libPRADA -

Version 1.2

Learning and Planning with Probabilistic Relational Rules

Tobias Lang
http://userpage.fu-berlin.de/tlang/prada/

July 30, 2012

When using this library, please cite|Lang and Toussaint

[2010].

Contents
1
2__Introduction| 1
B_Installation] 1
4 Programmer’s guide| 1
....................... 2
4.2 mbols[. 0. 2
43 Titerald 3
4.3.1 Arguments: variables and constants| 3
4.3.2__Literals data-structurel 3
4.3.3 SymbolicState| L. 3
434 StateTransition| 3
B4 Ruled 4
BAT Rualed 4
442 Substitution| 4
A5 Reasoning] 5
451 Basicreasoning| 5
4.5.2 Rulereasoning| 5
M6 Planning| 5
4.6.1 Individual planners| 6
4.6.2 Reward functions| 6
4.7 Rulelearning| 7
[> User’s guide| 7
[6 Trouble shooting| 7
6.1 Planning| 7
6.2 Tearning| 8
7 _Future r rch 8
[8 Acknowledgements| 8

1 Disclaimer

libPRADA is work in progress! I did my best to avoid
mistakes and to increase comprehensibility (at least at
high-level interfaces). Nonetheless, you will probably en-
counter bugs and lacks in functionality. Please contact

me in this case! I'll be happy to fix bugs, hear your com-
plaints, add desired functionality and implement propos-
als and wishes for the library.

2 Introduction

libPRADA is a C++-library for model-based relational re-
inforcement learning in stochastic domains.

e libPRADA provides basic data-structures and meth-
ods for symbolic reasoning with relational repre-
sentations. In particular, it implements probabilis-
tic relational rules which can be used as a transition
model P(s’ | s,a) in a Markov decision process.

e libPRADA provides algorithms for planning with
ground relational rules: PRADA [Lang and Tou-
ssaint, 2010], sparse sampling trees (SST) [Kearns
et al.}[2002] and UCT [Kocsis and Szepesvari, [2006].

e libPRADA implements the algorithm for learning
probabilistic relational rules by|Pasula et al.| [2007].

3 Installation

In the root-directory 1ibPRADA/, please type make. This
should compile the library 1ib/1ibPRADA.so and the
demos in test/. If you have problems getting this work-
ing, please contact me.

If compilation succeeded, you can check out the three
demos in test/.

Inmake-config, you can set the flag OPTIM to control
the compiler options: OPTIM = debug sets debug infor-
mation, OPTIM = fast optimizes the compiled code.

4 Programmer’s guide

We will discuss the

1ibPRADA/src/:

following headers in

e MT/array.h: data-structure for lists

e relational/symbols.h: definition of the rela-
tional vocabulary; symbols are predicates and func-
tions such as on(-, -) and size(-)

libPRADA - Version 1.2

2 Learning and Planning with Probabilistic Relational Rules, Tobias Lang—July 30, 2012

e relational/literals.h: definitions and basic
methods for dealing with literals and sets of literals;
literals are instantiated symbosl such as on(a, b) and
size(b) = 2

e relational/rules.h: definitions and basic
methods for dealing with rules and argument substi-
tutions; probabilistic relational rules provide a tran-
sition model P(s’ | s,a)

e relational/reason.h: reasoning with symbols,
literals and rules such as calculating which rules
cover a state and action

e relational/plan.h, relational/prada.h:

planning with rules

e relational/learn.h: learning rules from data

4.1 Lists

File: MT/array.h

I use Marc Toussaint’s Array class to store all kinds
of data (primitive data-types, objects, pointers) in lists.
Array is also used to define mathematical objects such as
vectors and matrices. For instance, Array< double >,
a list of double, represents a vector of reals. Array pro-
vides many basic self-explanatory methods to deal with
lists, vectors and matrices.

4.2 Symbols

File: relational/symbols.h

Data structure A symbol consists of the following at-
tributes:

MT::String name;

uint arity; / eg. 2foron(.,.)

