
libARMANI – Version 1.0
Autonomous Robot Manipulation Simulator

Tobias Lang and Marc Toussaint
http://userpage.fu-berlin.de/tlang/armani/

June 12, 2012

When using this library, please cite Lang and Toussaint
[2010].

Contents

1 Introduction 1

2 Installation 1
2.1 Required Software 1
2.2 Compilation 1

3 ORS Configuration Files 1
3.1 Cubes and balls 2
3.2 Boxes . 2

4 User’s Guide 2
4.1 Simulator Core 2
4.2 Symbolic Relational Representations 2
4.3 Demos . 2

5 Trouble Shooting 2
5.1 ODE . 2

1 Introduction

libARMANI is a C++-simulator for Autonomous Robot
MANIpulation of objects. It simulates a robot which ma-
nipulates cubes, balls and boxes of different sizes scat-
tered on a table. This provides a physically realistic ex-
tension of one of the most popular scenarios in Artificial
Intelligence, namely of the good, old “blocks world”.

libARMANI has been developed to serve as an easy-to-
use test-bed for model-based relational reinforcement
learning in stochastic domains [Lang and Toussaint,
2010]: the actions of the simulated robot are affected by
noise; relational representations are appropriate to learn
and reason with the simulator objects.

2 Installation

2.1 Required Software

• Freeglut (tested with v2.4.0): probably already in-
stalled on your system (Debian/Ubuntu: freeglut3-
dev)

• QHull (tested with v2003.1): probably already in-
stalled on your system (Debian/Ubuntu: libqhull-
dev)

• ODE (tested with v0.11): probably needs to be in-
stalled by hand (make sure to configure ODE with
--enable-double-precision, which isn’t the
default)

• SWIFT++ (tested with v1.2): comes with libAR-
MANI in directory extern

• ANN (tested with v1.1.1): probably already installed
on your system (Debian/Ubuntu: libann-dev)

2.2 Compilation

First, please compile SWIFT++ in the directory extern/
and ensure that the correct pathes are set for Freeglut,
QHull, ODE and ANN in make-generic.

Then, please type make in the root-directory
libARMANI/. This should compile the library
lib/libARMANI.so and the demos in test/. If
you have problems getting this working, please contact
me. If compilation succeeded, you can check out the
demos in test/.

You can clean everything via libARMANI/make
cleanAll.

3 ORS Configuration Files

Configuration files specify all objects and robot body
parts used in the simulator: from the robot’s in-
dividual fingers over the table to the manipulated
balls. The configuration files reflect Marc Tous-
saint’s graph-based representation Open Robot Simu-
lator Toolkit (ORS). ORS is the backbone data repre-
sentation of libARMANI. For more information, please
take a look at http://userpage.fu-berlin.de/
mtoussai/source-code/.

Example configuration files are
test/relational armani basic/situation simple.ors
and test/relational armani basic/situation box.ors.

The important part for your modifications is the list of
manipulated objects at the end of the file. Please note that
these object definitions need to stay at the end of the file.

1

2
libARMANI – Version 1.0

Autonomous Robot Manipulation SimulatorTobias Lang and Marc Toussaint—June 12, 2012

3.1 Cubes and balls

How to specify cubes (blocks) and balls is best explained
by means of an example:

body o1 { X=<t(−0.3 −0.7 0.8)> type=1 mass=.1
size=[.03 .03 .03 .03] color=[0.4 0 .5] contact }

o1 is the name of the object. Objects have to be named
oX where X is a number in ascending order.
X=<t(-0.3 -0.7 0.8)> specifies the position in

(x/y/z)-coordinates. (To get an idea of the coordinate
system, play with the parameters.)
type specifies the type of the object which can either

be a cube (0) or a ball (1).
size=[.03 .03 .03 .03] specifies the size of the

object. Use the following sizes for objects:

• Big cube: [.06 .06 .06 .06]

• Small cube: [.04 .04 .04 .04]

• Big ball: [.045 .045 .045 .045]

• Small ball: [.03 .03 .03 .03]

The mentioned requirements need to be met to be cer-
tain that all our implementations work correctly. In prin-
ciple, you are not obliged to them, of course, in order to
get the simulator run. But then you might need to modify
some of our provided implemented methods.

