) to previous explored states. Let k(·, ·) ∈ [0, 1] de-
note an appropriate kernel for the queries q ∈ Q, for instance based on relational graph
kernels. We replace the hard indicator function I(∃σ : s |= σ(q)) in Eq. (5.2) by the kernel
function, resulting in the more general kernel-based density

Pk,Q(s) ∝
∑

q∈Q cE(q) k(s, q) . (5.8)

If one sets Q = {s | s ∈ S} to the set of states, the density in Eq. (5.8) measures the dis-
tance to all observed predecessor states multiplied by experience counts. In the example
of Table 5.1, if we use relational graph kernels, the isomorphism of the graph represen-
tations of s1 and s2 leads to a large kernel estimate k(s1, s2), while the different graph
structure of s3 causes k(s1, s3) to be small, therefore Pk,Q(s2) > Pk,Q(s3).

Entropy: The above approaches are based on counts over the set of experiences
E . As a simple extension, we propose to consider the variability within E , that is, the
entropy of the experiences. Consider two different series of experiences E1 and E2 both
of size n. Imagine that E1 consists of n times the same experience, while the experiences
in E2 differ. For instance, E1 might list repeatedly grabbing the same object in the same
context, while E2 might list grabbing different objects in varying conditions. E2 has a

5 RELATIONAL EXPLORATION 125

higher entropy. While the counts cE1(q) and cE2(q) as defined in Eq. (5.3) are the same,
still one might be tempted to say that E2 confirms q better as the query q succeeded in
more heterogeneous situations, supporting the claim of generalization. We formalize
this by redefining the counts in Eq. (5.3) using a distance estimate d(s, s′) ≥ 0 for two
states s and s′ as

cEE (q) =
∑

(st,at,st+1)∈E

δ(st, E(q,t)) I(∃σ : st |= σ(q)) , (5.9)

with E(q,t) = {(sd, ad, sd+1) ∈ E | ∃σ : sd |= σ(q) ∧ d < t}
and δ(s, E) ∝ min

(se,ae,s′e)∈E
d(s, se) .

The count cEE (q) weights each experience based on its difference to prior experiences
δ(st, E(q,t)) (while the original cE(q) assigns all experiences the same weight irrespective
of other experiences). To compute state distances, a kernel as above might be employed,
d(s, s′) ∝ 1/k(s, s′). In our evaluation, we investigate the usage of an entropy-based den-
sity estimator using a simple distance estimate based on least general unifiers (Ramon,
2002). For illustration, consider again the states in Table 5.1. Assume two series of expe-
riences E1 = {s1, s2} and E2 = {s1, s3} and the query q = on(X,Y) ∧ ball(X) (that there
is a ball on-top of some other object). All states s1, s2 and s3 cover this query, therefore
the standard counts for E1 and E2 according to Eq. (5.3) are the same, cE1(q) = cE2(q). As
s1 and s2 share the same structure, however, the entropy of E1 is smaller than that of E2.
Thus, E2 provides more heterogeneous evidence for q and therefore cEE1(q) < cEE2(q).

5.4 Relational Exploration Framework

The density estimation approaches discussed above open a large variety of possibilities
for concrete exploration strategies. In the following, we derive a relational model-based
reinforcement learning framework in which these strategies can be applied. This frame-
work is presented in Algorithm 4. It lifts E3 to relational exploration and distinguishes
explicitly between exploration and exploitation phases.

At each time-step, relational E3 performs the following general steps:

1. It adapts the relational transition modelMwith the set of experiences E .

2. Based on E and M, it estimates the densities of known states and actions, P (s)
and P (s, a). For instance,M might be used to provide formulas and contexts for
specific relational density estimates.

3. These densities are used for decision-making for action at with the same phase-
ordering as in E3. If the current state st is known, exploitation is tried. If this
fails (the planner does not find a policy with a sufficiently high value), planned
exploration to unknown states is undertaken. If the current state st is not known,
direct exploration is performed.

126 5.4 RELATIONAL EXPLORATION FRAMEWORK

Algorithm 4 Relational Exploration
Input: Start state s0, reward function R, confidence threshold ξ
1: Set of experiences E = ∅
2: for t=0,1,2 . . . do
3: Update transition modelM according to E
4: Estimate P (s) and P (s, a) from E andM B Relational representation enables generalization
5: if P (st) > ξ then B If state is known . . . → uses relational generalization
6: Plan in space of known states B Try to exploit→ uses relational generalization
7: if resulting plan has value above some threshold then B Exploitation successful
8: at = first action of plan
9: else B Planned exploration→ uses relational generalization

10: Plan in modified state space where unknown states get maximum reward
11: at = first action of plan
12: end if
13: else B State is unknown
14: at = action with smallest P (s, a) B Direct exploration→ uses relational generalization
15: end if
16: Execute at
17: Observe new state st+1

18: Update set of experiences E ← E ∪ {(st, at, st+1)}
19: end for

4. Finally, the action at is executed, the resulting state st+1 observed and added to the
experiences E , and the process repeated.

The relational density estimation of states and actions, P (s) and P (s, a), and the resulting
generalization over states, actions and objects play a crucial role at several places in the
algorithm, namely

• to decide whether the current state is considered known or novel;

• to determine the set of known states where to try to exploit;

• to determine the set of both known and novel states in planned exploration to
decide for target states and plan-through states;

• and to determine which action to execute in direct exploration where the least
known action with the lowest P (s, a) is chosen; this combines E3 (choosing the
action with the fewest “visits”) with relational generalization (defining “visits” by
means of state abstraction).

An important parameter in relational E3 is ξ, the threshold to decide whether states
and actions are known or unknown. The originalE3 algorithm for enumerated state and
action spaces provides a theoretical derivation for this threshold, which is required to
prove the polynomial sample complexity of E3. Unfortunately, this derivation is closely
tied to the enumerated representation of states and actions, not straightforward to ap-
ply in practice and will lead to overly large thresholds (see Guestrin et al. (2002)). As
the intriguing work of Walsh (2010) shows, it is nonetheless possible to provide bounds
in this spirit for specific relational MDP learning problems. Our focus, however, is on

5 RELATIONAL EXPLORATION 127

general relational exploration strategies without making assumptions about the transi-
tion modelsM and the algorithms to learn them. Therefore, we set ξ empirically in our
experiments.

5.5 A Complete Relational Model-Based Reinforcement Learner

The relational E3 framework presented in the last section is independent of the concrete
choices for the representation of the transition modelM, the planning algorithm and the
relational density estimation type. Here, we propose a concrete instance of this relational
E3 framework which we will use in our evaluation. We call our algorithm REX (short for
relational explorer). To our knowledge, REX is the first empirically evaluated relational
model-based reinforcement learning algorithm with explicit explore-exploit mechanism
which learns and exploits full-fledged transition models M. REX employs NID rules
as model M, plans with the PRADA algorithm and uses the contexts {φr} of learned
NID rules r to estimate the densities PΦ(s) and PΦ(s, a). These contexts are learned
from experience and provide compact descriptions of situation classes. Thus, a state is
known if all actions in this state are known. An action is known if there is sufficient
confidence in its covering rule. The confidence of a rule depends on the number of
experiences in E it explains, as described above. As our evaluation will show, this density
estimation method is simple, but empirically effective. We are certain that more elaborate
and efficient exploration strategies can be derived from the principles of the previous
sections in the future.

In general, it is unclear how to efficiently build and exclusively use an MDP of
known relational states. Therefore, in exploitation and planned exploration we also plan
through partially unknown states. However, the planner PRADA, and thus REX, only
takes the known actions in a state for planning into account. It achieves this by only
considering actions with unique covering rules in a given state. In planned exploration,
PRADA returns plans to states whose actions are to a large extent unknown. Thus, REX

plans for highly unknown states then.

5.5.1 Illustrative Example

In Table 5.2, we present an example of an agent using relational E3 based on proba-
bilistic relational rules, that is REX, in a robot manipulation domain. In the beginning,
the robot is given a relational vocabulary to describe the world on a symbolic level. It
has the ability to convert its perceptions into the corresponding symbolic representation.
Furthermore, it possesses two different types of motor primitives for grabbing objects
and putting them on other objects. It can trigger these motor primitives by the symbolic
actions grab(X) and puton(X). These actions are always executed and their effects de-
pend on the context. Thus, in the example scenario with objects O = {o1, o2, o3, o4, o5, t}
the action space of the robot consists of the actions A = { puton(t), puton(o1), puton(o2),
puton(o3), puton(o4), puton(o5), grab(o1), grab(o2), grab(o3), grab(o4), grab(o5) }. See
Sec. 4.6 for a corresponding real-world robotic setup.

128 5.5 A COMPLETE RELATIONAL MODEL-BASED REINFORCEMENT LEARNER

Table 5.2: Example of Relational E3. A robot manipulates objects scattered on a table by
means of motor primitives triggered by symbolic actions puton(·) and grab(·). The robot
is told to build a tower. It starts with zero knowledge (E = ∅) and learns from experience
how its actions change the state of the world. The arrows at t= 2 and t= 9 indicate that
the manipulated objects have fallen off balls.

t = 0

No rule learned yet.

Direct exploration
Next action: a0 = grab(o1)

t = 1

Learned rule r1
grab(X) : on(X, Y)

→
{

1.0 : inhand(X), ¬on(X, Y)
0.0 : noise

Direct exploration
Next action: a1 = puton(o4)

t = 2

Learned rule r2
puton(X) : inhand(Y), table(Z)

→
{

1.0 : on(Y, Z), ¬inhand(Y)
0.0 : noise

Direct exploration
Next action: a2 = puton(o3)

t = 3

Learned rule r3
puton(X) : inhandNil()

→
{

1.0 : −
0.0 : noise

Direct exploration
Next action: a3 = grab(o3)

t = 4

Confirmed rule r1
grab(X) : on(X, Y)

→
{

1.0 : inhand(X), ¬on(X, Y)
0.0 : noise

Direct exploration
Next action: a4 = grab(o3)

t = 5

Learned rule r4
grab(X) : inhand(X)

→
{

1.0 : −
0.0 : noise

Direct exploration
Next action: a5 = puton(o1)

t = 6

Learned rules r5 and r6
puton(X) : ¬ball(X), inhand(Y)

→
{

1.0 : on(Y,X), ¬inhand(Y)
0.0 : noise

puton(X) : ball(X), inhand(Y),

platzhalti table(Z)

→
{

1.0 : on(Y, Z), ¬inhand(Y)
0.0 : noise

Direct exploration
Next action: a6 = puton(o2)

t = 7

Confirmed rule r3
puton(X) : inhandNil()

→
{

1.0 : −
0.0 : noise

Planned exploration
Next action: a7 = grab(o5)

t = 8

Confirmed rule r1
grab(X) : on(X, Y)

→
{

1.0 : inhand(X), ¬on(X, Y)
0.0 : noise

Planned exploration
Next action: a8 = puton(o2)

t = 9

Confirmed rule r6
puton(X) : ball(X), inhand(Y), table(Z)

→
{

1.0 : on(Y, Z), ¬inhand(Y)
0.0 : noise

Planned exploration
Next action: a9 = grab(o4)

t = 10

Confirmed rule r1
grab(X) : on(X, Y)

→
{

1.0 : inhand(X), ¬on(X, Y)
0.0 : noise

Planned exploration
Next action: a10 = grab(o4)

t = 11

Confirmed rule r4
grab(X) : inhand(X)

→
{

1.0 : −
0.0 : noise

Planned exploration
Next action: a10 = puton(o3)

t = 12

Confirmed rule r5
puton(X) : ¬ball(X), inhand(Y)

→
{

1.0 : on(Y,X), ¬inhand(Y)
0.0 : noise

Done.

5 RELATIONAL EXPLORATION 129

The robot is told to build a tower with the objects on the table. The robot does not
know, however, how its actions change the state of the world. It has to learn this from
experience and use its insights to achieve its goal, a prototypical model-based reinforce-
ment learning situation. The robot will apply relational exploration to learn as much as
possible about the transition dynamics of its world in as few time as possible. It uses
NID rules to learn and represent a transition modelM. Based on the contexts of these
NID rules Q = {φr}r and its experiences E , it estimates the density of known states and
actions. A state is considered known if all actions in this state are known. An action
is considered to be known if there is sufficient confidence in its unique covering rule.
Here, we assume the robot is confident about a rule if this rule explains at least two of
its experiences.

At t=0, the robot starts with zero knowledge about the transition dynamics. As s0 is
unknown, it performs a direct exploration action. All actions are equally unknown so it
chooses randomly to grab cube o1 and learns rule r1 from the experience (s0, a0, s1). At
t=1, although all actions in s1 and thus s1 itself are unknown, the robot is less uncertain
about the grab(·) actions for the objects lying on the table: these are covered by the rule
r1 which explains its single experience. It is most uncertain about grabbing the inhand
object (which is not covered by r1) and all puton(·) actions which are not covered by any
rule. The robot chooses randomly among these most unknown actions for puton(o4). As
o4 is a ball, the inhand-held cube o1 falls from o4 on the table t, resulting in state s2. The
robot generalizes this experience in form of the rule r2 that puton(X) will lead to putting
the inhand-object on the table. This false generalization is uncertain, however, as it is
only covered by one experience.

At t= 2, the robot is most uncertain about the puton(·) actions which are not cov-
ered by any of its learned rules (the previously learned rule r2 requires inhand(Y) in
its context which is not fulfilled in s2). Therefore, the robot chooses randomly among
them and performs puton(o3). It observes no effects and learns the rule r3, predicting
puton actions in contexts where nothing is held inhand. At t= 3, the robot is equally
uncertain about all actions (all actions are covered by rules which explain exactly one
experience). It chooses randomly grab(o3). The experience (s3, a3, s4) confirms the rule
r1 about which it is certain by now as r1 explains two experiences. At t= 4, grab(o3) is
the only action which is not covered by any rule and therefore performed. The resulting
state s5 is not different from s4, resulting in the learned rule r4.