SymbolType symbol_type;

RangeType range_type;

uintA range; // optional

ArgumentTypel arg_types; // optional

SymbolType is an enumeration in Symbol:

enum SymbolType {action, primitive, conjunction, transclosure, ...};

The most important symbol types are action and
primitive. They define the basic predicates and func-
tions in a domain. Typically, the truth of primitive sym-
bols needs to be provided from outside the logical ma-
chinery (e.g., by compiling observations into logical sym-
bols, also known as the physical “grounding” problem).
All other symbol types denote symbol which are defined
in terms of other symbols. They include:

e ConjunctionSymbol: a conjunction of (possi-
bly negated) symbols, allowing for either existen-
tially or universally quantified variables; example:
clear(X) =VY-on(Y, X)

e TransClosureSymbol: transitive closure for a
symbol; example above(X,Y) = +on(X,Y)

e CountSymbol: counts how often a symbol holds;
example countClear() = X : clear(X)

e AverageFunction: computes the average over
function values; example averageHeight() =
averagex [height(X))

e SumFunction: computes the sum over function val-
ues; example sumHeight() =) height(X)

e MaxFunction: computes the max over function val-
ues; example maxHeight() = maxx height(X)

Symbol.h provides self-explanatory implementations
for the derived symbol types. You can also add your
own symbol types with appropriate definitions. Please
note that the derived symbols can be used to specify
complex logical reward functions (see also below and in
test/relational_plan/main.cpp). For instance, it
is possible to thereby define a reward for stacking large
towers of blocks in a blocks-world.
RangeType is an enumeration in Symbol:

enum RangeType {binary, integer_set, integers, reals};

It defines the range of a symbol. Symbols can have a
binary range and correspond to standard predicates
then: they are either true (value 1) or false (value 0).
Symbols can be functions which have the integers or
the reals as range. It is also possible to define an
integer_set for a specific set of range values: this set
needs to be defined in range.

Finally, libPRADA will also allow for typed arguments
by means of the data-structure ArgumentType. For in-
stance, one may want to define a type cube for constants.
However, this is still work in progress. (For now, you can
achieve a similar effect in rules by using typing predicates
like cube(-).)

File syntax The syntax for a symbols file is simply a list
of symbols and (optionally) argument types as follows:

<Symbol>+

// optional
<ArgumentType> + // optional
] // optional

A single symbol is represented by its spelled out
attributes (name) (arity) (type) (range)
[otherstuff]. DPlease note that (name) has to
use small letters only—this is required by the methods
which read symbols files. [otherstuff] is needed
to define derived symbols. The exact syntax depends
strongly on the type of the derived symbol. Please see
the example files in the test-directories. Here is an
example for a symbols file:

grab 1 action binary

on 2 primitive binary

size 1 primitive integers

clear 1 conjunction binary <—— All'Y —on(Y X)

inhandNil 0 conjunction binary <—— All X —inhand(X)

above 2 transclosure binary <—— + on

aboveNotable 2 conjunction binary <—— above(X Y) —table(Y)
height 1 count integers <—— Num Y aboveNotable(X Y)
sum_height 0 sum integers <—— Sum height

libPRADA - Version 1.2

Learning and Planning with Probabilistic Relational Rules, Tobias Lang—TJuly 30, 2012 3

Object Management To control the number of C++-
objects and to exploit pointers in reasoning, C++-objects
of symbols cannot be constructed from outside the class.
Rather, the following method needs to be called to con-
struct a symbol:

static Symbolx get(const MT::String& name, uint arity, SymbolType
symbol_type = primitive, RangeType range_type = binary);

Analogous get-methods exist for the derived symbols.
After having called the previous get-method once, sym-
bols can also be accessed by their names:

static Symbolx get(const MT::String& name);

4.3 Literals

File: relational/literals.h

Literals are instantiated symbols (symbols with a list of
arguments) together with a value. Examples: on(a,b) =
1 and size(a) = 4. Actions are literals whose value is
ignored, for example grab(a).

4.3.1 Arguments: variables and constants

Arguments of literals are represented by non-negative
one-digit and two-digit integers (uint) 0,1,2...99. For
reasoning, we need to distinguish between logic variables
and constants. The default is that all uints < 10 are vari-
ables, all other constants. You can change the default by
defining the set of constants with the following methods
inrelational/reason.h:

void setConstants(uintA& constants);
bool isConstant(uint id);

There are also appropriate methods to fix the
Argument Type of constants.