3.2 Boxes

Boxes are more complicated to specify: they
consist of combining an ORS-body with several
ORS-shapes (the individual sides of the box). I
recommend to simply look at the example file
test/relational armani basic/situation box.ors.

4 User’s Guide

There are two important header files in
src/relational/:

• robotManipulationSimulator.h declares the
simulator. It provides methods (i) to query the cur-
rent state of the simulator and (ii) to trigger actions of
the simulated robot. The main actions are grabbing
objects and dropping them above other objects.

• robotManipulationInterface.h provides a
simple high-level interface between the simulator
and symbolic relational representations.

4.1 Simulator Core

At its heart, the simulator uses Marc Toussaint’s
graph-based representation Open Robot Simu-
lator Toolkit (ORS) and approximate inference
for control (AICO) [Toussaint, 2009] to control
the robot. For more information, please take
a look at http://userpage.fu-berlin.de/
mtoussai/source-code/, in particular libAICO,
where you’ll find a guide explaining all this in detail.

The simulator uses unsigned integer variables to iden-
tify objects.

The behavior of the robot is defined in
robotManipulationSimulator. For example, if
we command the robot to grab an object it first puts the
inhand object on the table; if it grabs an object below
some other object, it will fail to grab this object with
40% probability. You may choose to change all these
behaviors according to your own ideas.

The concept of noise may be of particular interest for
you to implement your own ideas of stochastic worlds.
Of course, the simulator by itself is unnoisy and you have
to specify explicitly sources of noise. For example, we
chose as a major source of noise the calculation of a tar-
get location in a puton action (take a look at the method
calcTargetPositionForDrop). We deliberately add
Gaussian noise to the target location. You may want to
define differents sources and/or degrees of noise.

4.2 Symbolic Relational Representations

libARMANI provides the interface
robotManipulationInterface.h to symbolic
relational representations. This interface uses relational
representations as implemented in libPRADA, a library
for model-based relational reinforcement learning. You
can download this library together with a guide from
http://userpage.fu-berlin.de/tlang/prada/.

4.3 Demos

The following demos are provided in test/:

• relational armani basic/:
This example program shows you how
to directly control the simulator via
robotManipulationSimulator.h. Objects
are managed by means of their ids (which are
unsigned integers), which are used to retrieve state
information and to trigger actions.

• relational armani symbolic/:
This example shows you how to use an abstract re-
lational representation to control the robot via the
interface in robotManipulationInterface.h.
This uses the extensive logic machinery (see the var-
ious files in src/relational/) of our experiments
in Lang and Toussaint [2010] which is implemented
in libPRADA. It provides many convenience func-
tions (writing to files, specifying symbols etc.). See
Sec. 4.2.

5 Trouble Shooting

5.1 ODE

Make sure to configure ODE with
--enable-double-precision, which isn’t the
default.

In ors ode.cpp and robotManipulationSimulator.cpp,
you might want to change the following includes

libARMANI – Version 1.0
Autonomous Robot Manipulation SimulatorTobias Lang and Marc Toussaint—June 12, 2012 3

include <ode/../internal /objects.h>
include <ode/../internal / joints / joints .h>
include <ode/../internal / collision kernel .h>
include <ode/../internal / collision transform .h>

to:

include <ode /../../ ode/src/objects.h>
include <ode /../../ ode/src/ joints / joints .h>
include <ode /../../ ode/src/ collision kernel .h>
include <ode /../../ ode/src/ collision transform .h>

You might also want to change the LinuxLibs ODE li-
brary specification appropriately to your needs.

References

Tobias Lang and Marc Toussaint. Planning with noisy
probabilistic relational rules. Journal of Artificial Intelli-
gence Research, 39:1–49, 2010.

Marc Toussaint. Robot trajectory optimization using ap-
proximate inference. In Proc. of the Int. Conf. on Machine
Learning (ICML), 2009.