At t= 5, the most uncertain actions, grab(o3) and all puton-actions, are covered by
rules with confidence one (that is, explaining one experience). The robot chooses ran-
domly puton(o1). This provides an insightful experience: by comparing the experiences
(s1, a1, s2) and (s5, a5, s6), the robot “understands” that rule r2 is a false generalization
and instead learns r5 for putting on cubes and the table and r6 for putting on balls.
At t = 6, all grab-actions are known due to the confidence in rule r1, in other words
the robot can predict their effects with confidence. In contrast, it is uncertain about all
puton-actions as rule r3 explains only one experience, so it randomly chooses puton(o2).
The resulting experience confirms r3 about which it is certain then.

At t = 7, the robot can predict the effects of all actions in the current state with

130 5.6 EVALUATION

certainty. Therefore, it tries to exploit its knowledge about known states to plan for its
goal, namely to build a tower. The rule r5 (modeling puton-actions for cubes) required
for tower building, however, is still uncertain and thus the according actions and states
are unknown and cannot be considered in planning. Therefore, exploitation fails and
the robot performs planned exploration instead: it plans for unknown states in which its
rules r4, r5 and r6 can be tested. Such states are reached by grab-actions and the robot
chooses randomly to perform grab(o5). At t= 8, the planned exploration begun at the
last time-step allows to confirm several rules by performing one of the unknown puton
actions or the likewise unknown grab(o5). The robot chooses randomly puton(o2). The
resulting state s9 confirms r6 about which it is certain by now. At t= 9, like in s7 the
robot performs planned exploration and grabs a random object, namely grab(o4).

At t=10, the unknown actions are grab(o4), puton(o1), puton(o3) and puton(t) whose
covering rules explain only one experience. The robot chooses randomly grab(o4) whose
outcome in s11 confirms the rule r4. At t = 11, from the remaining three unknown
actions, it chooses randomly puton(o3), confirming the rule r5. At t = 12, the highest
possible tower has been built. Hence, the robot cannot exploit its knowledge to build an
even higher tower. Similarly, planned exploration for unknown states fails and the robot
concludes that it is done.

In this example, there have been no exploitation steps as in the last time-step achieved
by direct and planned exploration, the highest reward has already been achieved. If
there were more cubes, however, the robot could successfully exploit its knowledge and
achieve even higher reward states from s12.

To keep this illustrative example short, we simplified in some respects: First, the
robot makes most often the correct generalizations, even if competing false generaliza-
tions have the same statistical evidence. For instance, from experience (s2, a2, s3) the
robot could also generalize that puton(X) does not have effects if X is a cube (instead of
if its hand is empty). A second simplification in our example is our neglect of noise in
the actions of the robot. Note however that our algorithms account for stochastic actions
and our experimental evaluation is performed in intrinsically noisy domains. The third
simplification is that we determined the “random” choices of the robot to be informative
actions. For instance, if the robot had chosen puton(o1) in s11, it might have had to re-
vise its rule r5 to incorporate clear(X) and to come up with a rule for putting on objects
which are not clear, leading to a more accurate model requiring more exploration steps.

5.6 Evaluation

The intention in our evaluation is to compare propositional and relational techniques for
exploring relational worlds. More precisely, we investigate the following questions:

• Q1: Can relational knowledge improve exploration performance?

• Q2: Do the relational explorers scale better with the number of domain objects than
the propositional ones?

5 RELATIONAL EXPLORATION 131

• Q3: Does relational E3 exploration perform superior to random exploration with
relational models?

• Q4: Can relational explorers transfer knowledge to new situations and objects?

• Q5: Can relational explorers transfer knowledge to new tasks?

To answer these questions, we compare four different methods inspired by E3 based
on propositional or relational transition models:

• flat E3 exploration based on an enumerated state and action space

• factored E3 exploration based on a factored propositional state and action space

• relational E3 exploration based on a relational state and action space

• relational ε-greedy based on a relational state and action space (trying to exploit
with probability 1− ε and randomly exploring otherwise)

Relational ε-greedy is not a “simple” baseline, but a rather powerful method learning
abstract relational transition models and using them for exploitation (thus, thereby using
the same set of known states as relational E3). In contrast to relational E3, it performs
a random action for exploration. Relational ε-greedy often profits from its optimism to
almost always try to exploit—in contrast to E3, it is not forced to completely know a
state before it can start exploitation. In our experiments, we set ε = 0.1 which performed
best in preliminary tests.

We use NID rules to learn transition modelsM for all representation types for two
reasons: (i) there is an effective learning algorithm for NID rules, and (ii) we can ex-
press transition models on all representation levels with NID rules which allows for a
consistent and comparable evaluation. Relational E3 and relational ε-greedy learn ab-
stract NID rules as described in Sec. 3.1.3. Factored E3 learns propositional (i.e., ground)
NID rules using a slightly modified learning algorithm; thus, ground literals imitate the
propositional state attributes. Flat E3 uses pseudo propositional NID rules where the
rule context describes a complete ground relational state; hence, a rule is only applicable
in a specific state. Exemplary rules for all representations are shown in Table 5.3.

We use REX (Sec. 5.5) as a concrete algorithm for relational E3 and propositional
variants of REX for the propositional E3 frameworks. Thus, we learn (propositional
or abstract) NID rules after each new observation from scratch using the algorithm of
Pasula et al. (2007) (appropriately modified for the propositional representations) and
employ PRADA (Sec. 4.2) for exploitation or planned exploration. The reward function
is not learned, but provided to the agent. PRADA plans in the ground relational rep-
resentation and therefore can deal with rules on all abstraction levels. To estimate the
densities of known states and actions, REX and similarly its propositional counterparts
use the contexts of rules Q = {φr}r (an extension will be discussed later). We define
the densities and the threshold ξ for knowing states and actions such that an action is
known in a state if its covering rule explains two experiences in E . While this number is

132 5.6 EVALUATION

Table 5.3: Illustration of NID rules on different representation levels. (a) The abstract rule
uses variables to generalize over objects. (b) The factored propositional rule imitates
propositional state attributes by using only ground atoms. (c) The flat rule specifies a
complete state in its context. Note that the propositional rules (b) and (c) do not need
to represent the typing predicates such as cube(·) as they do not abstract from object
identities.

(a) Abstract NID rule

grab(X) : on(X,Y), ball(X), cube(Y), table(Z)

→


0.7 : inhand(X), ¬on(X,Y)
0.2 : on(X,Z), ¬on(X,Y)
0.1 : noise

(b) Factored propositional NID rule

grab(d) : on(d, b)

→


0.7 : inhand(d), ¬on(d, b)
0.2 : on(d, t), ¬on(d, b)
0.1 : noise

(c) Flat “NID rule”

grab(d) : on(a, t), on(b, t), on(c, a), on(d, b),¬on(a, b),¬on(a, c) . . . ,¬inhand(a), . . .

→


0.7 : inhand(d), ¬on(d, b)
0.2 : on(d, t), ¬on(d, b)
0.1 : noise

not large, it enables the agent to explore the environments of our experiments within a
reasonable number of actions (< 100). We have implemented REX and its propositional
counterparts, the learning algorithm for NID rules and the planning algorithm PRADA
in C++2.

Our first test domain is our intrinsically noisy robot manipulation domain (Sec. 1.1.1).
Our second test domains, called “IPPC” in the following, are domains taken from the in-
ternational planning competition in 2008 (IPPC, 2008). While these domains are defined
in the probabilistic planning domain definition language (PPDDL), the transition dy-
namics of many domains can be represented by NID rules (see Sec. 4.2 and Appendix
B). In our experiments, we show that these representations can be learned using the
algorithm of Pasula et al. (2007).

2The website http://userpage.fu-berlin.de/tlang/explore/ provides our code of PRADA,
of the learning algorithm of NID rules and of the robot manipulation simulator as well as videos of exem-
plary exploration rounds in the robot manipulation domain.

5 RELATIONAL EXPLORATION 133

We perform three series of experiments to answer our evaluation questions where
we pursue the same, similar or different tasks over multiple rounds:

• Series 1 – Robot Manipulation domain: comparison of relational vs. non-relational
exploration approaches

– Experiment 1: Unchanging worlds of cubes and balls (Fig. 5.2, p. 131)

– Experiment 2: Unchanging worlds with boxes (Fig. 5.3, p. 132)

– Experiment 3: Generalization to new worlds with boxes (Fig. 5.4, p. 133)

• Series 2 – IPPC domains: comparison of relational vs. non-relational exploration
approaches

– Experiment 4: Exploding Blocksworld (Fig. 5.5, p. 134)

– Experiment 5: Triangle-tireworld (Fig. 5.6, p. 136)

– Experiment 6: Search-and-rescue (Fig. 5.7, p. 137)

• Series 3 – Robot Manipulation domain: comparison of different relational explo-
ration approaches

– Experiment 7: Advanced task in unchanging worlds with boxes (Fig. 5.8,
p. 138)

– Experiment 8: Generalization to new tasks (Fig. 5.9, p. 139)

In all experiments the robot starts from zero knowledge (E = ∅) in the first round and carries
over experiences to the next rounds. In each round, we execute a maximum number of
actions (50 in the simple, 100 in the difficult scenarios). If the task is still not solved by
then, the round fails.

We report the success rates and the action numbers to which failed runs contribute
with the maximum number. Both are direct measures of the goal-directedness and acting
performance of an autonomous agent. We emphasize that likewise these measures also
evaluate the learning performance of the agent: the goal-directed performance depends
on the learned rules and the active exploration on the learned density estimates. Thus,
high success rates and low action numbers indicate a good performance in learning rules
and densities—“good” in the sense of enabling goal-directed behavior.

5.6.1 Series 1 – Robot Manipulation Domain

In this first series of experiments, we compare the flat, factored and relational E3 ap-
proaches as well as relational ε-greedy in successively more complex problems.

134 5.6 EVALUATION

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

Round

4+1 Objects

S
u
c
c
e
s
s

flat E
3

factored E
3

rel. e-greedy
relational E

3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

Round

6+1 Objects

S
u
c
c
e
s
s

flat E
3

factored E
3

rel. e-greedy
relational E

3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

Round

8+1 Objects

S
u
c
c
e
s
s

flat E
3

factored E
3

rel. e-greedy
relational E

3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

Round

10+1 Objects

S
u
c
c
e
s
s

flat E
3

factored E
3

rel.l e-greedy
relational E

3

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

Round

4+1 Objects

A
c
ti
o
n
s

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

Round

6+1 Objects

A
c
ti
o
n
s

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

Round

8+1 Objects

A
c
ti
o
n
s

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

Round

10+1 Objects

A
c
ti
o
n
s

Figure 5.2: Experiment 1 (Robot Manipulation domain): Unchanging Worlds of Cubes and
Balls. A run consists of 5 subsequent rounds with the same start situations and goal
objects. The robot starts with no knowledge in the first round. The success rate and the
mean estimators of the action numbers with standard deviations over 50 runs are shown
(5 start situations, 10 seeds).

Experiment 1: Unchanging Worlds of Cubes and Balls

The goal in each round is to pile two specific objects, on(o1, o2). To collect statistics we
investigate worlds of varying object numbers (movable objects and table) and for each
object number, we create five worlds with different objects. For each such world, we per-
form 10 independent runs with different random seeds. Each run consists of 5 rounds
with the same goal instance and the same start situation. The results presented in Fig. 5.2
show that already in the first round the relational explorers solve the task with signifi-
cantly higher success rates and require up to 3-4 times fewer actions than the proposi-
tional explorers. In subsequent rounds, the relational methods use previous experiences
much better, solving those in almost minimal time. This indicates the good accuracy
and generality of their learned rule-sets and densities. In contrast, the action numbers of
the propositional explorers fall only slowly. The non-relational methods face problems
with an increasing number of objects, while the relational methods perform well with all
numbers of objects. There are no significant performance differences between relational
E3 and relational ε-greedy in this simple scenario.

Experiment 2: Unchanging Worlds with Boxes

We keep the task and the experimental setup as before, but in addition the worlds contain
boxes, resulting in a more complex transition process. In particular, some goal objects
are put in boxes in the beginning, necessitating more intense exploration to learn how to

5 RELATIONAL EXPLORATION 135

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

Round

6+1 Objects

S
u
c
c
e
s
s

flat E
3

factored E
3

rel. e-greedy
relational E

3
 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

Round

8+1 Objects

S
u
c
c
e
s
s flat E

3

factored E
3

rel. e-greedy
relational E

3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

Round

10+1 Objects

S
u
c
c
e
s
s flat E

3

factored E
3

rel. e-greedy
relational E

3

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

Round

6+1 Objects

A
c
ti
o
n
s

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

Round

8+1 Objects

A
c
ti
o
n
s

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

Round

10+1 Objects

A
c
ti
o
n
s

Figure 5.3: Experiment 2 (Robot Manipulation domain): Unchanging Worlds with Boxes. A
run consists of 5 subsequent rounds with the same start situations and goal objects. The
robot starts with no knowledge in the first round. The success rate and the mean esti-
mators of the action numbers with standard deviations over 50 runs are shown (5 start
situations, 10 seeds).

deal with boxes. Fig. 5.3 shows that again the relational explorers have superior success
rates, require significantly fewer actions and reuse their learned knowledge effectively in
subsequent rounds. The propositional explorers are overburdened with larger numbers
of objects—their learned densities of known states and actions fail to recognize similar
situations. In contrast, the relational explorers scale well with increasing numbers of
objects. Relational E3 is superior to relational ε-greedy. This shows that its learned state
and action densities enable a directed active exploration.