Variables in program output and file specifications are
often specified in terms of characters instead of uints to
stick to standard logic notation. The following map is

used: 0+ X, 1< Y,2+ 7,3V, 4 W,5<U.

4.3.2 Literals data-structure

A literal consists of the following attributes:

Symbolx s;
uintA args;
double value;
ComparisonType comparison_type; // default: comparison_equal

// uintA = MT::Array < uint >

uintAisshort for MT: : Array<uint> (alist of unsigned
integers). For binary symbols (aka predicates), the value
0 represents a negated (/false) symbol and the value 1 a
positive (/true) symbol. For instance, for on(61,63) = 1
we have s = Symbol::get (‘‘on’’), args (0)=61,
args (1)=62, value=1 and comparison_type =
Literal::comparison_equal.
ComparisonType is an enumeration:

enum ComparisonType { comparison_equal, comparison_less,

File syntax Simply use plain text descriptions:

on(65, 60) // for predicates: corresponds to value=1
—inhand(71) // for predicates: corresponds to value=0
size(1)<=2

size(66)=2

Please note the special notation for the value of binary
symbols (= predicates) which is close to standard logic
notation: if the value is omitted, it denotes value 1 (=
true); with a leading - (for), it denotes value 0 (=false).

Lists of literals are usually written in one line, sepa-
rated by a space or by a comma.

Object Management To control the number of C++-
objects and to exploit pointers in reasoning, C++-objects
of literals cannot be constructed from outside the class —
this is the same as with symbols. Rather, the following
methods need to be called to construct literals:

static Literal x get(Symbolx s, const uintA& args, double value,
ComparisonType comparison_type = comparison_equal);
static Literal x get(const charx text);

The second method is a quick way to read literals
from text. Please note that the corresponding sym-
bols need to have been created beforehand (by calling
Symbol::get (...)).

4.3.3 SymbolicState

A SymbolicState consists of:

MT::Array<Literalx> lits;
uintA state_constants;
bool derived._lits_are_calculated ;

The important attribute is the list of literals 1its. We
make the closed world assumption: 1its contains binary
literals only if they are positive (with value 1). Hence,
all binary literals which are not explicitly stated are as-
sumed to be false. state_constants can be set option-
ally and contains all constants in the state (note that not
necessarily all state constants need to appear as an argu-
ment in 1its). derived_lits_are_calculated is a
flag which stores whether the derived symbols have al-
ready been calculated.

File syntax A state is represented by its list of literals. A
trailing list of state_constants is optional:

[61 62 63 64] // optional
on(61,62) on(65,64) inhand(66) size(64)=3

Please note the special syntax for literals of binary sym-
bols (predicates) as described above: no negative binary
symbols are allowed and positive binary symbols don’t
have a value specified (no =1).

4.3.4 StateTransition

StateTransition is a convenience wrapper for the re-

. . . 1 4 3 3 7\.
comparison_lessEqual, comparison_greater, comparison_greaterEqual };mforcement learner’s favorite triplet (s, a, s'):

The default of comparison_type is
comparison_equal. For example, comparison_less
is used in size(a) < 4.

SymbolicState pre, post;

Literal « action;

MT::Array< Literal+ > changed;
uintA changedConstants;

libPRADA - Version 1.2

4 Learning and Planning with Probabilistic Relational Rules, Tobias Lang—July 30, 2012

changed and changedConstants are calculated auto-
matically by the constructor. A list of state transitions can
be read using the following method:

static StateTransitionL& read(const charsx filename);

Lists of state transitions provide the data for rule-
learning.

44 Rules

File: relational/rules.h

Probabilistic relational rules are at the heart of
libPRADA. They provide a transition model P(s’' | s,a)
for model-based relational reinforcement learning.

