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It is a principal open question whether noninvasive imaging methods in humans can decode information
encoded at a spatial scale as fine as the basic functional unit of cortex: cortical columns. We addressed this
question in fivemagnetoencephalography (MEG) experiments by investigating a columnar-level encoded visual
feature: contrast edge orientation.We found thatMEG signals contained orientation-specific information as early
as approximately 50ms after stimulus onset evenwhen controlling for confounds, such as overrepresentation of
particular orientations, stimulus edge interactions, and global form-related signals. Theoretical modeling con-
firmed the plausibility of this empirical result. An essential consequence of our results is that information
encoded in the human brain at the level of cortical columns should in general be accessible bymultivariate anal-
ysis of electrophysiological signals.

© 2015 Elsevier Inc. All rights reserved.
Introduction

The basic format in which the primary visual cortex (V1) represents
the visual world is the orientation of contrast edges (Hubel andWiesel,
1959, 1968). Invasive research in animals and ultrahigh-resolution fMRI
in humans have shown that neurons tuned to a particular edge orienta-
tion cluster in sub-millimeter size columns (Bartfeld and Grinvald,
1992; Vanduffel et al., 2002; Yacoub et al., 2008). Thus, the size of
orientation columns is smaller than the sampling resolution of standard
fMRI (3mm) andmagnetoencephalography (MEG), seemingly raising a
barrier to resolving orientations from brain data obtainedwith standard
noninvasive techniques. However, ten years ago two studies claimed to
have crossed this boundary using standard resolution fMRI (Haynes and
Rees, 2005; Kamitani and Tong, 2005), showing that grating orientation
can be decoded from fMRI activation patterns.

This claim has sparked a debate and has been challenged in at least
two ways (Mannion et al., 2009, 2010; Kriegeskorte et al., 2010;
Freeman et al., 2011, 2013; Alink et al., 2013; Carlson, 2014; Wardle et
al., 2015; Pratte et al., 2014). First, interpretation of fMRI results is con-
founded by the complex relationship between neuronal activity, the
BOLD response, and the voxel-wise sampling of BOLD activity
(Logothetis and Wandell, 2004). For example, modeling voxels as
compact kernels or complex spatiotemporal filters greatly influences
the sampling of columnar level activity (Kriegeskorte et al., 2010), and
tificial Intelligence Laboratory,
thus complicates the interpretation of the spatial scale of the underlying
signal sources.

Second, it has been argued that orientation stimuli used to probe V1
activity might also elicit orientation-specific coarse-scale activation
patterns far above the size of orientation columns. Such coarse-scale
activation patterns might result from a relatively stronger representa-
tion for particular orientations (Pettigrew et al., 1968; Maffei and
Campbell, 1970; Mansfield, 1974; Rose and Blakemore, 1974;
Kennedy and Orban, 1979; Furmanski and Engel, 2000; Li et al., 2003;
Sasaki et al., 2006; Mannion et al., 2009; Freeman et al., 2011, 2013;
Alink et al., 2013), boundary interaction effects between background
and stimulus (Carlson, 2014), and perceptual binding processes
influenced by the global form of the stimulus (Alink et al., 2013).

Here, we circumvent the first challenge by taking an alternative
approach: we used MEG instead of fMRI to resolve orientation from
brain signals. MEG measures direct neuronal activation without the
complex convolution of the BOLD response, and its fine temporal
resolution enables us to dissociate the contribution of early first-pass
visual responses from late processing along the ventral visual pathway
and other feedback signals. To address the second challenge, we used
multiple sets of controlled stimuli to investigate alternative hypotheses
of coarse-scale confounds in orientation decoding. Finally, we conduct-
ed a modeling experiment to examine whether simulated activation
patterns in V1 at the spatial scale of orientation columns are discrimina-
ble from modeled MEG signals.

We found that MEG signals contained orientation-specific informa-
tion even when controlling for known stimulus-induced coarse-scale
activation confounds. Modeling demonstrated the theoretical feasibility
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of discriminating cortical activation patterns that differ at the spatial
scale of cortical columns. Together, assuming that all coarse scale
confounds have been properly controlled, our results indicate that
orientation encoding in humans at the level of cortical columns is
directly accessible to experimental investigation using noninvasive
electrophysiological methods. This suggests that other information
encoded in the human brain in fine-grained distributed activation
patterns is accessible by multivariate analysis of electrophysiological
data.

Materials and methods

Participants

Experiments 1 to 5 included 12, 13, 16, 12, and 12 right-handed,
healthy volunteers with normal or corrected-to-normal vision, respec-
tively. Some subjects participated in more than one experiment, with
the overall population being 20 males and 25 females, with mean
age ± s.d. = 23.68 ± 4.55. The study was conducted according to the
Declaration of Helsinki and approved by the local ethics committee at
Massachusetts Institute of Technology.