Experiment 3: Generalization to New Worlds

In this series of experiments, the objects, their total numbers and the specific goal in-
stances are different in each round (worlds of 7, 9 and 11 objects). We create 10 problem
sequences (each with 10 rounds) and perform 10 runs for each sequence with different
random seeds. As Fig. 5.4 shows the performance of the relational explorers is good from
the beginning. Its learned densities and rules enable a stable performance ofE3 at a near-
optimal level after already 2 rounds, while relational ε-greedy requires 4 rounds. This
experiment shows that the relational explorers can transfer their learned knowledge to
new situations and objects. In contrast, the propositional explorers cannot transfer their
knowledge to different worlds due to the limits of their learned rules and densities and

136 5.6 EVALUATION

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

Round

Success

flat E
3

factored E
3

relational greedy
relational E

3

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

Round

Actions

Figure 5.4: Experiment 3 (Robot Manipulation domain): Generalization to New Worlds. A run
consists of a problem sequence of 10 subsequent rounds with different objects, numbers
of objects (6 - 10 cubes/balls/boxes + table) and start situations in each round. The robot
starts with no knowledge in the first round. The success rate and the mean estimators of
the action numbers with standard deviations over 100 runs are shown (10 sequences, 10
seeds).

thus neither their success rates nor their action numbers improve in subsequent rounds.

Summary

All three experiments of this first evaluation series indicate that the usage of relational
knowledge improves learning rules and densities of known states and actions and thus
exploration (questionQ1). From Experiments 1 and 2, we conclude that the usage of rela-
tional explorers scales better with the number of objects than for propositional explorers
(question Q2). The slightly more challenging Experiments 2 and 3 show that the princi-
pled relational E3 exploration outperforms random exploration with relational models
(question Q3): the learned state and action densities enable an informative active ex-
ploration. Experiment 3 provides an answer to question Q4: relational explorers can
transfer their knowledge to new situations and objects—while propositional explorers
fail.

5.6.2 Series 2 – IPPC

In the second series of experiments, we compare the non-relational with the relational
exploration strategies in domains of the international planning competition. We choose
three domains whose transition processes can be represented by NID rules as we have
shown before (Sec. 4.2 and Appendix B). We convert these domains manually into sets
of NID rules which we use as the true underlying world dynamics. The reinforcement
learning agent tries to estimate these rules from its experiences. In each domain, we
present the results on selected problem instances. To collect statistics, we perform 50
runs on the same problem instance with different random seeds. Each run consists of 10
subsequent rounds. In these IPPC domains, most actions do not have effects in a given

5 RELATIONAL EXPLORATION 137

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

Round

Problem 1

S
u

c
c
e

s
s

flat E
3

factored E
3

rel e-greedy
relational E

3

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

Round

Problem 1

A
c
ti
o

n
s

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

Round

Problem 5

S
u

c
c
e

s
s

flat E
3

factored E
3

rel e-greedy
relational E

3

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

Round

Problem 5

A
c
ti
o

n
s

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

Round

Problem 6

S
u

c
c
e

s
s

flat E
3

factored E
3

rel e-greedy
relational E

3

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

Round

Problem 6

A
c
ti
o

n
s

Figure 5.5: Experiment 4 (IPPC): Exploding Blocksworld. A run consists of 10 subsequent
rounds with the same start situation and goal objects. The agent starts with no knowl-
edge in the first round. The success rate and the mean estimators of the action numbers
with standard deviations over 50 runs based on different random seeds are shown.

state. This is in contrast to the intrinsically noisy robot manipulation domain where
actions almost always have an effect. For instance, in the latter it is always possible to
try to grab an object, be it clear, at the bottom of a pile or in a box. In contrast, the
PPDDL action operators of the IPPC domains specify restrictive action preconditions.
For this reason, we introduce a further restriction for direct exploration in all investigated
approaches: all actions which have not shown an effect since the last state change are
forbidden until the next state change.

Experiment 4: Exploding Blocksworld

The results displayed in Fig. 5.5 show that the propositional explorers almost always
fail completely. Their performance is perished in particular by the fact that most actions
do not have effects in a given state. This is hazardous if one cannot generalize one’s
experiences over objects, resulting in barely useful density estimates of known states
and actions: the propositional explorers spend too much time in each state exploring
noneffective actions. In contrast, the relational explorers often succeed in solving the
tasks, due to the superior generality of their learned densities. Their performance varies

138 5.6 EVALUATION

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

Round

Problem 1
S

u
c
c
e
s
s

flat E
3

factored E
3

rel e-greedy
relational E

3

 0

 50

 100

 150

 200

 1 2 3 4 5 6 7 8 9 10

Round

Problem 1

A
c
ti
o
n
s

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

Round

Problem 2

S
u
c
c
e
s
s

flat E
3

factored E
3

rel e-greedy
relational E

3

 0

 100

 200

 300

 400

 500

 1 2 3 4 5 6 7 8 9 10

Round

Problem 2

A
c
ti
o
n
s

Figure 5.6: Experiment 5 (IPPC): Triangle Tireworld. A run consists of 10 subsequent
rounds with the same start situation and goal specification. The agent starts with no
knowledge in the first round. The success rate and the mean estimators of the action
numbers with standard deviations over 50 runs based on different random seeds are
shown.

with the problem instance difficulty and increases with the number of rounds in a run.
Relational E3 clearly outperforms relational ε-greedy in both the success rate as well
as the number of required actions, indicating the usefulness of the learned densities of
known states and actions for active exploration.

Experiment 5: Triangle Tireworld

The results presented in Fig. 5.6 show that in the first problem instance the success rate
of all methods is comparable. The difficulty of this domain lies in dead-lock situations
(where the agent has a flat tire, but no spare tire is available). Even for the relational
explorers, the causes for landing in such dead-locks are not easy to recognize with con-
fidence given the limited number of available relevant experiences. However, relational
E3 and after some rounds relational ε-greedy require only a fraction of the actions of the
propositional explorers. In the second problem instance, the usefulness of expressive
learned densities of known states and actions for active exploration is particularly sig-
nificant: only relational E3 is able to solve a stable fraction of the runs, even when the

5 RELATIONAL EXPLORATION 139

maximum number of actions in a round is set to 500.

Experiment 6: Search and Rescue

In this domain, the agent can collect intermediate and final rewards. We present the total
rewards with the success rates and the action numbers in Fig. 5.7. Overall, relational E3

performs clearly best w.r.t. all measures and scales with an increasing numbers of objects
(which increase with the problem instances). While flatE3 performs worst, here factored
E3 most often outperforms relational ε-greedy. In this scenario, a principled exploration
strategy based on learned densities shows clear benefits over random exploration.

Summary

The results in the IPPC domains confirm our findings of the first series of experiments in
the robot manipulation domain. All experiments here show that the usage of relational
knowledge for learning expressive transition models and densities of known states and
actions improves exploration (question Q1). The relational explorers scale better with
the complexity of the problems in form of the number of objects (question Q2). Fur-
thermore, all experiments, in particular Experiment 6, indicate that the principled E3

exploration, driven by the learned densities, leads to significant performance gains over
random exploration (question Q3).

5.6.3 Series 3 – Robot Manipulation Domain

After having extensively investigated the difference in performance of relational and
non-relational explorers, in our final series of experiments we examine the relational
explorers in more advanced problem settings. Here, we also investigate a variant of REX

using entropy-based counts for relational density estimation (cf. Sec. 5.3). We denote this
variant by “relational E3 entropy” in the following.

Experiment 7: Advanced Task in Unchanging Worlds with Boxes

The goal in each round is to “clear” the table. Movable objects (balls and cubes) of dif-
ferent colors are scattered over the table. To clear up such a movable object, it needs to
be put into a box of the same color. To collect statistics, we investigate worlds of varying
object numbers and for each object number, we perform 10 independent runs with differ-
ent random seeds. Each run consists of 5 rounds with the same start situation (and thus
with the same goal instance). In starting situations, balls and cubes may form piles, lie
on top of closed boxes or be contained in boxes of a different color. Fig. 5.8 presents our
results. The E3 methods clearly outperform relational ε-greedy. Furthermore, relational
E3 entropy has some small, but significant advantages over the original relational E3.
This hints at the potential of improving performance by more sophisticated techniques
to learn relational densities.

140 5.6 EVALUATION

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

Round

Problem 1

S
u
c
c
e
s
s

flat E
3

factored E
3

rel e-greedy
relational E

3

 0

 100

 200

 300

 1 2 3 4 5 6 7 8 9 10

Round

Problem 1

A
c
ti
o
n
s

 0

 500

 1000

 1500

 2000

 1 2 3 4 5 6 7 8 9 10

Round

Problem 1

R
e
w

a
rd

s

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

Round

Problem 3

S
u
c
c
e
s
s

flat E
3

factored E
3

rel e-greedy
relational E

3

 0

 100

 200

 300

 400

 1 2 3 4 5 6 7 8 9 10

Round

Problem 3

A
c
ti
o
n
s

 0

 500

 1000

 1500

 1 2 3 4 5 6 7 8 9 10

Round

Problem 3

R
e
w

a
rd

s

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

Round

Problem 5

S
u
c
c
e
s
s

flat E
3

factored E
3

rel e-greedy
relational E

3

 0

 100

 200

 300

 400

 500

 1 2 3 4 5 6 7 8 9 10

Round

Problem 5

A
c
ti
o
n
s

-500

 0

 500

 1000

 1500

 1 2 3 4 5 6 7 8 9 10

Round

Problem 5

R
e
w

a
rd

s

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

Round

Problem 8

S
u
c
c
e
s
s

flat E
3

factored E
3

rel e-greedy
relational E

3

 0

 100

 200

 300

 400

 500

 1 2 3 4 5 6 7 8 9 10

Round

Problem 8

A
c
ti
o
n
s

-500

 0

 500

 1000

 1500

 1 2 3 4 5 6 7 8 9 10

Round

Problem 8

R
e
w

a
rd

s

Figure 5.7: Experiment 6 (IPPC): Search and Rescue. A run consists of 10 subsequent rounds
with the same start situation and goal specification. The agent starts with no knowl-
edge in the first round. The success rate and the mean estimators of the action numbers
and collected rewards with standard deviations over 50 runs based on different random
seeds are shown. The reward for performing no actions is 0.

5 RELATIONAL EXPLORATION 141

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

Round

8+1 Objects

S
u

c
c
e

s
s

relational E
3

relational E
3
 entropy

relational e-greedy
 0

 20

 40

 60

 80

 100

 1 2 3 4 5

Round

8+1 Objects

A
c
ti
o

n
s

relational E
3

relational E
3
 entropy

relational e-greedy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

Round

10+1 Objects

S
u

c
c
e

s
s

relational E
3

relational E
3
 entropy

relational e-greedy
 20

 40

 60

 80

 100

 1 2 3 4 5

Round

10+1 Objects

A
c
ti
o

n
s

relational E
3

relational E
3
 entropy

relational e-greedy

Figure 5.8: Experiment 7 (Robot Manipulation domain): Advanced Task in Unchanging Worlds
with Boxes. The goal is to put colored balls and cubes into boxes of the same color. A run
consists of 5 subsequent rounds with the same start situation (and thus with the same
goal). The robot starts with zero knowledge in the first round. The success rate and the
mean estimators of action numbers with standard deviations over 50 runs are shown (5
start situations, 10 seeds).

Experiment 8: Generalization to New Tasks

In our final experiment, we perform three tasks of increasing difficulty in succession:
piling two specific objects in simple worlds with cubes and balls (as in Exp. 1), in worlds
extended by boxes (as in Exp. 2 and 3) and clearing up the desktop by putting all mov-
able objects into boxes of the same color where the required objects may be partially
contained in wrong boxes in the beginning (as in Exp. 7). Each task is performed for
three rounds in different worlds with different goal objects. The results presented in
Fig. 5.9 confirm the previous results of Exp. 3: the relational explorers are able to gener-
alize over different worlds for a fixed task. As seen in Exp. 3, propositional explorers fail
to do this as they cannot generalize over objects. Beyond that, the relational explorers are
able to transfer the learned knowledge from simple to difficult tasks in the sense of cur-
riculum learning (Bengio et al., 2009). This is shown in Fig. 5.9 (c-d) where the results for
relational E3 are compared to restarting the learning procedure at the beginning of each
new task (that is, in rounds 4 and 7) (the corresponding graphs for relational ε-greedy
and relational E3 entropy are similar). In the first rounds of each task (that is, in rounds
1, 4, and 7), relational E3 entropy requires significantly less actions than the original
relational E3 which again underlines that it is promising to investigate other relational

142 5.6 EVALUATION

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9

Round

S
u
c
c
e
s
s

relational E
3

relational E
3
 entropy

relational epsilon-greedy

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9

Round

S
u
c
c
e
s
s

(a) Complete curriculum - success

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9

Round

A
c
ti
o
n
s

relational E
3

relational E
3
 entropy

relational epsilon-greedy

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9

Round

A
c
ti
o
n
s

(b) Complete curriculum - actions

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9

Round

S
u
c
c
e
s
s

relational E
3
 curriculum

relational E
3
 restarts

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9

Round

S
u
c
c
e
s
s

(c) relational E3- success

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9

Round

A
c
ti
o
n
s

relational E
3
 curriculum

relational E
3
 restarts

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9

Round

A
c
ti
o
n
s

(d) relational E3- actions

Figure 5.9: Experiment 8 (Robot Manipulation domain): Generalization to New Tasks. A run
consists of a problem sequence of 9 subsequent rounds with different objects, numbers
of objects (6 - 10 cubes/balls/boxes + table) and start situations in each round. The tasks
are changed between round 3 and 4 and round 6 and 7 to more difficult tasks. The robot
starts with no knowledge in the first round. The success rate and the mean estimators of
the action numbers with standard deviations over 100 runs are shown (10 sequences, 10
seeds).

density estimation techniques. Both E3 methods profit from their learned densities for
active exploration and clearly outperform relational ε-greedy.