4.4.1 Rules

The data-structure Rule implements the noisy indeter-
ministic deictic (NID) rules of Pasula et al. [2007]. I fol-
low exactly the semantics described in their paper. Please
confer their paper or my Ph.D. thesis [Lang),[2011] for fur-
ther details, including state-action coverage and the noise
outcome. In particular, it is important for you to under-
stand when a rule covers a state-action pair and when not
(I'll describe this superficially also below): rule unique-
ness and the noisy default rule are important concepts to
understand.
Rule has the following attributes:

Literal * action;

LitL context;

MT::Array< LitL > outcomes;

doubleA probs;

double noise_changes;
arr outcome_rewards; // optional

Please note that LitL is short for MT::Array<
Literalx >,alistof Literal pointers.

action is the rule’s action (surprise, surprise).
context is the list of (abstract) literals which need to be
covered by a state so that the rule can apply. outcomes
contains the different outcomes, probs the correspond-
ing probabilities. Please note an important convenience
for outcomes and probs: the last outcome is the noise
outcome. noise_changes is PRADA’s noise outcome
heuristic: it defines the average number of state proper-
ties that change in a noise outcome —however, in practice,
this is a negligible parameter. outcome_rewards is an
optional parameter which specifies a reward for each out-
come: planners like PRADA may take them into account
in addition to global rewards on states (see the IPPC do-
mains for example domains).

Rule provides many convenience methods. It also pro-
vides a method to construct the noisy default rule which
is important when learning and reasoning with NID rules
(see|Pasula et al.|[2007]):

static Rulex generateDefaultRule(double noiseProb,
double minProb, double change);

The default rule uses the special action de fault() and is
applied when there is no unique non-default covering
rule for a state-action pair.

Sets of rules should be managed by means of the class
RuleSet. RuleSet provides the methods for ground-
ing abstract rule-sets. Furthermore, RuleSet controls

the deletion of C++-objects of Rule so that your working
memory does not drown in Rule pointers (when ground-
ing abstract rules, many, many ground rules are created).

There is also an additional container structure
RuleSetContainer for RuleSet in learn.h: it is
used for efficiency reasons in rule-learning and provides
auxiliarly methods and statistics required for learning
and evaluating rules on a given data-set.

File Syntax: rules
ward:

The general syntax is straightfor-

ACTION:

<Literal>

CONTEXT:

<Literal>+

OUTCOMES: // List of outcomes
<double> <Literal>+ // Outcome 1 incl. probability
<double> <Literal>+ // Outcome 2 incl. probability

Example:

ACTION:
puton(X)
CONTEXT:
block(X), inhand(Y), size(X)=2
OUTCOMES:
0.7 on(Y X), upright(Y), —inhand(Y)
0.2 —inhand(Y)
0.1 <noise>

Some guidelines for rules:

e Outcomes are lists of primitive literals with a lead-
ing probability. No literals for derived symbols here!
Derived literals, however, may appear in the context.

e The last outcome of a rule must be the noise outcome.

e The noise outcome can specify how many (random)
state properties are expected to change (required by
PRADA’s heuristic to deal with the noise outcome).

4.4.2 Substitution

A substitution maps integers to integers. The typi-
cal use is to ground abstract literals and rules: variables
get mapped to constants (please recall that both variables
and constants are represented by uint). The essential
two attributes are:

uintA ins;
uintA outs;

ins and outs are lists of uints. ins (i) maps to
outs (i). Substitution provides many (hopefully)
self-explanatory methods. The most important ones are
(i) the various apply methods such as applying substitu-
tions to rules and (ii) void addSubs (uint in, uint
out) for adding a substitution.

Sets of substitutions can be managed by means of
the container class SubstitutionSet. Similarly as for
RuleSet the major purpose is to control the deletion of
C++-objects of Substitution.

libPRADA - Version 1.2

Learning and Planning with Probabilistic Relational Rules, Tobias Lang—TJuly 30, 2012 5

4.5 Reasoning

File: relational/reason.h

The namespace reason provides methods for logical
reasoning. These methods are broadly distinguished into
basic reasoning and rule reasoning methods.

4.5.1 Basic reasoning

The basic reasoning methods realize three major func-
tionalities: (i) distinguishing between constants and vari-
ables; (ii) deriving literals for derived symbols (symbols
which are defined in terms of other symbols); (iii) basic
coverage methods (for example, whether a state covers
an abstract literal).