Experimental design and stimulus material

The stimulus sets comprised diverse visual stimuli differing in local
orientation and overlaid on a uniform gray background, such that
stimuli and background were of equal mean luminance. All stimuli
were created by in-house scripts usingMatlab (2014a, TheMathWorks,
Natwick, MA, USA). For experiments 1–3 and 5 stimuli were presented
in an annulus with an outer radius of 10° and an inner radius of 1°. The
inner radius served to prevent interaction effects between the orienta-
tion contrast edges and a fixation cross presented at the center of the
stimulus during the experiments. For experiment 4 the annulus was
deformed into an ellipse.

The aim of experiment 1 was to establish whether edge orientation
was discriminated by visual representations independent of cardinal
bias, i.e., coarse-scale neuronal responses preferential to 0° vertical
and 90° horizontal orientations. For this, we created sinusoidally modu-
lated Cartesian gratings of +45° and −45° orientations, and thus
equidistant from the two cardinal orientations (Fig. 1A). Such oblique
stimuli remove potential overrepresentations caused by uneven
proximity to the cardinal directions. Additionally, each of the two
Fig. 1. Orientation decoding of oblique gratings. A) The stimulus set comprised oblique gratin
phase shift. B) Time course of orientation decoding in 3 cases: the classifier training and testin
orientation was robustly decoded in all analyses (also see Table 1A). There was no evidence for
Gray vertical line indicates stimulus onset. Lines below plots indicate significant time points, c
cluster threshold).
oblique gratings was created in two exemplars with a half cycle phase
shift to 1) allow investigation of phase representations, and 2) ensure
any identified orientation representations are not confounded by local
luminance differences due to a particular choice of phase (Ramkumar
et al., 2013). Cartesian gratings had a frequency of 2 cycles per degree
visual angle, following previous experiments that found decodable
patterns in fMRI brain responses (Yacoub et al., 2008; Haynes and
Rees, 2005).

The aim of experiment 2 was to investigate the representation of
local edge orientation for finer orientation differences, and to estimate
the strength of the cardinal bias. The stimulus set was designed as in
experiment 1 except with a finer range of orientation differences in
30° steps from 0–150° (Fig. 2A). This allowed comparison of brain
responses to gratings differing by as little as 30°, and comparison of
brain responses to cardinal (0°, 90°) and oblique (30°, 60°, 120°, 150°)
orientations directly.

The aim of experiment 3 was to address the role of radial bias in
orientation representation, i.e., the coarse-scale overrepresentation of
orientations parallel to a line through the center of fixation. For this,
we used logarithmic spirals construed such that their edges were at an
angle +45° (turning direction clockwise) or −45° (turning direction
anti-clockwise) relative to a line through the center of the stimulus
(the radial line) at any position in the stimulus, resulting in a local orien-
tation disparity of 90° (Fig. 3A).While beingmaximally different in local
orientation, both spirals had orientation equidistant from the radial line,
thus controlling the radial bias. The logarithmic spirals had 20 contrast
cycles and were constructed in two phase exemplars with a half cycle
phase shift following the reasoning of experiment 1.

The aim of experiment 4 was to investigate the representation of
edge orientation independent of boundary interaction effects between
background and stimulus. A perfect ice-cube model of V1, thus without
bias for any orientation, can still produce outputs differing in coarse
scale for different orientations (Carlson, 2014): The representation of a
perfectly circular grating is in fact an ellipse elongated in the direction
of the grating and compressed in the orthogonal direction. Thus,
differences in brain responses to different orientations might be
explained by coarse-scale differences in the location of those edge ef-
fects. To counteract this edge-related effect, we created stimuli whose
annulus was deformed into ellipsoidal shapes in the opposite direction
to the one predicted by the ice-cube model. In detail, we compressed
the annulus in the orientation of the grating and elongated it in the
orthogonal direction. Deformations were 2, 5, 10 and 20% of the radius
gs tilted right or left (orientation +/−45°) with two phase exemplars having a half cycle
g sets comprised grating stimuli of the same phase, different phase, or any phase. Grating
the representation of phase (classifier training and testing sets had the same orientation).
olor-coded as in decoding curves (N = 12; p b 0.05 cluster definition threshold, p b 0.05



Fig. 2.Orientation decodingof cardinal and obliquegratings. A) The stimulus set comprisedCartesiangratingswith orientation 0° to 150° in steps of 30°, and had twophase exemplarswith
a half cycle phase shift (not shown), as in experiment 1. Pair-wise classifications were grouped by 1) orientation angle disparity Δθ (30°, 60° and 90°, color-coded in red, green and blue,
respectively), and 2) the presence of at least one cardinal (C) or only oblique (O) orientations. B) Time-resolved orientation decoding for eachΔθ (solid lines, left y-axis), and difference in
orientation decoding between cardinal minus oblique cases for eachΔθ (dotted line, right y-axis). Orientationwas robustly decoded for all angle disparities (also see Table 1B). There was
no evidence for stronger decoding of cardinal over oblique orientations. Gray vertical line and lines below plots same as in Fig. 1 (N = 16, p b 0.05 cluster definition threshold, p b 0.05
cluster threshold).
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of the annulus. Instead of 2 phase exemplars, we completely random-
ized phase for each trial because we found no phase effect in experi-
ments 1–3.