Summary

Our results in this final series of experiments indicate that relational E3 methods using
learned relational densities for active exploration can solve advanced tasks and outper-
form relational explorers with random exploration (question Q3). Furthermore, the re-
lational explorers are not only able to transfer learned knowledge to new situations and
objects (questionQ4), but also to new tasks (questionQ5). Furthermore, our results show
that we can improve on relationalE3 already by slightly modifying the relational density
estimation. This points at the potential of future work on more sophisticated relational
density estimation techniques for active relational exploration.

5 RELATIONAL EXPLORATION 143

Putting everything together, the experimental results clearly show that all questions
Q1-Q5 can be answered affirmatively.

5.7 Discussion

Efficient exploration in relational worlds is an interesting problem that is fundamental
to many real-life decision-theoretic planning problems, but has only received little at-
tention so far. We have approached this problem by proposing a relational exploration
strategy that borrows ideas from efficient techniques for propositional representations.
The key step in going from propositional to relational representations is a new defini-
tion of the concept of the novelty of states and actions. We have introduced a relational
density estimation framework to derive smoothed estimates of the empirical density of
relational data. This is a difficult, but promising problem since it requires learning from
positive data only. We have presented different relational density estimation techniques
and shown how to apply them to drive exploration in relational domains.

We have proposed the algorithm REX, a practical solution in our relational E3 frame-
work, which integrates our relational planner PRADA and probabilistic relational rules.
REX is the first relational model-based reinforcement learner with explicit explore-exploit
mechanism which learns complete transition models and solves difficult tasks in com-
plex environments with many objects. Our experimental results show a significant im-
provement over established results for solving difficult, highly stochastic planning tasks
in a 3D simulated complex robot manipulation domain and in domains of the interna-
tional planning competition. Our results demonstrate that relational exploration, driven
by relational density estimation, does not only improve the exploration performance, but
also enables the transfer of learned knowledge to new situations and objects and even in
a curriculum learning setting where different tasks have to be solved one after the other.

5.7.1 Future Work

There are several interesting avenues for future work. One is to investigate incremen-
tal learning of transition models. For instance, how can probabilistic relational rules be
learned in an incremental fashion? The resulting algorithms might in turn provide new
relational exploration strategies. Another avenue is to explore the connection between
relational exploration and transfer learning. Also, one should start to explore statistical
relational reasoning and learning techniques for the relational density estimation prob-
lem implicit in exploring relational worlds. Interesting candidates are relational vari-
ants of probability estimation (Neville et al., 2003), regression and cluster trees (Blockeel
and de Raedt, 1998; Blockeel et al., 1998) as well as boosted relational dependency net-
works (Neville and Jensen, 2007; Natarajan et al., 2010) and their extension to the online
learning setting.

We believe our conceptual discussion opens the door to a large variety of possible
exploration strategies—our specific choices have only served as a first proof of concept.

144 5.7 DISCUSSION

For instance, it might be more effective to learn two separate densities for the known and
for the novel states. It is interesting to investigate whether general formal guarantees on
the sampling complexity can be derived from our exploration strategies in the sense of
the work of Walsh (2010). As it is hopeless to explore the whole state of a non-trivial
world, exploring the relevance of objects or object classes for the task at hand is a further
central challenge for future research. Finally, examining our approach in other problem
scenarios is appealing, for instance, applying it to large-scale applications such as the
web or to geometrical reasoning of robots.

Chapter 6

Conclusions

Autonomous agents need to pursue many changing tasks in the real world. A household
robot for instance wants to prepare a meal, repair a broken lamp and train its chess skills.
Natural environments like households are referred to as stochastic relational worlds due
to two main characteristics: the large number of contained objects which the agent can
manipulate; and the uncertainty about the effects of its actions. Goal-directed behavior in
stochastic relational worlds involves many challenging aspects. These can be observed
in the behavior of the most intelligent “agents” in the world: both humans and animals
learn from their experience how they can manipulate the world by means of their ac-
tions. They maintain their acquired knowledge in abstracting and generalizing models,
instead of merely storing their individual experiences. When given a new task, humans
and animals come up with appropriate plans of actions by cognitive processing based
on such models, for instance by internal simulation. If they cannot find appropriate ac-
tions, they try to enhance their knowledge by actively exploring their environment in an
efficient manner to find out about action possibilities they are currently not aware of.

In this thesis, we have introduced computational principles and algorithms for these
fundamental aspects of intelligent human and animal behavior. We have proposed al-
gorithms for reasoning and planning in ground relational domains using learned prob-
abilistic relational models of the environment which generalize over objects and situa-
tions. Our approaches include methods for forward and for backward reasoning and
are based on different techniques such as inference in graphical models and look-ahead
trees. We have presented a framework for focusing on relevant objects in planning. We
have introduced one of the first approaches to efficient exploration in relational domains:
we have shown how to generalize over situations and objects when estimating the in-
terestingness of states and actions for exploration. We have demonstrated the suitability
of our relational planning techniques for realistic scenarios by an application on a real-
world robot. We have provided more insight concerning learning probabilistic relational
rules as well as their relation to other relational models.

Combining our proposed techniques with existing methods in an integrated frame-
work allows to build agents for autonomous goal-directed behavior. Without doubt our
work is only among the first steps into the direction of creating fully autonomous agents

145

146

for the real world. Nonetheless, we hope to have convinced the reader that studying
goal-directed behavior in a statistical relational artificial intelligence context is a promis-
ing and exciting approach to build intelligent agents—and to understand principles and
concepts underlying intelligence in general. To substantiate the latter claim, in the fol-
lowing gedankenexperiment we take a look at how our methods could model the goal-
directed behavior of chimpanzees.

A Computational Model for the Goal-Directed Behavior of Chimpanzees

Figure 6.1: Statistical relational AI pro-
vides computational principles which
can be used to model goal-directed be-
havior of chimpanzees. (Source: Köhler,
1917)

In the introduction, we saw how the chim-
panzee Grande found out how to get a ba-
nana hanging from the ceiling by building
a tower of boxes (Fig. 6.1). Her behavior
made the strong impression to involve sig-
nificant cognitive processing. We described
several capabilities and prerequisites which
Grande needed to have mastered to perform
this goal-directed behavior (p. 2). Along
these lines, we discuss now how the meth-
ods proposed in this thesis in combination
with existing techniques could be used to
create an agent which reproduces Grande’s
behavior. We do not want to imply that
chimpanzees really employ these computa-
tional principles; nor do we want to argue
to have “solved” goal-directed behavior of
chimpanzees. Significantly more work some
of which we indicate below is required to
apply symbolic reasoning methods to full-
fledged real-world scenarios. Rather, the fol-
lowing considerations are meant to provide an intuition of the great potential of statisti-
cal relational AI techniques and to motivate further research.

• Agent-Grande (the agent trying to reproduce Grande’s behavior) could use a re-
lational representation to describe the environment in terms of objects and their
properties and relationships. For instance, Agent-Grande could use a symbol b
to represent the banana and box1 to represent a specific box and predicates and
functions to express properties and relationships of objects, such as banana(b),
box(box1), clear(box1), on(box1, box2) and height(box1), and symbolic actions such
as grab(b), puton(box1) and climb(box2) to abstract from motor primitives.

• As a model of the effects of its actions, Agent-Grande could use a compact prob-
abilistic relational transition model which generalizes over situations and objects.
For instance, it could maintain the following probabilistic relational rule to express

6 CONCLUSIONS 147

that it can put an inhand-held box on top of another box which succeeds with high
probability, but the box can also land on the ground instead:

puton(X) : box(X), clear(X), box(Y), inhand(Y)

→
{

0.9 : on(Y,X), clear(Y), ¬clear(X), ¬inhand(Y)
0.1 : onGround(Y), clear(Y), ¬inhand(Y)

• Agent-Grande could learn such a rule from experience by means of the algorithm
of Pasula et al. (2007) used in our experiments. For instance, the above rule could
have been extracted from the following experience (among others):

puton(d): box(a), box(c), box(d), onGround(a), on(d, a), inhand(c), clear(d),

→ box(a), box(c), box(d), onGround(a), on(d, a), on(c, d), clear(c)

• Agent-Grande could use our relational exploration framework and in particular
our algorithm REX to efficiently explore the unknown objects and actions in the
environment. For example, if it had never experienced a puton(X) action with a
rock, that is a situation where rock(X) holds, it might want to perform this action
to understand what to do with rocks (thereby generalizing over situations and
specific rocks).

• All the frameworks and algorithms used in this thesis handle uncertainty. For in-
stance, the rule from above specifies the possibility that a box falls on the ground
when trying to put it on top of another box. Our algorithms for planning such as
PRADA account for the uncertainty of action outcomes. Similarly, our relational
exploration framework based on relational density estimation is a probabilistic ap-
proach.

• For reasoning and planning, Agent-Grande could employ any of our planning
algorithms. For instance, PRADA could use learned rules to come up with an ap-
propriate sequence of grab(·) and puton(·) actions to build a tower, followed by a
climb(·) action resulting in similar values for height(grande) and height(b) (b is the
banana), so that finally grab(b) can be performed successfully.
Our planning algorithms reason in the ground relational domain, that is, on the
level of concrete objects. If there are very many objects, Agent-Grande can focus
on the relevant objects according to our relevance grounding framework. For in-
stance, it could take only the three closest boxes and the banana into account while
ignoring all other boxes, the cage door and the hat of the keeper.

6.1 Future Work

In the previous chapters, we have provided many concrete ideas for future work in the
context of our proposed methods. Here, we discuss more generally research directions
for the exciting challenge of real-world autonomous goal-directed behavior.

148 6.1 FUTURE WORK

Object-Driven Goal-Directed Behavior

In our view, focusing on specific objects is one of the most promising structural assump-
tions and priors to develop methods for goal-directed behavior in the real world. In
Chapter 4, we have described a framework for focusing on relevant objects when plan-
ning in ground relational domains. The crucial question is whether we can learn object
relevance models, potentially based on priors such as the spatial proximity to goal ob-
jects. The impact of priors over objects might be even greater on exploration. Current
work in machine learning and reinforcement learning, including ours in Chapter 5, de-
fines novelty and interestingness with respect to states. In real-world environments with
their complex state descriptions and large state spaces, it seems to be more efficient to
formalize novelty and interestingness in terms of objects. This fundamental change in
perspective comes arguably much closer to human behavior and has the potential to
greatly increase the goal-directedness in exploration.

Expressive Transition Models

Transition models of the environment are at the heart of goal-directed behavior in stochas-
tic relational worlds and need to permit the development of efficient methods for learn-
ing, planning and exploration. The rule representation and learning algorithm by Pasula
et al. (2007), drawing from ideas in inductive logic programming, forms an appealing
approach, but extensions in different directions are required for real-world applicability,
such as incremental learning algorithms for online adaptation and parallel rules model-
ing different aspects of the environment. In our view, one of the most important direc-
tions is multi-time-step abstraction of actions. For instance, presumably humans cannot
plan more than ten time-steps forward due to their limited cognitive resources; hence,
they need to come up with abstractions which integrate multiple lower-level time-steps.
While the importance of abstraction is widely appreciated, no frameworks are currently
available for autonomous agents in natural environments: existing frameworks, such as
so-called cognitive architectures, the options-framework in reinforcement learning and
traditional macro-operator approaches, cannot be learned from data, cannot cope with
uncertainty or do not generalize over objects and situations. Nonetheless, simple, but ef-
fective techniques for action-sequence abstraction seem to be in reach without significant
changes to our algorithms and representations.

Symbol Grounding

In this thesis, we have followed the fundamental assumption of AI and cognitive science
that many aspects of higher-level intelligence can be achieved by symbolic reasoning.
But where do these symbols come from and how are they related to the real world? This
is the question of symbol grounding and has been debated for long in AI and philosophy.
While this question is far from being answered, future work can investigate well-defined
aspects of symbol grounding. For instance, one can adapt motion primitives to become

6 CONCLUSIONS 149

more coherent with abstract symbolic actions: the learned “typical” outcome of symbolic
actions may provide an objective function to modify the control of motor primitives.

Relational Representations on Non-symbolic Levels

We used relational representations to describe natural environments on a discrete sym-
bolic high level in this thesis. Relations may likewise define continuous properties and
couplings of objects. Hence, relational representations can also be used to describe many
lower-level aspects of natural environments, such as geometric relations and physical
links between objects, for instance between a drawer and a cupboard or between a door
and its frame. The concepts and principles of relational exploration, planning and learn-
ing discussed in this thesis seem to be applicable on such non-symbolic relational rep-
resentations, but the computational techniques need to be modified appropriately. For
instance, using relational representations on non-symbolic levels might guide an au-
tonomous robot to explore and detect the handles of doors and drawers in its environ-
ment which it can manipulate.

150 6.1 FUTURE WORK

Appendix A

Proofs

A.1 Proof of Proposition 4.2.1

Proposition 4.2.1 (p. 59) The set of action sequences PRADA samples with non-zero probability
is a super-set of the ones of SST and UCT.

Proof: Let a0:T−1 be an action sequence that was sampled by SST (or UCT). Thus,
there exists a state sequence s0:T and a rule sequence r0:T−1 such that in every state st

(t < T), action at has a unique covering rule rt that predicts the successor state st+1 with
probability pt > 0. For, if pt = 0, then st+1 would never be sampled by SST (or UCT).