Distinguishing between constants and variables As
described in Sec. arguments of literals (variables
and constants) are represented by uints. reason main-
tains the information which uint refers to a variable
and which to a constant. By default, all uints <
10 refer to variables, all other to constants. Alterna-
tively, you may provide a set of constants by void
setConstants (uintA& constants). The funda-
mental methods of libPRADA for distinguishing ground
and abstract literals are:

bool isGround(const Literalx lit);
bool isPurelyAbstract(const Literal« lit);

Please note that for a literal to be purely abstract, all ar-
guments need to be variables. For example, on(a, X) with
a constant ¢ and a variable X is abstract, but not purely
abstract.

Deriving literals There are primitive and derived
(/non-primitive) symbols. Derived symbols are defined
in terms of other symbols. To describe the world sym-
bolically, the truth of literals for primitive symbols needs
to be specified from outside the logical machinery. This
is the physical grounding problem: how do symbol re-
late to the true world? Please note that this is different
from logically grounding an abstract literal to a ground
literal. In contrast to primitive symbols, the literals for
derived symbols need to be calculated from other literals
using logical reasoning. reason provides the required
methods. The central method for calculating the derived
literals for a state is:

void derive(SymbolicStatex s);

Basic coverage methods There are three types of ba-
sic coverage methods which depend on each other.
The holds methods check for test literals whether
they hold in a given list of literals (simple contains
check): for example whether literal on(a,d) holds in
{on(b,a),on(a,d),inhand(e)}. The calcSubstitution
methods try to unify different literals (typically, abstract
and ground literals), for example on(a, X) and on(a, d).
If successful, the resulting Substitution provides the
mapping of variables to variables/constants; X — d. The
calcSubstitutions and cover methods try to unify

lists of literals and return lists of appropriate substitu-
tions.

4.5.2 Rule reasoning

The methods for rule reasoning provide the following
functionalities: (i) distinguishing between ground and
abstract rules; (ii) calculating successor states and their
probabilities for a rule and a given state-action pair; (iii)
calculating the coverage of rules; (iv) calculating likeli-
hoods of experiences (s, a, s") for rule-sets.

Coverage of rules The implementation of state-action
coverage for NID rules in libPRADA follows directly the
specification in |Pasula et al|[2007]. This coverage has a
specific semantics which might be unexpected. Under-
standing the semantics is crucial for learning and plan-
ning with NID rules. Please see|Pasula et al.| [2007], Lang
and Toussaint|[2010] and [Lang|[2011] for details.

I'highlight the most important feature here: For a given
state-action pair (s,a) and a set I' of abstract rules, we
check which rules in I" cover (s, a). That is, we substitute
the arguments of the action in an abstract rule with the
constants in a. Then, we try to find a unique substitution
for the remaining variables in the rule. These remaining
variables which do not appear in the action’s arguments
are called deictic references. If there is exactly one non-
default rule in T" covering (s, a) we call it the unique cov-
ering rule and use it to model P(s’ | s,a). If there is no
such unique covering rule (there is no covering rule or
there are at least two covering rules), we use the default
rule, basically saying that we do not know what will hap-
pen.

There is an important subtlety concerning the deictic
references: for a rule to cover (s, a) there needs to be a
unique substitution for these references. If a deictic refer-
ence has several groundings such that the rule’s context
holds then the rule does not cover (s, a) (since such a vari-
able is not a well-defined deictic reference in s).

Since this is so important, I give a small example here.
Please consider the rule:

ACTION:

puton(X)
CONTEXT:

block(X), inhand(Y)
OUTCOMES:

0.9 on(Y X), —inhand(Y)

0.1 <noise>
Y is a deictic reference here. Consider the symbolic
states s1 = {block(a),inhand(b)}, sa = {block(a)},
sg = {block(a), inhand(b),inhand(c)} and the action a =
puton(a). The rule covers only s;: there is the unique
grounding {X — a,Y — b}. However, it does not
cover sy: Y cannot be resolved. Most importantly, the
rule does not cover s3, either: there is no unique ground-
ing. The reason is that the deictic reference Y cannot
be resolved uniquely: there are two possible groundings
{X=a,Y—=>bland {X = a,Y — c}.