The aim of experiment 5 was to investigate the representation of
edge orientation independent of differences in global shape, i.e., the per-
ception of grating patterns as a rotated coherent object. For this, we
introduced patch-swapped variants for both gratings and spirals in
addition to the original intact stimuli from experiments 1 and 3.
Patch-swapped stimuli preserved the 90° disparity of the original intact
stimuli (Fig. 5A,B), but were perceptually more similar to each other
than intact stimuli as assessed psychophysically by Alink et al. (2013).
To achieve this, stimuli were subdivided in patches using a polar check-
erboard array defined by equi-length arcs in each of 4 concentric circles
(1°, 2.5°, 5°, 10°). We then swapped half (non-adjacent) patches
between opposing stimuli (+45° vs. −45° gratings, or clockwise vs.
counter-clockwise spirals). Each stimulus created in this way had two
exemplars with a half cycle phase shift. To control for the additional
edges introduced by patch-swapping, lines of background color covered
the patch edges for all stimuli.
Fig. 3. Orientation decoding of radially balanced stimuli. A) The stimulus set comprised four ex
phase shift in phase. At any point, the stimuli of opposingdirectionswere orthogonal to each oth
was 45° (+/− for the different directions), thus balancing the radial component. B) Time cour
grating stimuli of the same phase, different phase, or any phase. Spiral direction (orientation)w
representation of phase (classifier training and testing sets had the same orientation). Gray verti
p b 0.05 cluster threshold).
Protocol

Visual stimuliwere presented using Psychtoolbox (www.psychtoolbox.
org) (Brainard, 1997). Stimuli appeared in random order for 0.1 s, with an
ISI of 0.9–1.1 s. Participantswere instructed tofixate on a centrally present-
ed red fixation cross, and press a button and blink their eyes in response to
a target image (displaying concentric circles) shown every 3–5 trials, to
maintain attention and avoid contamination of experimental conditions
with eye blink artifacts. Target image trials were not included in further
analysis. The order of stimulus conditions was randomized.

Experiment 1 had 4 conditions (grating stimuli +45°/−45°, in 2
exemplar phases). Experiment 2 had 12 conditions (grating stimuli 0°
to 150° in 30° steps, in 2 exemplar phases). Experiment 3 had 4
conditions (logarithmic spirals clockwise/anti-clockwise, in 2 exemplar
phases). Experiment 4 had 10 conditions (grating stimuli, +45°/−45°,
oneoriginal and 4 deformations to ellipsoidal shape)with each stimulus
having randomized phase per trial. Experiment 5 had 8 conditions
(grating stimuli +45°/−45° and spiral stimuli clockwise/anti-
clockwise, original and patch-swapped versions).
ponential spirals in two opposing directions and two phase exemplars having a half cycle
er (90° disparity). Importantly, at any point thedisparity of spiral orientation to a radial line
se of orientation decoding in three cases: the classifier training and testing sets comprised
as robustly decoded in all analyses (for details see Table 1C). Therewas no evidence for the
cal line and lines belowplots same as in Fig. 1 (N=13, p b 0.05 cluster definition threshold,

http://www.psychtoolbox.org
http://www.psychtoolbox.org
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In each experiment, participants completed 15 runs, each lasting
216, 255, 216, 208, and 307 s for experiments 1–5, respectively. Each
experimental condition was presented 33 (Exp. 1, 2) or 13 (Exp. 3, 4,
5) times in each MEG run.