We have to show that ∀t, 0 ≤ t < T : P (st |a0:t−1, s0) > 0. If this is the case then
P tsample(a

t) > 0 as at has the unique covering rule rt in st and at will eventually be
sampled. P (s0) = 1 > 0 is obvious. Now assume P (st |a0:t−1, s0) > 0. If we execute
at, we will get P (st+1 |a0:t, s0) ≥ ptP (st |a0:t−1, s0) > 0. The posterior P (st+1 |a0:t, s0)
can be greater (first inequality) due to persistence or to previous states having non-zero
probability that also lead to st+1 given at.

The set of action sequences PRADA samples is larger than that of SST (or UCT) as
SST (or UCT) refuses to model the noise outcomes of rules. Assume an action a and state
s to be the only state where a has a unique covering rule. If an episode to s can only be
simulated by means of rule predictions with the noise outcome, this action will never be
sampled by SST (or UCT) (as the required states are never sampled). In contrast, PRADA
also models the effects of the noise outcome by giving very low probability to all possi-
ble successor states. �

A.2 Proof of Lemma 4.4.1

Lemma 4.4.1 (p. 94) When conditioning on a subset o of relevant objects, the following proba-
bilities in the reduced model Γo are the same as in the full model Γ:

• State sequences: P (s |o,a; Γ) = P (s |a; Γo)

151

152 A.2 PROOF OF LEMMA 4.4.1

• Rewards: P (R |o,a; Γ) = P (R |a; Γo)

• Action sequences: P (a |o, R; Γ) = P (a |R; Γo)

Proof If o ∈ Ω(s,a), we have:

P (s |o,a; Γ) =

T−1∏
t=0

P (st+1 |o, st, at; Γ)

=
T−1∏
t=0

P (st+1 | st, at; Γo) = P (s |a; Γo) .

If o 6∈ Ω(s,a), we have P (s |o,a; Γ) = 0. Similarly, s cannot be predicted in Γo as only
the irrelevant object set o is available, so we get P (s |a; Γo) = 0. Furthermore, we have:

P (R |o,a; Γ) =
∑
s

P (R, s |o,a; Γ) =
∑
s

P (R | s,o,a; Γ)P (s |o,a; Γ)

=
∑
s

P (R | s,a; Γ)P (s |a; Γo) I(o ∈ Ω(s,a))

=
∑

s:o∈Ω(s,a)

P (R | s,a; Γ)P (s |a; Γo) = P (R |a; Γo) .

Finally, we have:

P (a |o, R; Γ) ∝ P (R |o,a; Γ) P (a |o; Γ)

= P (R |a; Γo) P (a; Γo) ∝ P (a |R; Γo) . �

Appendix B

Relation between NID rules and
PPDDL

We use noisy indeterministic deictic (NID) rules (Pasula et al., 2007) as a relational model
of the transition dynamics of probabilistic actions. Besides allowing for negative literals
in the preconditions, NID rules extend probabilistic STRIPS operators (Kushmerick et al.,
1995; Blum and Langford, 1999) by two special constructs, namely deictic references and
noise outcomes, which are crucial for learning compact rule-sets. An alternative lan-
guage to specify probabilistic relational planning problems used by the International
Probabilistic Planning Competitions (IPPC, 2008) is the probabilistic planning domain defi-
nition language (PPDDL) (Younes and Littman, 2004). PPDDL is a probabilistic extension
of a subset of PDDL (Ghallab et al., 1998) which was derived from the deterministic
action description language (ADL) (Pednault, 1989). ADL, in turn, introduced universal
and conditional effects and negative precondition literals into the (deterministic) STRIPS
representation (Fikes and Nilsson, 1971). Thus, PPDDL allows for the usage of syntactic
constructs which are beyond the expressive power of NID rules; however, many PPDDL
descriptions can be converted into NID rules.

Before taking a closer look at how to convert PPDDL and NID rule representations
into each other, we clarify what is meant by “action” in each of the formalisms, giving an
intuition of the line of thinking when using either of these. We understand by “abstract
action” an abstract action predicate, e.g. pickup(X). Intuitively, this defines a certain
type of action. The stochastic state transitions according to an abstract action can be
specified by both abstract NID rules as well as abstract PPDDL action operators (also
called schemata). Typically, several different abstract NID rules model the same abstract
action, specifying state transitions in different contexts. In contrast, usually only one
abstract PPDDL action operator is used to model an abstract action: context-dependent
effects are modeled by means of conditional and universal effects.

To make predictions in a specific situation for a concrete action (a ground action pred-
icate such as pickup(greenCube)), the procedure within the NID rule framework is to
ground the set of abstract NID rules with respect to this state-action pair. If there is ex-
actly one covering ground rule, it is chosen for prediction. If there is no such rule or if

153

154

Table B.1: Example for converting a PPDDL action operator into NID rules. The
putDown-operator of the IPPC benchmark domain Exploding Blocksworld (a) contains a
conditional effect which can be accounted for by two NID rules which either exclude (b)
or include (c) this condition in their context.

(a)
(: action putDown

: parameters (?b− block)
: precondition (and (holding ?b) (noDestroyedTable))

: effect (and (emptyhand) (onTable ?b) (not (holding ?b))

(probabilistic 2/5 (when (noDetonated ?b) (and (not (noDestroyedTable)) (not (noDetonated?b))))))

)

(b)

putDown(X) : block(X), holding(X), noDestroyedTable(), ¬noDetonated(X)

→
{

1.0 : emptyhand(X), onTable(X), ¬holding(X)

(c)
putDown(X) : block(X), holding(X), noDestroyedTable(), noDetonated(X)

→
{

0.6 : emptyhand(X), onTable(X), ¬holding(X)
0.4 : emptyhand(X), onTable(X), ¬holding(X), ¬noDestroyedTable(), ¬noDetonated(X)

there is more than one (the contexts of NID rules do not have to be mutually exclusive),
one chooses the noisy default rule, essentially saying that one does not know what will
happen (other strategies are conceivable, but not pursued here). In contrast, as there
is usually exactly one operator per abstract action in PPDDL domains, there is no need
of the concept of operator uniqueness and to distinguish between ground actions and
operators.

Converting PPDDL to NID rules

In the following, we discuss how to convert PPDDL features into a NID rule representa-
tion. While it may be impossible to convert a PPDDL action operator into a single NID
rule, one may often translate it into a set of rules with at most a polynomial increase in
the size of representation. Table B.1 provides an example of a converted PPDDL action
operator of the IPPC domain Exploding Blocksworld. As NID rules support many, but not
all of the features a sophisticated domain description language such as PPDDL provides,
using rules will not lead to compact representations in all possible domains. Our exper-
iments, however, show that the dynamics of many interesting planning domains can be
specified compactly. Furthermore, additional expressive power in rule contexts can be
gained by using derived predicates and functions (defined by formulas over other pred-
icates and functions) which allow to bring in various kinds of logical formulas such as
quantification.

Conditional Effects A conditional effect in a PPDDL operator takes the form when C
then E. It can be accounted for by two NID rules: the first rule adds C to its context and

B RELATION BETWEEN NID RULES AND PPDDL 155

E to its outcomes, while the second adds ¬C to its context and ignores E.

Universal Effects PPDDL allows to define universal effects. These specify effects for
all objects that meet some preconditions. An example is the reboot action of the SysAdmin
domain of the IPPC 2008 competition: it specifies that every computer other than the one
rebooted can independently go down with probability 0.2 if it is connected to a computer
that is already down. This cannot be expressed in a NID rule framework. While we can
refer to objects other than the action arguments via deictic references, we require these
deictic references to be unique. For the reboot action, we would need a unique way to
refer to each other computer which cannot be achieved without significant modifications
(for example, such as enumerating the other computers via separate predicates).

Disjunctive Preconditions and Quantification PPDDL operators allow for disjunctive
preconditions, including implications. For instance, the Search-and-rescue domain of the
IPPC 2008 competition defines an action operator goto(X) with the precondition (X 6=
base) → humanAlive(). A disjunction A ∨ B (≡ ¬A → B) can be accounted for by
either using two NID rules, with the first rule having A in the context and the second
rule having ¬A ∧ B. Alternatively, one may introduce a derived predicate C ≡ A ∨ B.
In general, the “trick” of derived predicates allows to overcome syntactical limitations
of NID rules and bring in various kinds of logical formulas such as quantifications. As
discussed by Pasula et al. (2007), derived predicates are an important prerequisite to
being able to learn compact and accurate rules.

Types Terms may be typed in PPDDL, e.g. driveTo(C − city). Typing of objects and
variables in predicates and functions can be achieved in NID rules by the usage of typing
predicates within the context, e.g. using an additional predicate city(C).

State Transition Rewards In PPDDL, one can encode Markovian rewards associated
with state transitions (including action costs as negative rewards) using fluents and up-
date rules in action effects. One can achieve this in NID rules by associating rewards
with the outcomes of rules.

Converting NID rules to PPDDL

We show in the following that the way NID rules are used in the planning algorithms
presented in Chapter 4 (SST, UCT and PRADA) at planning time can be handled in
PPDDL via at most a polynomial blowup in representational size. The basic building
blocks of a NID rule, that is, the context as well as the outcomes, transfer one-to-one to
PPDDL action operators. The deictic references, the uniqueness requirement of covering
rules and the noise outcome need special attention.

156

Deictic References Deictic references in NID rules allow to refer to objects which are
not action arguments. In PPDDL, one can refer to such objects by means of universal con-
ditional effects. There is an important restriction, however: a deictic reference needs to
pick out a single unique object in order to apply. If it picks out none or many, the rule fails
to apply. There are two ways to ensure this uniqueness requirement within PPDDL. First,
if allowing quantified preconditions, an explicit uniqueness precondition for each deictic
reference D can be introduced. Using universal quantification, it constrains all objects
satisfying the preconditions ΦD of D to be identical: ∀D1, D2 : ΦD(D1, ∗) ∧ΦD(D2, ∗)→
D1 = D2, where ∗ are some other variables. Alternatively, uniqueness of deictic ref-
erences can be achieved with a careful planning problem specification by hand, which
however cannot be guaranteed when learning rules.

Uniqueness of covering rules The contexts of NID rules do not have to be mutually
exclusive. When we want to use a rule for prediction (as in planning), we need to ensure
that it uniquely covers the given state-action pair. The procedural evaluation process
for NID rules can be encoded declaratively in PPDDL using modified conditions which
explicitly negate the contexts of competing rules. For instance, if there are three NID
rules with potentially overlapping contexts A, B, and C (propositional for simplicity),
the PPDDL action operator may define four conditions: c1 = {A ∧ ¬B ∧ ¬C}, c2 =
{¬A ∧ B ∧ ¬C}, c3 = {¬A ∧ ¬B ∧ C}, c4 = {(¬A ∧ ¬B ∧ ¬C) ∨ (A ∧ B) ∨ (A ∧ C) ∨
(B ∧ C)}. Conditions c1, c2 and c3 test for uniqueness of the corresponding NID rules
and subsume their outcomes. Condition c4 tests for non-uniqueness (either no covering
rule or multiple covering rules) and models potential changes as noise, analogous to the
situations in a NID rule context in which the noisy default rule would be used.

Noise outcome The noise outcome of a NID rule subsumes seldom or utterly complex
outcomes. It relaxes the frame assumption: even not explicitly stated things may change
with a certain probability. This comes at the price of the difficulty to ensure a well-
defined successor state distribution P (s′ | s, a). In contrast, PPDDL needs to explicitly
specify everything that might change. This may be an important reason why it is difficult
to come up with an effective learning algorithm for PPDDL.

While in principle PPDDL does not provide for a noise outcome the way our ap-
proaches account for it in planning can be encoded in PPDDL. We either treat the noise
outcome as having no effects (in SST and UCT; basically a noop operator then) which
is trivially translated to PPDDL; or we consider the probability of each state attribute to
change independently (in PRADA) which can be encoded in PPDDL with independent
universal probabilistic effects.

The noise outcome allows to always make predictions for actions: if there are no
or multiple covering rules, we may use the (albeit not very informative) prediction of
the default rule. Such cases can be dealt with in PPDDL action operators using explicit
conditions as described in the previous paragraph.

Appendix C

Theoretical Considerations
concerning PRADA

In this appendix chapter, we provide some theoretical results and intuitions concerning
our algorithm PRADA (Lang and Toussaint, 2009b, 2010b) presented in Chapter 4.

C.1 PRADA Finds the Optimal Solution with Exact Inference

We present two simple lemmata in the following which are probably intuitively obvious
to the reader and affirm our understanding of PRADA. Let T denote the fixed planning
horizon and a∗ = argmax

a
P (uT |a) the optimal plan.

Lemma C.1.1 If PRADA uses exact instead of approximate inference to calculate the posteriors
P (sT |a) and P (uT |a) and provided the prior P (a) has support for the optimal sequence, that
is P (a∗) > 0, then for any δ with 1 > δ > 0 there is a number N of action-sequence samples
resulting in set Â such that the best a′ = argmax

a∈Â
P (uT |a) is optimal with probability at least

δ, that is, the probability that a∗ = a′ is bigger than δ.

Proof First of all note that the optimal solution for a given horizon T can trivially be
found by looking at all action sequences. This is possible as the search space of plans is
finite: the actions are discrete and their number is finite, and thus the number of action
sequences of length T is also finite.

Instead of a systematic search, we prove the lemma for sampling with prior P (a):
we have to show that the probability to sample any sequence goes to 1 if N → ∞. We
look at the worst case that the optimal sequence has minimal probability γ := P (a∗) =
mina P (a) to be sampled. Then, the probability to have found the optimal sequence after
N samples is 1− (1− γ)N . To bound this probability with 1− (1− γ)N > δ, we require
N > log(1−δ)

log(1−γ) samples. �

157

158 C.2 SUFFICIENT CONDITIONS FOR EXACT INFERENCE

Thus, we almost surely sample a∗ if N → ∞. If an action-sequence a has a non-zero
prior P (a) with PRADA’s sampling distribution under exact inference, then it also has
a non-zero prior under approximate inference based on a factored frontier. (The FF in-
ference approximates posterior joints by products of marginals and thus such joints are
only 0 when some marginals are 0; but if such a marginal is 0 under exact inference,
then the exact posterior joint must also be 0.) Thus, also with approximate FF-inference,
PRADA will almost surely sample the optimal sequence a∗; because of potential approx-
imation errors, however, there is no guarantee that this sequence is assigned the highest
estimated value P (u |a∗) .