4.6 Planning

Files: relational/plan.h, relational/prada.h

libPRADA - Version 1.2

6 Learning and Planning with Probabilistic Relational Rules, Tobias Lang—July 30, 2012

This is a core part of libPRADA. It provides four algo-
rithms (PRADA, A-PRADA, SST, UCT) for planning with
ground NID rules. The important methods for any plan-
ner are:

Literal * plan_action(const SymbolicState& current_state);

void setReward(Rewardx);
void setGroundRules(RuleSet& ground_rules);

The first method prompts the planner to plan an action
for a given state. Thus, this method defines a policy
m : s — a. The planner tries to find the approximately
best action leading to high rewards. PRADA and A-
PRADA also provide a method to generate a complete
plan. In contrast, SST and UCT cannot provide a com-
plete plan due to their outcome sampling. The second
method sets the reward function of the planner (see be-
low). The third method sets the ground rules which pro-
vide the transition model P(s’ | s, a) used by the planner.
Hence, a set of abstract NID rules needs to be grounded
first with respect to the domain constants; the ground
rules are then provided to the planner. The methods
for grounding abstract rule-sets are provided by the class
RuleSet inrelational/rules.h.

All planning algorithms share the following parame-
ters:
double discount;

uint horizon;
double noise_scaling-factor;

discount is a discount factor v € (0, 1] (a future reward
at time ¢ is discounted by +*). horizon is the planning
horizon h > 0. Specific parameters for the individual
planners are discussed below. noise_scaling_factor
is a noise scaling factor 1 used by SST and UCT: it scales
down the future values when sampling the noise out-
come.

4.6.1 Individual planners

PRADA PRADA stands for “probabilistic relational
action-sampling in dynamic Bayesian networks planning
algorithm” [Lang and Toussaint, 2010]. PRADA sam-
ples action-sequences and evaluates their rewards using
a dynamic Bayesian network (DBN) PRADA_DBN«* dbn
for all ground symbols. Its most important parameter is
num_samples which controls the number of samples: the
more samples, the higher the probability to find good
plans, but also the higher the computational demand.

Furthermore, you may specify threshold_reward €
(0,1] to define what a “good” plan is: it sets the threshold
on the probability to achieve the reward. It should not be
set too high since PRADA’s approximate inference may
underestimate the true probability. Another parameter is
noise_softener € (0,1]: there is no clear way how to
deal with the noise outcome of rules; PRADA’s heuristic
to do so can be harmful if the noise outcome has too high
probability; this parameter reduces the effect of the noise
outcome in planning.

A-PRADA Adaptive-PRADA extends PRADA as de-
scribed in [Lang and Toussaint [2010]. The important
method called during planning is

It takes a plan and examines whether this plan can be im-
proved by deleting some actions.

SST SST stands for “sparse sampling tree” (SST) algo-
rithm [Kearns et al., 2002]. SST is used for planning with
NID rules in the work by |Pasula et al.| [2007]. It has the
following additional parameter:

e branch (b) determines the number of samples from
the successor state distribution for a given action (=
branching factor of the sampling tree).

UCT UCT stands for “upper confidence bounds ap-
plied to trees” [Kocsis and Szepesvari, 2006]. It has the
following two additional parameters:

e A bias c for less often explored actions.

e numEpisodes (e) determines the number of
episodes (or rollouts).

4.6.2 Reward functions

Reward functions R : S — A are modelled by the class
Reward. Please note that R only depends on the state.
There is also the possibility to associate reward with ac-
tions by setting rewards to individual rule outcomes (see
Sec.[4.4).

Reward provides the following methods to evaluate
states:

double evaluate(State& s);
bool satisfied (State& s);
bool possible(State& s);

Methods two and three may have trivial implementations
by always returning true.

The following pre-defined reward types are provided
by libPRADA:

o LiteralReward: the reward is given for achieving a
single literal, e.g. inhand(a) or inhand(X)

o LiteralListReward: the reward is given for achieving
a conjunction of literals, e.g. on(a, b), on(b, c)

e MaximizeReward: the value of an atom shall be
maximized, e.g. sumHeight() (this defines the stack-
ing task in good, old blocksworld)

You can define arbitrarily complex logical reward func-
tions by means of derived symbols: derived symbol (like
sumHeight()) capture the complex logical structure (like
“stacking”); then, these derived symbols simply need to
be achieved or maximized.