Human MEG recording

MEG signalswere recorded from306 channels (204planar gradiom-
eters, 102 magnetometers, Elekta Neuromag TRIUX, Elekta, Stockholm)
at a sampling rate of 1000 Hz and band-pass filtered between 0.03 and
330 Hz. The location of the head was continuously measured through-
out the recording session by activating a set of 5 head position indicator
coils placed over the head. Raw data was pre-processed with the
Maxfilter software (Elekta, Stockholm) to compensate for head move-
ments and perform noise reduction with spatiotemporal filters (Taulu
et al., 2004; Taulu and Simola, 2006). We used default parameters
(harmonic expansion origin in head frame = [0 0 40] mm; expansion
limit for internal multipole base = 8; expansion limit for external
multipole base = 3; bad channels automatically excluded from
harmonic expansions = 7 s.d. above average; temporal correlation
limit=0.98; buffer length=10 s). Intuitively, the software first applied
a spatial filter that separated the signal data from spatial patterns
emanating from distant noise sources outside the sensor helmet. It
then applied a temporal filter that discarded components of the signal
data with time series strongly correlated with the ones from the noise
data. The resulting filtered data were subsequently analyzed with
Brainstorm (Tadel et al., 2011). We extracted peri-stimulus MEG data
from −100 to +900 ms with respect to each stimulus onset, and for
every trialwe removed the baseline (−100 to 0ms)meanof each chan-
nel, normalized with the baseline standard deviation, and temporally
smoothed with a 20 ms sliding window.

Multivariate pattern classification on MEG data

To determine the time course with which MEG signals distinguish
between experimental conditions, data was subjected to multivariate
pattern classification analyses using linear support vector machine
(SVM) classifiers (libsvm implementation, www.csie.ntu.edu.tw/
~cjlin/libsvm, Müller et al., 2001). All analyses shared a common frame-
work: For each time point t (from 100 ms before to 900 ms after image
onset with 1 ms step), single-trial MEG data were arranged in 306
dimensional pattern vectors, representing the activity in the 306 MEG
sensors. To reduce computational load and improve SNR, single-trial
MEG vectors were sub-averaged in groups of 40 with random assign-
ment, yieldingM averaged trials per time point and condition (Mvaried
per experiment and type of decoding). We then measured the perfor-
mance of the SVM classifier to discriminate between every pair of
conditions using a leave-one-out approach:M-1 vectors were randomly
assigned to the training test, and the left-out vector to the testing set to
evaluate the classifier decoding accuracy. The above procedures were
repeated 100 times, each with random assignment of the raw pattern
vectors toM averaged pattern vectors, and the resulting decoding accu-
racy was averaged over repetitions. This produced a single decoding
accuracy value for each pair of conditions and each time point t.

In detail, we conducted 5 different classification analyses.

Classification of orientation (same phase)
Training and testing sets had trials with same phase. First, the SVM

classifier was trained to distinguish orientation based on trials of one
stimulus phase, and tested with left-out trials with the same stimulus
phase. Then, the analysis was repeated for the other phase and results
were averaged.

Classification of orientation (different phase)
Training and testing sets had trials with different phase. First, the

SVM classifier was trained to distinguish orientation with trials
associated with one stimulus phase, and tested for the other. Then, the
analysiswas repeated for the opposite arrangement of phase and results
were averaged. Trainingwas performed using the sameM-1 trials as the
same phase condition to allow a direct comparison.

Classification of orientation (any phase)
Training and testing sets had trials with any phase. Trials with the

same orientation but 2 phase exemplars were combined, resulting in
conditions with twice as many trials. The SVM classifier was trained to
distinguish orientation following the previously described M-1 leave-
one-out approach, but with twice greater M, and thus improved signal
to noise ratio.

Classification of phase (same orientation)
Similar to classification of orientation (same phase), but with oppo-

site role for the two stimuli properties.

Classification of orientation with different stimuli shapes
Training set had trials with grating stimuli of circular shape. Testing

set had trials with the same grating stimuli of circular shape, or de-
formed grating stimuli of elliptical shape (with different amount of de-
formation from a circle). The SVM classifier was trained to distinguish
orientation based on trials of the original grating stimuli, and tested
for trials with the original or deformed stimuli. Phase was randomized
per trial for these stimuli and was irrelevant for the classification
procedure.

Modeling and classifyingMEG signals resulting fromV1 random patterns at
the spatial scale of cortical columns

To simulate columnar-level MEG signals in human, we extracted the
V1 cortical surface of a subject using Freesurfer automatic segmentation
(Dale et al., 1999) (Fig. 6A). The triangulated surface had an average
node distance of 880 μm (std = 279 μm), comparable to the diameter
of orientation columns in human (Yacoub et al., 2008). Each node
represented the center of a cortical column and was assigned random
electrical activity sampled from a uniform distribution in the range of
0 and 1. The columnar-level simulated V1 activity was then mapped
to 306 MEG sensors using a single sphere head model in Brainstorm
(Tadel et al., 2011) (Fig. 6B).