Furthermore, PRADA approximates the posterior P (a |u) over actions, taking into
account the prior over actions and the likelihood to achieve reward P (u |a). In the fol-
lowing, we use δai,a which evaluates to 1 if ai = a and to 0 otherwise.

Lemma C.1.2 Under the assumption that PRADA uses exact inference, the Monte-Carlo ap-
proximation P̂N (a |u) =

∑N
i=0 P (u |ai) δai,a based on N sampled action-sequences ai con-

verges to the exact posterior P (a |u).

Proof We show that PRADA approximates P (a |u) by means of importance sampling.
We rewrite

P (a |u) =
P (u |a)P (a)

P (u)
∝ P (u |a)P (a) .

We use P (a) as proposal distribution to sample action-sequences ai which has support
for all a with P (a |u) > 0. We define wi := P (u |ai) as importance weights. Following
the lines of Andrieu et al. (2003), if a was continuous, then for any arbitrary smooth
function f by the law of large numbers we would have:

ÎN (f) =
1∑
iwi

N∑
i=1

f(ai)wi →almost surely
N→∞ I(f) =

∫
f(a)P (a |u)da .

Applying this result to discrete a, we get

P̂N (a |u) =
1∑
iwi

N∑
i=1

δai,awi →
almost surely
N→∞ P (a |u) .

�

C.2 Sufficient Conditions for Exact Inference

We describe a set of conditions under which the inference of PRADA based on a factored
frontier leads to exact posteriors. While these conditions clearly do not hold in most re-
alistic scenarios, these considerations are instructive to get a better intuition of PRADA’s
behavior.

C THEORETICAL CONSIDERATIONS CONCERNING PRADA 159

PRADA uses a factored frontier to compute the posteriors P (sT |a) and P (uT |a). Its
inference becomes exact if the processes of the individual state attributes remain decou-
pled, that is, if the attributes are independent conditioning on the action sequence a. (In
our derivation of PRADA’s inference in Chapter 4, we used further minor approxima-
tions apart from the factored frontier; we ignore these here, but we note that one can
easily renounce on them under the assumptions of the lemma.)

Lemma C.2.1 If the exact initial belief is fully factored and if for each action it holds that it is
modeled by a set of NID rules which (i) do not contain deictic references, (ii) all involve only
the same single state attribute in both their contexts and outcomes and (iii) in all states there is
a unique covering rule (thus, we never use the noisy default rule), then PRADA’s inference of
P (sT |a) and P (uT |a) based on a factored frontier in the corresponding PRADA-DBN is exact.

In the planning problems of this thesis, we set the initial state marginals deterministic
according to the start state; then, the initial belief P (s0) is fully factored. Under the
conditions of the lemma, sensible rule-sets for modeling an action consist of at most two
rules: either two rules specifying the contexts where the attribute does and does not
hold, or a single rule with an empty context. An exemplary rule involving state attribute
b(·, ·) might take the form

action(X,Y) : b(X,Y) →
{
p : ¬b(X,Y)
1.− p : − .

Proof We prove the lemma by induction. In the beginning at t = 0, the exact belief is
fully factored, that is, P (s0) =

∏
l P (s0

l). Now assume the belief P (st |a0:t−1) is exact. We
want to infer the belief P (st+1 |a0:t) taking the action at into account. All rules modeling
at involve the same state attribute si, and hence at manipulates only si. The posterior
over covering rules and their contexts depends only on sti. Therefore, the calculation
of the posteriors over the contexts according to Eqs. (4.13) and (4.17) and in turn over
rules according to Eq. (4.12) involves only the marginal over sti and is thus exact. In turn,
Eq. (4.9) calculates the exact marginal P (st+1

i |a0:t). All other state attributes sk (k 6= i)
are set to persist. Hence, the posterior over any st+1

l is calculated independently of any
other attribute, that is, ∀k, l, k 6= l :P (st+1

l | st+1
k ,a0:t) = P (st+1

l |a0:t). Therefore, the exact
marginals provide us exact beliefs P (st+1 |a0:t) =

∏
l P (st+1

l |a0:t). �

C.3 PRADA Assumes Rewards are Probable

The sampling distribution Psample(a) of an action-sampling planning algorithm incorpo-
rates a bias which makes the algorithm appropriate to specific planning scenarios. Let’s
look at PRADA’s sampling distribution at an arbitrary, but fixed time-step t. Thus far,
we have sampled a0:t−1. PRADA samples an action at according to the distribution (see
p. 59)

P tsample(a) ∝
∑
r∈Γ(a)

P

φtr=1,
∧

r′∈Γ(a)\{r}

φtr′=0 |a0:t−1

. (C.1)

160 C.3 PRADA ASSUMES REWARDS ARE PROBABLE

On the level of states, this sampling distribution chooses with equal probability among
the actions that have a unique covering rule in a state. As PRADA maintains beliefs over
states, its sampling probability of an action a depends on the belief over those states
where a has a unique covering rule. Hence, PRADA’s sampling strategy takes the pre-
vious action samples a0:t−1 into account. The basic assumption underlying PRADA’s
sampling strategy is the following:

Assumption of PRADA’s action-sampling strategy: The reward is probable when
executing the optimal action-sequence a∗. That is, P (u |a∗) is large.

Thus, the more likely reward is for a∗ (the higher P (u |a∗) is), the higher is the probabil-
ity of PRADA to sample a∗. We illustrate this in toy scenarios in the following.

Analytical Toy Example

In our first simple toy scenario, there are two actions a1 and a2 modeled by the rules

a1 : − →
{
α : b1
1.− α : − and

a2 : b1 →
{

1.0 : b2 .

While we can always execute a1 (its rule has an empty context), the applicability of a2

depends on the state attribute b1. We start in the empty state s0 = {}, our goal is τ = {b2}
and our planning horizon is T = 2. The optimal sequence is a∗ = (a1, a2) and has reward
likelihood P (u |a∗)=α. Let’s look at PRADA’s sampling distributions P tsample(a) at t=0
and t=1:

P tsample(a) t = 0 t = 1

a1 1 1
1+α

a2 0 α
1+α

At t=0, the only action with a (unique) covering rule is a1. Thus, a1 is always sampled.
This leads to two possible successor states s′1 = {b1} and s′′1 = {}. While a1 is appli-
cable in both, a2 is only applicable in s′1. Therefore, P t=1

sample(a2) depends on the belief
over s′1 which is P (s′1 | a1) = α. The sampling probability of the optimal sequence a∗ is
Psample(a

∗) = α
1+α , and the expected number of action sequences required to sample a∗

is 1+α
α . We see that the higher α is, the more likely are both, sampling a∗ as well as the

reward. In contrast, sampling with a uniform distribution over actions is independent
of the stochasticity α and the reward likelihood. Here are some expected numbers of
required samples until a∗ is sampled for the first time:

α P (u |a∗) PRADA uniform
0.1 0.1 11 4
0.5 0.5 3 4
0.9 0.9 2.1 4

C THEORETICAL CONSIDERATIONS CONCERNING PRADA 161

Simulated Toy Example

We also performed a simulation in a relational toy scenario. There are three unary actions
modeled by the following rules:

act1(X) : − →
{
α : b1(X)
1− α : −

act2(X) : b1(X) →
{
α : b2(X)
1− α : −

act3(X) : b2(X) →
{

1 : b3(X)
0 : −

We start in the empty state s0 = {}, there are M objects O={o1, . . . , oM}, the goal is τ =
{b3(o1)} and the planning horizon is T = 3. The optimal plan is a∗ = (act1(o1), act2(o1),
act3(o1)). The total number of ground actions is 3M and the search space of plans con-
tains (3M)3 different plans. The probability to sample a∗with a uniform distribution over
actions is 1

(3M)3
and hence the expected number of samples until the optimal sequence is

found is (3M)3.
We investigate the planning performance of PRADA with respect to different settings

of the stochasticity α and the number of objects M . To collect statistics, we performed
1000 runs for each combination of α andM . The results shown in Table C.1 indicate how
PRADA’s performance is related to the reward likelihood P (u |a∗): the more likely the
reward is, the less samples are required by PRADA. In contrast, the uniform distribution
is unrelated to the reward likelihood. Thus, PRADA’s sampling strategy is much more
efficient in scenarios with large reward likelihoods (in our case, when α=0.5 or α=0.9)
and less efficient in scenarios with small reward likelihood (α=0.2).

162 C.3 PRADA ASSUMES REWARDS ARE PROBABLE

Table C.1: Results for evaluating PRADA’s sampling strategy in a toy scenario. PRADA’s
sampling distribution is significantly more efficient than uniform sampling when the re-
ward likelihood P (u |a∗) is large. M denotes the number of objects and α determines
the stochasticity of the planning problem. (a) The figures for PRADA are the mean esti-
mators of the average required number of samples until a∗ is sampled for the first time
based on 1000 runs. The figures for uniform sampling are the exact expectations of the
required number of samples. (b)-(d) Visualization of the figures in (a).

(a)

P (u |a∗) PRADA uniform

M = 3
α = 0.2 0.04 3906.7 ± 3.9 729
α = 0.5 0.25 326.8 ± 0.3 729
α = 0.9 0.81 78.2 ± 0.1 729

M = 4
α = 0.2 0.04 8488.3 ± 8.5 1728
α = 0.5 0.25 657.9 ± 0.6 1728
α = 0.9 0.81 157.5 ± 0.2 1728

M = 5
α = 0.2 0.04 17293.2 ± 13. 3375
α = 0.5 0.25 1215.1 ± 1.2 3375
α = 0.9 0.81 281.1 ± 0.3 3375

(b) M = 3

 100

 1000

 10000

0.2 0.5 0.9

alpha

S
a
m

p
le

s

PRADA
uniform

(c) M = 4

 100

 1000

 10000

0.2 0.5 0.9

alpha

S
a
m

p
le

s

PRADA
uniform

(d) M = 5

 1000

 10000

 100000

0.2 0.5 0.9

alpha

S
a
m

p
le

s

PRADA
uniform

Literature

J. Anderson. Rules of the mind. Hillsdale, NJ: Lawrence Erlbaum, 1993.

C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan. An introduction to MCMC for
machine learning. Machine Learning Journal, 50(1-2):5–43, 2003.

A. Baddeley. The episodic buffer: a new component of working memory? Trends in
Cognitive Sciences, 4(11):417–423, 1999.

E. B. Baum. What is thought. MIT Press, Cambridge, Massachusetts, 2004.

H. Bay, T. Tuytelaars, and L. Van Gool. Surf: speeded up robust features. Computer Vision
and Image Understanding (CVIU), 110(3):346–359, 2008.

R. Bellman. Dynamic programming. Princeton, NJ: Princeton University Press, 1957.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In Proc. of the
Int. Conf. on Machine Learning (ICML), pages 41–48, 2009.

S. S. Benson. Learning action models for reactive autonomous agents. PhD thesis, Stanford
University, 1996.

D. Bertsekas and J. Tsitsiklis. Neuro-dynamic programming. Athena Scientific, Belmont,
MA, 1996.

M. Bilgic, L. Mihalkova, and L. Getoor. Active learning for networked data. In Proc. of
the Int. Conf. on Machine Learning (ICML), 2010.

H. Blockeel and L. de Raedt. Top-down induction of first order local decision trees.
Artificial Intelligence Journal, 101:185–297, 1998.

H. Blockeel, L. de Raedt, and J. Ramon. Top-down induction of clustering trees. In
Proc. of the Int. Conf. on Machine Learning (ICML), pages 55–63, 1998.

A. Blum and J. Langford. Probabilistic planning in the graphplan framework. In Proc. of
the Fifth European Conference on Planning (ECP), pages 319–332, 1999.

M. M. Botvinick and J. An. Goal-directed decision making in prefrontal cortex: a compu-
tational framework. In Proc. of the Conf. on Neural Information Processing Systems (NIPS),
pages 169–176, 2009.

163

164 LITERATURE

C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning: structural assumptions
and computational leverage. Journal of Artificial Intelligence Research (JAIR), 11:1–94,
1999.

C. Boutilier, R. Reiter, and B. Price. Symbolic dynamic programming for first-order
MDPs. In Proc. of the Int. Conf. on Artificial Intelligence (IJCAI), pages 690–700, 2001.

R. J. Brachman and H. J. Levesque. Knowledge Representation and Reasoning. Morgan
Kaufmann, 2004.

R. I. Brafman and M. Tennenholtz. R-max - a general polynomial time algorithm for
near-optimal reinforcement learning. Journal of Machine Learning Research (JMLR), 3:
213–231, 2002.

M. Briers, A. Doucet, and S. Maskell. Smoothing algorithms for state-space models. To
appear in Annals of the Institute of Statistical Mathematics, 2009.

R. Brooks. Intelligence without representation. Artificial Intelligence, 47:139–159, 1991.

O. Buffet and D. Aberdeen. The factored policy-gradient planner. Artificial Intelligence
Journal, 173(5-6):722–747, 2009.

T. Bylander. The computational complexity of propositional STRIPS planning. Artificial
Intelligence Journal, 69(1-2):165–204, 1994.

H. Christensen. From internet to robotics – a roadmap for US robotics, May 2009.
http://www.us-robotics.us/reports/CCC%20Report.pdf.