PRADA reasons on beliefs over states (rather than on
states directly). For this purpose, PRADA maintains its
own class PRADA Reward. For the three reward func-
tions discussed above, automated conversion routines
are used when setting the standard Reward for PRADA.
If you come up with your own reward function type,
however, you must also define a PRADA _Reward type
that implements evaluating this reward function over be-

double shorten_plan(LitL& seq_best, const LitL& seq, double value_old)]iefs.

libPRADA - Version 1.2

Learning and Planning with Probabilistic Relational Rules, Tobias Lang—]July 30, 2012 7

File syntax: rewards A flag of the reward type plus the
literal(s) as described above:
LiteralReward:

1
<Literal>

LiteralListReward:

2
<Literal>+

MaximizeReward:

3
<Literal>

4.7 Rule learning

File: relational/learn.h

libPRADA provides a direct implementation of the
learning algorithm for probabilistic relational rules by Pa-
sula et al.|[2007].

To learn rules, you need to come up with a set
{(s,a,s")} of state transitions (s,a,s’) using the data-
structure StateTransition (see [£.3.4). The central
method is:

void learn_rules (RuleSetContainer& rulesC,
StateTransitionL& experiences,
const charsx logfile);

For efficient rule-learning the data-structure
RuleSetContainer is used: RuleSetContainer
is a wrapper for RuleSet which stores information on
covered state-transitions.

The learning algorithm is very sensitive to two param-
eters: the regularization penalty « and the lower bound
Pmin ON the probability of states under the noise outcome
(see[Lang and Toussaint|[2010] and [Pasula et al.{[2007] for
details). You can set them with these methods:

void set_penalty(double alpha_PEN);
void set_p_min(double p_min);

You need to get a feeling for these parameters to be able
to learn rules which you consider “good”. The parame-
ters cannot be set automatically: what “good” is depends
on your prior knowledge (for instance, you must choose
whether you want an almost perfect, complex model or
a compact model only for typical state transitions). I dis-
cuss this briefly in my thesis [Lang), 2011]].

The learning algorithm defines a heuristic search
through the space of rule-sets based on search oper-
ators. You may adapt the algorithm to your needs
by defining your own search operator, deriving from
SearchOperator. Which operator is tried at each time-
step is determined by the method

void set_ChoiceTypeSearchOperators(uint choice_type);

The random choice_type considers sampling weights
for the invididual search operators in its random choice.
Hence, you may change the algorithm by modifying the
weights of the search operators.

5 User’s guide
To use libPRADA successfully, you have to understand:

1. how libPRADA represents symbols, literals, states
and rules
Sources: relational/symbols.h,
relational/literals.h,
relational/rules.h
Demo: test/relational basics

2. how to set up a planning scenario
Sources: relational/plan.h,
relational/prada.h
Demo: test/relational plan

3. how to set up a rule learning run
Sources: relational/learn.h
Demo: test/relational_learn

Please take a look at the main. cpp of the corresponding
test. The tests are carried out in the robot manipulation
domain as first presented in|Lang and Toussaint|[2010].

Basic steps you always need to perform when using
libPRADA:

1. Set up symbols

2. Optional: define constants (/objects); this tells
libPRADA which uints refer to constants, which to
variables

Additional steps for planning:

1. Set up a start state for planning
. Define a reward function
. Set up (abstract) rules

2
3
4. Ground all rules
5. Set up the planner
6

. Provide ground rules, reward and all necessary pa-
rameters to your planner

7. Finally, plan :-) !
Additional steps for learning;:

1. Set up data in the form of state transitions (s, a, s’)
using StateTransition

2. Set regularization parameter o (alpha_pen)
3. Set lower bound for noise outcome p,,,;, (p_min)

4. Finally, learn :-) !

6 Trouble shooting

6.1

e Double-check the abstract rules. Do they really al-
low to find a correct plan? Are there unique covering
rules (with unigue deictic references) for the required
actions ?