Tomatch the simulatedMEG patterns in scale to an empirically real-
istic value of mean peak-to-peak strength of 978 femtoTesla (fT) as
observed in experiment 1 (across-subject average of maximal trial-
averaged evoked responses to grating stimuli), we scaled V1 pattern
activity appropriately. This yielded V1 activation patterns in the range
of 0 to 0.16 nano-Ampere-meter (nA-m) per simulated column. This is
a physiologically plausible value, below the maximum current dipole
of 18nA-mper orientation column theV1 cortex can support, as derived
from empirical and modeling studies. In particular, the basic unit of the
neocortex is theminicolumn,with the primary visual cortex ofmacaque
monkey having a density of approximately 1270 microcolumns per
mm2, and each microcolumn containing approximately 142 pyramidal
cells (Jones, 2000). An orientation column in human, comprising several
microcolumns, is about 800 μm in diameter (Yacoub et al., 2008), and
assuming the same cell density as the macaque monkey, it should
contain approximately 90,000 pyramidal cells. Computational models
(Murakami and Okada, 2006) and CA1 hippocampal pyramidal neuron
measurements (Kyuhou and Okada, 1993) estimated the electrical
activity of pyramidal neurons in the order of 0.2 pico-Ampere-meter
per cell. This suggests a maximum current dipole of 18 nA-m per orien-
tation column if all neurons activated synchronously and had dendrites
parallel one another. Thus, the estimated maximum of 0.16 nA-m per
orientation columns is far below the expected electrophysiological
maximum and can account for asynchronous neuronal firing, silent
neurons, non-aligned dendrites, and other factors that would reduce
the current dipole strength.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
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We estimated empirical noise from single trial baseline MEG data
from experiment 1 (average s.d. across subjects: 243 fT for magnetom-
eters, 56.65 fT/cm for gradiometers). Addingnoise at this level produced
simulated MEG sensor patterns with signal-to-noise ratio (SNR) of
−4 dB. To further explore a wide range of noise conditions, we added
noise at different levels, ranging from−44 to 16 dB.

For every noise level, we evaluated whether simulated V1 activation
patterns were discriminated by noisy MEG sensor patterns. We ran a
multivariate analysis equivalent to the ‘any phase’ classification analysis
of experiment 1. For this, we simulated 500 pairs of random V1 activa-
tion patterns. For every pair, we created 960 noisy trials of MEG sensor
level patterns for each V1 pattern. We sub-averaged simulated raw tri-
als in groups of 40, and classified V1 patterns from averaged simulated
MEG patterns. We repeated this process 100 times for random ascrip-
tions of raw to averaged trials. Results (percent decoding accuracy)
were averaged across the 100 iterations and the 500 random V1 activa-
tion patterns, yielding one decoding accuracy value for each noise level.

Statistical analysis

We used permutation tests for cluster-size inference, and bootstrap
tests to determine confidence intervals for onset and peak latency of
significant clusters (Nichols and Holmes, 2002; Pantazis et al., 2005;
Maris and Oostenveld, 2007). Permutation tests exchanged the data
labels (for example +45° vs. −45° grating orientation) randomly for
each participant to determine significant time points of classification
accuracy (10,000 permutation samples, cluster-definition threshold
p b 0.05, cluster threshold p b 0.05). Bootstrap tests sampled with
replacement (1000 samples) the participant pool to estimate the distri-
bution of onset and peak latency of significant clusters and derive 95%
confidence intervals.

Results

Experiment 1: edge orientation in Cartesian gratings is decodable fromMEG
signals

The aim of experiment 1 was to establish whether edge orientation
of Cartesian gratings is discriminated by visual representations
measured with MEG. Previous studies have reported that cardinal ori-
entations (i.e., 0 and 90°) were encoded differently from other orienta-
tions, either by a larger cell population (Pettigrew et al., 1968; Maffei
and Campbell, 1970; Mansfield, 1974) or with sharper tuning curves
(Rose and Blakemore, 1974; Kennedy and Orban, 1979). Thus, compar-
ing brain responses to different cardinal orientations, or orientations of
unequal angular disparity from cardinal orientations, might result in
coarse-scale activation difference favoring cardinal orientations (cardi-
nal bias). To avoid the coarse-scale cardinal bias, we used oblique
gratings (+/−45°) whose orientation is equidistant from cardinal
orientations (0/90°). These stimuli removed any bias due to uneven
proximity to the two cardinal orientations, and thus excluded coarse-
scale effects of cardinal orientations as a necessary condition for
orientation decoding. We recorded MEG signals from 306 channels
while 12 participants viewed a sequence of static Cartesian gratings
(stimulus duration 100 ms) in random succession (Fig. 1A). Gratings
had two phase exemplars with a half cycle phase shift.