A. Cocora, K. Kersting, C. Plagemann, W. Burgard, and L. de Raedt. Learning relational
navigation policies. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), Beijing, China, 2006.

D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active learning with statistical models.
Journal of Artificial Intelligence Research (JAIR), 4(1):129–145, 1996.

G. Cooper. A method for using belief networks as influence diagrams. In Proc. of the
Fourth Workshop on Uncertainty in Artificial Intelligence, pages 55–63, 1988.

T. Croonenborghs, J. Ramon, H. Blockeel, and M. Bruynooghe. Online learning and
exploiting relational models in reinforcement learning. In Proc. of the Int. Conf. on
Artificial Intelligence (IJCAI), pages 726–731, 2007.

J. Cussens. Using prior probabilities and density estimation for relational classification.
In Proc. of the Int. Conf. on Inductive Logic Programming (ILP), pages 106–115, 1998.

J. Cussens. Loglinear models for first-order probabilistic reasoning. In Proc. of the Conf. on
Uncertainty in Artificial Intelligence (UAI), pages 126–133, 1999.

LITERATURE 165

L. de Raedt. Logical settings for concept-learning. Artificial Intelligence Journal, 95(1):
187–201, 1997.

L. de Raedt. Logical and Relational Learning. Springer, 2008.

L. de Raedt, P. Frasconi, K. Kersting, and S. Muggleton, editors. Probabilistic Inductive
Logic Programming, volume 4911 of Lecture Notes in Computer Science. Springer, 2008.

R. Dearden and C. Boutilier. Abstraction and approximate decision-theoretic planning.
Artificial Intelligence Journal, 89(1-2):219–283, 1997.

A. Dempster, N. Laird, and D. Rubin. Maximum-likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society, 39(1):1–38, 1977.

F. Dignum and R. Conte. Goal-generation and agent autonomy. Autonomos Agents Lan-
guage, Theory and Architecture, 1997.

C. Diuk, A. Cohen, and M. Littman. An object-oriented representation for efficient rein-
forcement learning. In Proc. of the Int. Conf. on Machine Learning (ICML), 2008.

C. Domshlak and J. Hoffmann. Probabilistic planning via heuristic forward search and
weighted model counting. Journal of Artificial Intelligence Research (JAIR), 30:565–620,
2007.

K. Doya, S. Ishii, A. Pouget, and R. Rao, editors. Bayesian Brain: Probabilistic Approaches
to Neural Coding. MIT Press, 2007.

K. Driessens and S. Džeroski. Integrating guidance into relational reinforcement learn-
ing. Machine Learning Journal, 57(3):271–304, 2004.

K. Driessens, J. Ramon, and T. Gärtner. Graph kernels and Gaussian processes for rela-
tional reinforcement learning. Machine Learning Journal, 64(1-3):91–119, 2006.

S. Džeroski, L. de Raedt, and K. Driessens. Relational reinforcement learning. Machine
Learning Journal, 43:7–52, 2001.

A. Epshteyn, A. Vogel, and G. DeJong. Active reinforcement learning. In Proc. of the
Int. Conf. on Machine Learning (ICML), pages 296–303, 2008.

V. Fedorov. Theory of optimal experiments. New York, 1972.

A. Fern, S. Yoon, and R. Givan. Approximate policy iteration with a policy language bias:
solving relational Markov decision processes. Journal of Artificial Intelligence Research
(JAIR), 25(1):75–118, 2006.

R. Fikes and N. Nilsson. STRIPS: a new approach to the application of theorem proving
to problem solving. Artificial Intelligence Journal, 2:189–208, 1971.

N. H. Gardiol and L. P. Kaelbling. Envelope-based planning in relational MDPs. In
Proc. of the Conf. on Neural Information Processing Systems (NIPS), 2003.

166 LITERATURE

N. H. Gardiol and L. P. Kaelbling. Action-space partitioning for planning. In Proc. of the
Nat. Conf. on Artificial Intelligence (AAAI), pages 980–986, 2007.

N. H. Gardiol and L. P. Kaelbling. Adaptive envelope MDPs for relational equivalence-
based planning. Technical Report MIT-CSAIL-TR-2008-050, MIT CS & AI Lab, Cam-
bridge, MA, USA, 2008.

S. Gelly and D. Silver. Combining online and offline knowledge in UCT. In Proc. of the
Int. Conf. on Machine Learning (ICML), pages 273–280, 2007.

L. Getoor and B. Taskar, editors. Introduction to statistical relational learning. MIT Press,
2007.

L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Learning probabilistic relational mod-
els. In S. Džeroski and N. Lavrac, editors, Relational Data Mining. Springer-Verlag,
2001.

M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld, and
D. Wilkins. PDDL - the planning domain definition language. Technical report, Yale
University, 1998.

Y. Gil. Learning by experimentation: Incremental refinement of incomplete planning
domains. In Proc. of the Int. Conf. on Machine Learning (ICML), pages 87–95, 1994.

N. Gray, C. Istvan, J. Latshaw, R. Avery, and M. Krupanski. After the eulogy. Victory
records, 2000.

C. Gretton and S. Thiébaux. Exploiting first-order rgeression in inductive policy selec-
tion. In Proc. of the Conf. on Uncertainty in Artificial Intelligence (UAI), pages 217–225,
2004.

R. Grush. Conscious thought as simulation of behaviour and perception. Behaviorial and
brain sciences, 27:377–442, 2004.

C. Guestrin, R. Patrascu, and D. Schuurmans. Algorithm-directed exploration for model-
based reinforcement learning in factored MDPs. In Proc. of the Int. Conf. on Machine
Learning (ICML), pages 235–242, 2002.

C. Guestrin, D. Koller, R. Parr, and S. Venkataraman. Efficient solution algorithms for
factored MDPs. Journal of Artificial Intelligence Research (JAIR), 19:399–468, 2003.

F. Halbritter and P. Geibel. Learning models of relational MDPs using graph kernels. In
Proc. of the Mexican Conf. on AI (MICAI), pages 409–419, 2007.

M. Helmert. Complexity for standard benchmark domains in planning. Artificial Intelli-
gence Journal, 143:219–262, 2003.

G. Hesslow. Conscious thought as simulation of behaviour and perception. Trends in
Cognitive Science, 6(6):242–247, 2002.

LITERATURE 167

M. Hoffman, H. Kueck, A. Doucet, and N. de Freitas. New inference strategies for solv-
ing Markov decision processes using reversible jump MCMC. In Proc. of the Conf. on
Uncertainty in Artificial Intelligence (UAI), 2009.

J. Hoffmann and B. Nebel. The FF planning system: fast plan generation through heuris-
tic search. Journal of Artificial Intelligence Research (JAIR), 14:253–302, 2001.

S. Hölldobler, E. Karabaev, and O. Skvortsova. FluCaP: a heuristic search planner for
first-order MDPs. Journal of Artificial Intelligence Research (JAIR), 27:419–439, 2006.

R. Howard. Dynamic programming and Markov processes. MIT Press, Cambridge, Mas-
sachusetts, 1960.

IPPC. Sixth International Planning Competition, Uncertainty Part, 2008. URL
http://ippc-2008.loria.fr/wiki/index.php/Main_Page.

M. Jaeger. Relational Bayesian networks. In Proc. of the Conf. on Uncertainty in Artificial
Intelligence (UAI), pages 266–273, 1997.

F. Jensen. An introduction to Bayesian networks. Springer Verlag, New York, 1996.

M. I. Jordan, editor. Learning in graphical models. MIT Press, Cambridge, MA, USA, 1999.

S. Joshi, K. Kersting, and R. Khardon. Generalized first-order decision diagrams for first-
order MDPs. In Proc. of the Int. Conf. on Artificial Intelligence (IJCAI), pages 1916–1921,
2009.

S. Joshi, K. Kersting, and R. Khardon. Self-taught decision theoretic planning with first
order decision diagrams. In Proc. of the Int. Conf. on Automated Planning and Scheduling
(ICAPS), 2010.

L. P. Kaelbling, M. Littman, and A. Moore. Reinforcement learning: a survey. Journal of
Artificial Intelligence Research (JAIR), 4:237–285, 1996.

L. P. Kaelbling, T. Oates, N. H. Gardiol, and S. Finney. Learning in worlds with objects,
2001. Working Notes of the AAAI Stanford Spring Symposium on Learning Grounded
Representations.

E. Karabaev and O. Skvortsova. A heuristic search algorithm for solving first-order
MDPs. In Proc. of the Conf. on Uncertainty in Artificial Intelligence (UAI), pages 292–299,
2005.

D. Katz and O. Brock. Extracting planar kinematic models using interactive perception.
In In Unifying Perspectives In Computational and Robot Vision, volume 8 of Lecture Notes
in Electrical Engineering, pages 11–23. Springer Verlag, May 2008.

D. Katz and O. Brock. A factorization approach to manipulation in unstructured envi-
ronments. In 14th International Symposium of Robotics Research, pages 1–16. Springer
Verlag, 2009.

168 LITERATURE

M. Kearns and D. Koller. Efficient reinforcement learning in factored MDPs. In Proc. of
the Int. Conf. on Artificial Intelligence (IJCAI), pages 740–747, 1999.

M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time. Ma-
chine Learning Journal, 49(2-3):209–232, 2002.

M. Kearns, Y. Mansour, and A. Y. Ng. A sparse sampling algorithm for near-optimal
planning in large Markov decision processes. Machine Learning Journal, 49(2-3):193–
208, 2002.

C. Kemp, N. D. Goodman, and J. B. Tenenbaum. Learning and using relational theories.
In Proc. of the Conf. on Neural Information Processing Systems (NIPS), 2008.

K. Kersting and L. de Raedt. Basic principles of learning Bayesian logic programs. In
L. de Raedt, P. Frasconi, K. Kersting, and S. Muggleton, editors, Probabilistic Induc-
tive Logic Programming: Theory and Applications, volume 4911 of LNAI, pages 193–226.
Springer, 2008.

K. Kersting and K. Driessens. Non–parametric policy gradients: A unified treatment
of propositional and relational domains. In Proc. of the Int. Conf. on Machine Learning
(ICML), 2008.

K. Kersting, M. van Otterlo, and L. de Raedt. Bellman goes relational. In Proc. of the
Int. Conf. on Machine Learning (ICML), pages 465–472, 2004.

R. Kindermann and J. L. Snell. Markov random fields and their applications. American
Mathematical Society, 1980.

L. Kocsis and C. Szepesvari. Bandit based monte-carlo planning. In Proc. of the European
Conf. on Machine Learning (ECML), 2006.

W. Köhler. Intelligenzprüfungen an Menschenaffen. Springer, Berlin (3rd edition, 1973),
1917. English version: Wolgang Köhler (1925): The Mentality of Apes. Harcourt & Brace,
New York.

S. Kok and P. Domingos. Learning Markov logic network structure via hypergraph lift-
ing. In Proc. of the Int. Conf. on Machine Learning (ICML), 2009.

S. Kok and P. Domingos. Learning Markov logic networks using structural motifs. In
Proc. of the Int. Conf. on Machine Learning (ICML), 2010.

N. Kushmerick, S. Hanks, and D. Weld. An algorithm for probabilistic planning. Artificial
Intelligence Journal, 78(1-2):239–286, 1995.

U. Kuter, D. S. Nau, E. Reisner, and R. P. Goldman. Using classical planners to solve
nondeterministic planning problems. In Proc. of the Int. Conf. on Automated Planning
and Scheduling (ICAPS), pages 190–197, 2008.

LITERATURE 169

T. Lang and M. Toussaint. Relevance grounding for planning in relational domains. In
Proc. of the European Conf. on Machine Learning (ECML), 2009a.

T. Lang and M. Toussaint. Approximate inference for planning in stochastic relational
worlds. In Proc. of the Int. Conf. on Machine Learning (ICML), 2009b.

T. Lang and M. Toussaint. Probabilistic backward and forward reasoning in stochastic
relational worlds. In Proc. of the Int. Conf. on Machine Learning (ICML), 2010a.

T. Lang and M. Toussaint. Planning with noisy probabilistic relational rules. Journal of
Artificial Intelligence Research (JAIR), 39:1–49, 2010b.

T. Lang, M. Toussaint, and K. Kersting. Exploration in relational worlds. In Proc. of the
European Conf. on Machine Learning (ECML), 2010.

T. Lang, M. Toussaint, and K. Kersting. Relational exploration. Submitted, 2011.

I. Little and S. Thiébaux. Probabilistic planning vs replanning. In ICAPS-Workshop Inter-
national Planning Competition: Past, Present and Future, 2007.

M. Littman. Probabilistic propositional planning: Representations and complexity. In
Proc. of the Nat. Conf. on Artificial Intelligence (AAAI), pages 748–754, 1997.

M. Littman, J. Goldsmith, and M. Mundhenk. The computational complexity of proba-
bilistic planning. Journal of Artificial Intelligence Research (JAIR), 9:1–36, 1997.

M. Lungarella, G. Metta, R. Pfeifer, and G. Sandini. Developmental robotics: a survey.
Connection Science, 15(4):151–190, 2003.

B. Massey. Directions in planning: understanding the flow of time in planning. PhD thesis,
University of Oregon, 1999.

J. McCarthy. Situations, actions and causal laws. Technical report, Stanford University,
Palo Alto, CA, USA, 1963.

L. Mihalkova and R. Mooney. Bottom-up learning of Markov logic network structure. In
Proc. of the Int. Conf. on Machine Learning (ICML), 2007.

B. Milch, B. Marthi, S. Russell, D. Sontag, D. L. Ong, and A. Kolobov. Blog: Probabilistic
models with unknown objects. In Proc. of the Int. Conf. on Artificial Intelligence (IJCAI),
pages 1352–1359, 2005.

G. Miller. The magical number seven plus or minus two: some limits on our capacity for
processing information. Psychological Review, 63:81–97, 1956.