Planning

libPRADA - Version 1.2

8 Learning and Planning with Probabilistic Relational Rules, Tobias Lang—July 30, 2012

The human intuition that “these rules are sufficent
for that reward” is often wrong: after detailed in-
spection of the planner, it often turns out that the
rules are actually “wrong” and the planner is “right”:
the given rules do not enable a correct plan.

e Please be sure to understand the concept of unique
covering rule as described in |Pasula et al|[2007] and
Lang and Toussaint{[2010].

e Is the horizon h set correctly? Too short is obviously
bad. However, also too long horizons can confuse
PRADA: the approximation in form of the factored
frontier gets more and more inexact over time.

e Use a sufficiently large number of samples
numSamples for PRADA. Likewise, a large number
of episodes for UCT and a high branching factor for
SST.

e The probabilities of the required rule outcomes must
not be too small. If they are too small, the sampling-
based planners SST and UCT can fail to sample them.
PRADA can drastically underestimate true proba-
bilities: this is due to its factored frontier approxi-
mation which multiplies probabilites over time and
also within a time-step (when calculating the prob-
ability of a rule context based on several individual
variables) — in case of small outcome probabilities,
this approximation leads quickly to values of almost
zero.

¢ You may want to use the DEBUG information of the
individual methods in relational/prada.cpp
and relational/plan.cpp.

¢ Concerning the speed of planning: Using many com-
plex derived symbols makes planning slow. For each
sampled action/state the planners need to compute
the derived symbols (or the beliefs over these).

6.2 Learning

¢ Play with different settings of a and py,;r,. The learn-
ing procedure is extremely sensitive to these param-
eters.

e Do you have sufficient data? Are the data sufficient
evidence for the rules you have in mind?

o The learning algorithm is a heuristic search. It does
not guarantee an optimal solution. Also, differ-
ent rule-sets may achieve the same performance (in
terms of the loss function): the found rule-set might
explain the data as well as the rule-set you actually
have in mind.

¢ You may want to use the DEBUG information of the
individual methods in relational/learnx*.cpp.

7 Future research

Model-based relational reinforcement learning is a
promising framework to advance our understanding

of intelligent agents acting in the real world. I hope
libPRADA helps you to take part in this fascinating re-
search area.

Clearly, NID rules and PRADA have strong limitations.
There are plenty of relevant directions for future research.
These include: online learning of rules; extending the rule
framework to work with continuous symbolic functions;
improving PRADA by using a better sampling function
of actions; accounting for the relevance of objects; finding
better planning strategies which exploit redundancies in
the ground DBNs. And many, many more!

Good luck with your research!

8 Acknowledgements

Thanks to Andreas Henne who has provided most of the
code for learning and reasoning with non-binary symbols
and for using typed arguments in symbols.

References

Michael]. Kearns, Yishay Mansour, and Andrew Y. Ng. A
sparse sampling algorithm for near-optimal planning
in large Markov decision processes. Machine Learning,
49(2-3):193-208, 2002.

Levente Kocsis and Csaba Szepesvari. Bandit based
monte-carlo planning. In Proc. of the European Conf. on
Machine Learning (ECML), 2006.

Tobias Lang. Planning and Exploration in Stochastic Rela-
tional Worlds. PhD thesis, Fachbereich Mathematik und
Informatik, Freie Universitit Berlin, 2011.

Tobias Lang and Marc Toussaint. Planning with noisy
probabilistic relational rules. Journal of Artificial Intelli-
gence Research, 39:1-49, 2010.

Hanna M. Pasula, Luke S. Zettlemoyer, and Leslie Pack
Kaelbling. Learning symbolic models of stochastic do-
mains. Journal of Artificial Intelligence Research, 29:309—
352, 2007.

	Disclaimer
	Introduction
	Installation
	Programmer's guide
	Lists
	Symbols
	Literals
	Arguments: variables and constants
	Literals data-structure
	SymbolicState
	StateTransition

	Rules
	Rules
	Substitution

	Reasoning
	Basic reasoning
	Rule reasoning

	Planning
	Individual planners
	Reward functions

	Rule learning

	User's guide
	Trouble shooting
	Planning
	Learning

	Future research
	Acknowledgements