We extracted and preprocessed peri-stimulusMEG data from−100
to +900 ms (1 ms resolution) with respect to stimulus onset. We then
used time-resolved multivariate pattern classification to decode the
orientation of grating stimuli from MEG activation patterns. For each
time point, MEG data were divided into training and testing sets, and
the classifier (a linear support vector machine) learned to infer the
orientation of grating stimuli from the training set. Decoding accuracy
then quantified the performance of the classifier to predict the orienta-
tion of grating stimuli in the testing set. We determined statistical
significance by non-parametric sign-permutation tests, and cluster-
size inference for multiple comparison corrections (cluster-definition
threshold p b 0.05, cluster threshold p b 0.05). Onset and peak latency
of decoding time series are reported with 95% confidence intervals in
brackets.

Restricting the training and testing sets to include grating stimuli of
same phase, we found that MEG signals contained information about
grating orientation starting at 53 ms after stimulus onset (95% confi-
dence interval 50–61 ms), with a peak at 103 ms (91–153 ms). In
contrast, an analogous decoding procedure for phase, with training
and testing sets comprising grating stimuli of same orientation, did
not reveal any phase information (Fig. 1B).

In the above analysis, grating stimuli that differed in orientation also
consistently differed in local luminance because the phase was kept the
same. Thus, orientation decoding may be due to local luminance differ-
ences rather than orientation. To determinewhether grating orientation
can be discriminated by visual representations independent of local
luminance, we conducted a cross-classification analysis, forcing an
assignment of opposite (half a cycle different) phases to the training
and testing sets. In this analysis local luminance carries no information
about orientation. We found that MEG signals resolved grating orienta-
tion independent of phase starting at 51 ms (46–55ms), with a peak at
102 ms (89–165 ms), confirming that our results cannot be explained
by local luminance differences.

Finally, we dropped phase information and assigned all grating
stimuli to training and testing sets irrespective of phase. Such an
approach affords higher signal-to-noise ratio by doubling the number
of available images for the training and testing sets.We found that over-
all classification performance improved slightly, as expected due to the
increased data size, with an onset at 48 ms (34–52 ms) and a peak at
102 ms (92–157 ms).

In sum, we found that grating orientation was linearly decodable
close to ceiling performance independent of phase for oblique
(+/−45°) stimuli. We showed the time course with which orientation
information is encoded by the visual brain (Garcia et al., 2013;
Ramkumar et al., 2013), and excluded the coarse-scale effects of
cardinal orientations as a necessary condition for orientation decoding.

Experiment 2: edge orientation is decodable fromMEG signals equally well
for cardinal and oblique gratings

Experiment 1 showed that coarse-scale activation differences
through stimuli of cardinal orientations are not necessary for orienta-
tion decoding. However, it did not address the potential contribution
of coarse-scale effects when cardinal orientations are being decoded. If
cardinal orientations are encoded differently, this could result in MEG
patterns favoring classification of cardinal orientations.

In experiment 2, Cartesian gratings with two cardinal angles
(horizontal 0° and vertical 90°) and four oblique angles (30°, 60°,
120°, and 150°) were presented to 16 participants. We performed
time-resolved orientation decoding across all possible pairs of gratings
(Fig. 2A).

We first determined whether MEG data allows discrimination of
grating orientations different by less than 90° for any phase. We found
that orientation differences even as low as 30° were decodable (solid
lines in Fig. 2B; onset and peak latency in Table 1B). We then compared
classification performance for the cases when decoding involved
oblique gratings only, versus at least one grating with cardinal orienta-
tion (denoted ‘o’ and ‘c’ in Fig. 2A respectively). By subtracting decoding
accuracy of oblique from cardinal cases, we found no evidence for
differential encoding between oblique and cardinal orientations
(Fig. 2B, dotted lines, right y-axis). Note that equivalent results were
obtained in a cross-classification analysis by assigning opposite phases
to the training and testing sets (Table 1B).

In sum, the results of experiment 2 complemented the ones of
experiment 1 in two ways. First, they showed that MEG signals can
discriminate orientations at least as low as 30° apart. Second, by failing



Table 1
Onset and peak latencies of first significant cluster in experiments 1–5.
Values are means across participants and 95% confidence intervals in brackets as
determined by bootstrapping the participant pool (1000 times).

Decoding analysis Onset
latency
(ms)

Peak latency
(ms)

A) Experiment 1
Grating orientation (same phase) 53 (50–61) 103 (91–153)
Grating phase (same orientation) – –
Grating orientation (different phase) 51 (46–55) 102 (89–165)
Grating orientation (any phase) 48 (34–52) 102 (92–157)

B) Experiment 2
Grating orientation at 30° disparity (any phase) 52 (44–55) 99 (82–158)
Grating orientation at 60° disparity (any phase) 52 (45–55) 89 (84–149)
Grating orientation at 90° disparity (any phase) 48 (42–54) 112 (88–156)
Grating orientation at 30° disparity (different
phase)

60 (54–65) 90 (70–156)