S. Muggleton. Stochastic logic programs. In L. de Raedt, editor, Advances in Inductive
Logic Programming, pages 254–264. IOS Press, 1996.

170 LITERATURE

S. Muggleton. Learning from positive data. In Selected Papers from the 6th International
Workshop on Inductive Logic Programming, pages 358–376, London, UK, 1997. Springer-
Verlag.

K. P. Murphy. Dynamic Bayesian networks: representation, inference and learning. PhD thesis,
UC Berkeley, 2002.

K. P. Murphy and Y. Weiss. The factored frontier algorithm for approximate inference in
DBNs. In Proc. of the Conf. on Uncertainty in Artificial Intelligence (UAI), pages 378–385,
2001.

S. Natarajan, T. Khot, K. Kersting, B. Gutmann, and J. Shavlik. Boosting relational de-
pendency networks. In Proc. of the Int. Conf. on Inductive Logic Programming (ILP), 2010.

D. S. Nau. Current trends in automated planning. AI Magazine, 28(4):43–58, 2007.

J. Neville and D. Jensen. Relational dependency networks. Journal of Machine Learning
Research (JMLR), 8:653–692, 2007.

J. Neville, D. Jensen, L. Friedland, and M. Hay. Learning relational probability trees. In
Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD-03), 2003.

A. Newell and H. A. Simon. Computer science as empirical inquiry: symbols and search.
Commun. ACM, 19(3):113–126, 1976.

L. Ngo and P. Haddawy. Answering queries from context-sensitive probabilistic knowl-
edge bases. Theoretical Computer Science, 171:147–177, 1997.

S.-H. Nienhuys-Cheng and R. de Wolf, editors. Foundations of inductive logic programming,
volume 1228 of Lecture Notes in Computer Science. Springer, 1997.

Y. Niv, J. D., and D. P. A normative perspective on motivation. Trends in Cognitive Sciences
(TICS), 10:375–381, 2006.

T. Ott and R. Stoop. The neurodynamics of belief propagation on binary markov random
fields. In Proc. of the Conf. on Neural Information Processing Systems (NIPS), pages 1057–
1064, 2007.

P. Oudeyer, F. Kaplan, and V. Hafner. Intrinsic motivation systems for autonomous men-
tal development. IEEE Transactions on Evolutionary Computation, 11(2):265–286, 2007.

H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling. Learning symbolic models of
stochastic domains. Journal of Artificial Intelligence Research (JAIR), 29:309–352, 2007.

J. Pearl. Probabilistic reasoning in intelligent systems. Morgan Kaufmann, San Mateo, CA,
1988.

LITERATURE 171

E. P. D. Pednault. ADL: Exploring the middle ground between STRIPS and the situation
calculus. In KR, pages 324–332, 1989.

J. Peters and S. Schaal. Reinforcement learning of motor skills with policy gradients.
Neural Networks, 4:682–697, 2008.

A. Pfeffer. Probabilistic reasoning for complex systems. PhD thesis, Computer Science De-
partment, Stanford University, USA, December 2000.

H. Poon and P. Domingos. Sound and efficient inference with probabilistic and deter-
ministic dependencies. In Proc. of the Nat. Conf. on Artificial Intelligence (AAAI), 2007.

P. Poupart, N. Vlassis, J. Hoey, and K. Regan. An analytic solution to discrete Bayesian
reinforcement learning. In Proc. of the Int. Conf. on Machine Learning (ICML), pages
697–704, 2006.

M. L. Puterman. Markov decision processes. Wiley, New York, 1994.

L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. In Proceedings of the IEEE, volume 31, pages 257–286, 1989.

J. Ramon. Clustering and instance based learning in first order logic. PhD thesis, Department
of Computer Science, K.U.Leuven, Leuven, Belgium, 2002.

J. Ramon, K. Driessens, and T. Croonenborghs. Transfer learning in reinforcement learn-
ing problems through partial policy recycling. In Proc. of the European Conf. on Machine
Learning (ECML), pages 699–707, 2007.

M. Richardson and P. Domingos. Markov logic networks. Machine Learning Journal, 62:
107–136, 2006.

J. Rintanen. Regression for classical and nondeterministic planning. In Proc. of the Euro-
pean Conf. on Artificial Intelligence (ECAI), pages 568–572, 2008.

D. S. Ruchkin, J. Grafman, K. Cameron, and R. S. Berndt. Working memory retention
systems: a state of activated long-term memory. Behavioral and Brain Sciences, 26:709–
777, 2003.

S. Russell and P. Norvig. Artificial intelligence: a modern approach. Prentice-Hall, Engle-
wood Cliffs, NJ, 2nd edition edition, 2003.

S. Sanner. Simultaneous learning of structure and value in relational reinforcement learn-
ing. In Proc. of the ICML-05 Workshop on "Rich Representations for Relational Reinforcement
Learning", 2005.

S. Sanner. Online feature discovery in relational reinforcement learning. In Proc. of the
ICML-06 Workshop on "Open Problems in Statistical Relational Learning", 2006.

172 LITERATURE

S. Sanner and C. Boutilier. Approximate solution techniques for factored first-order
MDPs. In Proc. of the Int. Conf. on Automated Planning and Scheduling (ICAPS), pages
288–295, 2007.

S. Sanner and C. Boutilier. Practical solution techniques for first-order MDPs. Artificial
Intelligence Journal, 173(5-6):748–788, 2009.

J. Schmidhuber. Curious model-building control systems. In Proc. of Int. Joint Conf. on
Neural Networks, volume 2, pages 1458–1463, 1991a.

J. Schmidhuber. Adaptive confidence and adaptive curiosity. Technical Report FKI-149-
91, Technical University Munich, 1991b.

J. Slaney and S. Thiébaux. Blocks world revisited. Artificial Intelligence Journal, 125(1-2):
119–153, 2001.

V. Solo. Smoothing estimation of stochastic processes: Two-filter formulas. IEEE Trans-
actions on Automatic Control, 27(2):473–476, 1982.

C. Stachniss, G. Grisetti, and W. Burgard. Information gain-based exploration using rao-
blackwellized particle filters. In Proc. of the Int. Conf. on Robotics: Science and Systems,
pages 65–72, 2005.

J. Sturm, C. Plagemann, and W. Burgard. Body schema learning for robotic manipulators
from visual self-perception. Special Issue of the Journal of Physiology, 2009.

R. S. Sutton and A. G. Barto. Reinforcement learning: an introduction. The MIT Press, March
1998.

I. Szita and A. Lörincz. The many faces of optimism: a unifying approach. In Proc. of the
Int. Conf. on Machine Learning (ICML), 2008.

B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilistic models for relational
data. In Proc. of the Conf. on Uncertainty in Artificial Intelligence (UAI), pages 485–492,
2002.

F. Teichteil-Konigsbuch, U. Kuter, and G. Infantes. Aggregation for generating policies
in MDPs. In Proc. of Int. Conf. on Autonomous Agents and Multiagent Systems, 2010.

J. B. Tenenbaum, C. Kemp, T. L. Griffiths, and N. D. Goodman. How to grow a mind:
Statistics, structure, and abstraction. Science, 331(6022):1279–1285, 2011.

S. Thrun. The role of exploration in learning control. In Handbook for Intelligent Control:
Neural, Fuzzy and Adaptive Approaches. 1992.

M. Tomasello, M. Carpenter, J. Call, T. Behne, and H. Moll. Understanding and sharing
intentions: The origins of cultural cognition. Behavioral and Brain Sciences, 28(5):675–
691, 2005.

LITERATURE 173

M. Toussaint. Robot trajectory optimization using approximate inference. In Proc. of the
Int. Conf. on Machine Learning (ICML), 2009a.

M. Toussaint. Probabilistic inference as a model of planned behavior. Künstliche Intelli-
genz (German Artificial Intelligence Journal), 3, 2009b.

M. Toussaint. A Bayesian view on motor control and planning. In O. Sigaud and J. Peters,
editors, From motor to interaction learning in robots. Springer, 2010.

M. Toussaint and C. Goerick. Probabilistic inference for structured planning in robotics.
In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pages 3068–
3073, 2007.

M. Toussaint and A. Storkey. Probabilistic inference for solving discrete and continuous
state Markov decision processes. In Proc. of the Int. Conf. on Machine Learning (ICML),
pages 945–952, 2006.

M. Toussaint, L. Charlin, and P. Poupart. Hierarchical POMDP controller optimization
by likelihood maximization. In Proc. of the Conf. on Uncertainty in Artificial Intelligence
(UAI), pages 562–570, 2008.

M. Toussaint, N. Plath, T. Lang, and N. Jetchev. Integrated motor control, planning,
grasping and high-level reasoning in a blocks world using probabilistic inference. In
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2010.

M. van Otterlo. The logic of adaptive behavior. IOS Press, Amsterdam, 2009.

T. J. Walsh. Efficient learning of relational models for sequential decision making. PhD thesis,
Rutgers, The State University of New Jersey, New Brunswick, NJ, 2010.

C. Wang, S. Joshi, and R. Khardon. First order decision diagrams for relational MDPs.
Journal of Artificial Intelligence Research (JAIR), 31:431–472, 2008.

X. Wang. Learning by observation and practice: An incremental approach for planning
operator acquisition. In Proc. of the Int. Conf. on Machine Learning (ICML), 1995.

C. Watkins and P. Dayan. Q-learning. Machine Learning Journal, (8):279–292, 1992.

D. S. Weld. Recent advances in AI planning. Artificial Intelligence Journal, 20(2):93–123,
1999.

J. Weng. Developmental robotics: theory and experiments. International Journal of Hu-
manoid Robotics, 1, 2004.

J. Weng, J. McClelland, A. Pentland, O. Sporns, I. Stockman, M. Sur, and E. Thelen. Ar-
tificial intelligence: autonomous mental development by robots and animals. Science,
291(5504):599, 2001.

P. Werbos. Advanced forecasting methods for global crisis warning and models of intel-
ligence. General Systems Yearbook, 22:25–38, 1977.

D. Windridge and J. Kittler. Perception-action learning as an epistemologically-
consistent model for self-updating cognitive representation. Brain Inspired Cognitive
Systems (special issue), Advances in Experimental Medicine and Biology, 657, 2010.

J.-H. Wu, R. Kalyanam, and R. Givan. Stochastic enforced hill-climbing. In Proc. of the
Int. Conf. on Automated Planning and Scheduling (ICAPS), pages 396–403, 2008.

Z. Xu, K. Kersting, and T. Joachims. Fast active exploration for link–based preference
learning using Gaussian processes. In Proc. of the European Conf. on Machine Learning
(ECML), 2010.

S. W. Yoon, A. Fern, and R. Givan. FF-Replan: a baseline for probabilistic planning.
In Proc. of the Int. Conf. on Automated Planning and Scheduling (ICAPS), pages 352–359,
2007.

S. W. Yoon, A. Fern, R. Givan, and S. Kambhampati. Probabilistic planning via deter-
minization in hindsight. In Proc. of the Nat. Conf. on Artificial Intelligence (AAAI), pages
1010–1016, 2008.

H. L. Younes and M. L. Littman. PPDDL 1.0: An extension to PDDL for expressing plan-
ning domains with probabilistic effects. Technical report, Carnegie Mellon University,
2004.

Zusammenfassung

Planen und Erkundung in Stochastischen Relationalen Welten

Zielgerichtetes Verhalten ist ein eindrucksvolles Zeugnis der Intelligenz von Menschen
und Tieren. Diese Doktorarbeit untersucht formale Prinzipien für solches Verhalten in
so genannten stochastischen relationalen Welten, welche sich durch zwei Haupteigen-
schaften auszeichnen: sie enthalten eine Vielzahl an Gegenständen, deren Eigenschaften
und gegenseitige Beziehungen verändert werden können; und die Wirkung von Aktio-
nen kann in ihnen nur mit Unsicherheit abgeschätzt werden. Viele natürliche Haushalts-
und Arbeitsumgebungen fallen unter diese Kategorie. Wir verfolgen die Idee der Statis-
tischen Relationalen Künstlichen Intelligenz und verknüpfen aussagekräftige relationale
Wissensrepräsentationen mit einem probabilistischen Ansatz. Dadurch können wir Wis-
sen über die Wirkungsweise von Aktionen in kompakten Modellen repräsentieren und
aus wenigen Erfahrungen so verallgemeinernd erlernen, dass es sich auch auf bisher
noch unerforschte Gegenstände erstreckt. Wir führen verschiedene Methoden zur Pla-
nung von Aktionsketten in konkreten relationalen Welten ein, die solche Modelle auf
gegebene Gegenstände anwenden. Unsere Ansätze fußen großenteils auf dem Informa-
tionsverarbeitungsprinzip der probabilistischen Inferenz in graphischen Modellen. Wir
entwerfen eine Theorie, die aufzeigt, wie allein relevante Objekte beim Planen berück-
sichtigt werden können. Wir erweitern existierende Theorien zur Erkundung grundle-
gend im Hinblick auf relationale Repräsentationen. Dies führt zu einer neuartigen Form
explorativen Verhaltens, in der bewusst Gegenstände erkundet werden, auf die bisher
erlerntes Wissen nicht verallgemeinert werden kann. Die Kombination unserer neuen
Methoden mit existierenden Techniken ermöglicht den Entwurf künstlicher autonomer
Agenten, die zielgerichtetes Verhalten in stochastischen relationalen Welten beherrschen.

175

Vita
Tobias Johannes Lang

CV not available in the online version due to privacy reasons.

177

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Dissertation selbstständig auf der Grund-
lage der in der Arbeit angegebenen Hilfsmittel und Hilfen verfasst habe.

Tobias Johannes Lang
Berlin, den 14. Februar 2011

179