Grating orientation at 60° disparity (different
phase)

56 (49–62) 93 (82–152)

Grating orientation at 90° disparity (different
phase)

57 (52–59) 104 (82–152)

C) Experiment 3
Spiral orientation (same phase) 57 (52–59) 225 (80–230)
Spiral phase (same orientation)
Spiral orientation (different phase) 54 (48–56) 139 (82–224)
Spiral orientation (any phase) 53 (49–56) 225 (82–230)

D) Experiment 4
Grating orientation (circular annulus) 52 (39–134) 154 (98–158)
Grating orientation
(across circular and ellipsoidal annulus (2%))

73 (69–74) 154 (87–161)

Grating orientation
(across circular and ellipsoidal annulus (5%))

50 (44–73) 155 (86–158)

Grating orientation
(across circular and ellipsoidal annulus (10%))

73 (71–124) 158 (96–160)

Grating orientation
(across circular and ellipsoidal annulus (20%))

112
(90–135)

140
(115–204)

E) Experiment 5
Orientation of intact gratings 69 (52–88) 142

(132–155)
Orientation of patch-swapped gratings 142

(72–641)
145 (78–746)

Orientation of intact spirals 72 (60–126) 139 (76–143)
Orientation of patch-swapped spirals 83 (75–234) 110

(109–235)
Difference between intact and patch-swapped
gratings

95 (80–117) 133
(116–141)

Difference between intact and patch-swapped
spirals

– 76 (87–699)
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to provide evidence for differential encoding of cardinal and oblique
orientations, they suggest that even for cardinal orientations the role
of the cardinal bias in decoding orientation is small, if any.

Experiment 3: edge orientation in radially balanced logarithmic spirals is
decodable from MEG signals

Experiment 3 was designed to address a second potential
orientation-specific coarse-scale bias: the radial bias. The radial bias is
the differential representation of orientations collinear with a line
through the point of fixation (radial line) (Sasaki et al., 2006;
Mannion et al., 2009; Freeman et al., 2011; Alink et al., 2013). For exam-
ple, in the above experiments oblique +45° gratings might more
strongly activate cortical regions representing the upper right and
lower left rather than the upper left and lower right quadrants of the
visual field. Oblique−45° gratings would have an opposite bias.

To control for radial bias, we presented participants with radially
balanced logarithmic spirals (Mannion et al., 2009) turning in two
opposing directions (Fig. 3A). The stimuli were designed such that at
any point spirals of opposing direction are oriented orthogonal to each
other, just as Cartesian gratings of 90° disparity. Note that the disparity
of exponential spirals with respect to a radial line is exactly 45° (+or−
depending on the turning direction), thus balancing the radial compo-
nent of the stimulus.

We conductedmultivariate pattern classification as in experiment 1,
by restricting the training and testing sets to have grating stimuli of
same phase, different phase, or any phase. Results were similar as
above: robust decoding of orientation in all analyses, and no evidence
for decoding of phase (Fig. 3B; Table 1C).

In sum, experiment 3 showed that the orientation of radially
balanced stimuli was robustly discriminated by visual representations,
excluding a coarse-scale retinotopic bias as a likely source of orientation
signals observed with MEG.

Experiment 4: edge orientation is decodable fromMEG signals independent
of grating shape and thus stimulus edge effects

Grating stimuli are spatially limited with annulus boundaries that
induce edge effects dependent on the orientation of the stimulus. In
particular, a perfect ice-cube model of primary visual cortex (Hubel
and Wiesel, 1959, 1968) with no bias in the number of neurons
representing different orientations can still account for orientation
decoding (Carlson, 2014). This is because the representation of an
exact circular grating is in fact an ellipse elongated in the direction of
the grating, and compressed in the orthogonal direction. Thus, signals
differentiating the orientation of stimuli might actually originate from
the differential location of those edge effects. To evaluate the influence
of such edge effects, we created a stimulus set of Cartesian gratings
shaped as ellipses elongated in the direction opposite to the onepredict-
ed by the model (Fig. 4A). If the model prediction is valid, training a
classifier to discriminate orientation in circular and testing on ellipsoidal
gratings should significantly compromise the classifier performance. If
however the source of orientation signals in MEG is independent of
edge effects, the classifier should correctly predict the orientation
even for heavily distorted grating shapes.

Based on our modeling simulations (Fig. 4A–D), grating stimuli
distorted above ~2% should result in opposite orientation decoding if
the model accurately predicts V1 decoding. Therefore, our stimulus set
consisted of phase-randomized gratings of +/−45° orientation in
shapes ranging from perfect circles to ellipses of 2, 5, 10 and 20% distor-
tion (Fig. 4A).We then trained a classifier to distinguish orientations for
circular gratings, and tested on ellipsoidal gratings (Fig. 4E, Table 1D).
Training and testing on circular gratings provided a baseline control.
We observed that even very strong deformations of the annulus by as
much as 20% of the radius did not compromise robust orientation
classification, countering the prediction of the perfect ice-cube model.
These results indicate that coarse-scale edge effects as predicted by
the ice-cube model are not necessary for robust orientation decoding,
and that orientation signals can be robustly read out from MEG data
independent of the overall shape of the stimulus.

Experiment 5: edge orientation in stimuli with similar global form is
decodable from MEG signals

Gratings and spirals are coherent stimuli that differ not only in local
orientation, but also in global form. For example, an intact grating
at +/−45° may look like a coherent object rotated to the left or right,
eliciting global form related signals at a coarse-scale level (Alink et al.,
2013). To dissociate local orientation from global form, it is necessary
to compare brain responses to stimuli that differ in local orientation
but not in perceived global form. Such stimuli can be created by
patch-swapping intact stimuli (gratings or spirals) in non-adjacent
regions defined by a polar checkerboard array, as in (Alink et al.,
2013) (Fig. 5A). As evaluated previously by psychophysics, patch-
swapped gratings are judged to be perceptually more similar than
their intact counterparts, while physically differing in orientation at
any point of the stimulus equally strongly.



Fig. 4. Orientation decoding of gratings with different shape outlines. A) The stimulus set comprised gratings +/−45° (here shown−45°). The type of stimulus shape outline (circle or
ellipse with an arrow denoting the major axis) is indicated with a sketch below each stimulus. B) Ice cubemodel output for the above experimental stimuli. The ice cubemodel produced
outputs with subtle edge artifacts: elongation in the direction of the grating, and compression in the orthogonal direction. As a result, stimuli with a shape outline of a circle produced a
model output with a shape outline of an ellipse. C) Experimental approach to evaluate the influence of edge artifacts on orientation decoding. A classifier is trained to distinguish orien-
tation based on grating stimuli of a circular outline shape (but ellipsoidal model outline shape), and tested on grating stimuli with an ellipsoidal outline shape. If the model output is
relevant in decoding (deformation by edge effects), the classifier will have poor performance because the shape of model output conflicts with orientations. D) Decoding results based
on simulations of the ice-cube model output. We found that for shape deformations of 2% or more, the classifier predicted orientation incorrectly. Thus, if the ice cube model is correct
and if edge effects determine empirical orientation decoding of gratings, classification of orientation from MEG data across grating shapes should result in near 0 decoding accuracies.
In contrast, high decoding accuracies would indicate that local orientation is the relevant factor, and edge artifacts are unlikely to explain orientation decoding from MEG data.
E) Classification of MEG responses indicated neural representations robust even to large changes in grating outline shape. Gray vertical line and lines above plots same as in Fig. 1
(N= 12, p b 0.05 cluster definition threshold, p b 0.05 cluster threshold).
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Experiment 5 presented intact and patch-swapped gratings and
spirals to 12 participants (Fig. 5A). Stimuli were the same as in experi-
ments 1 and 3, and their patch-swapped variants. To control for the
additional edges introduced by the swapping, lines of background
color covered the patch edges for all stimuli. Classifiers were trained
to discriminate orientation of all stimuli irrespective of phase (any
phase, Fig. 5C).

Corroborating experiments 1–4, we found that MEG signals
contained information about

of intact gratings and spirals (Fig. 5C, black curves, solid for spi-
rals, dotted for gratings; for details on onsets of significance and
peaks see Table 1E). Crucially, MEG signals contained information
about patch-swapped variants of spirals and gratings as well
(Fig. 5C, gray curves, solid for spirals, dotted for gratings). This indi-
cates that global form differences are not necessary for decoding of
orientation from MEG signals.

Comparing decoding accuracy of patch-swappedwith intact stimuli,
we found a significant decrease for gratings with an onset at 95ms (80–
117 ms) and a peak at 133 ms (116–141 ms), but no difference for
spirals (Fig. 5D, black curve for gratings, gray for spirals; for details see
Table 1E).

In sum, these results indicate that global form influences orientation
encoding in cortex, but is not necessary for orientation decoding. They
further reveal the time at which global form first influences orientation
encoding for grating stimuli.

Experiment 6: simulated neuronal activation patterns at a spatial scale
comparable to orientation columns are decodable from modeled MEG
signals under realistic noise conditions

We conducted a simulation experiment to test whether the physics
of MEG can support the conjecture that orientation information may
originate from V1 cortical patterns at the spatial scale of orientation
columns. MEG has a coarse spatial resolution, which is highly non-
uniform and in the order of several millimeters on the visual cortex
(Hämäläinen et al., 1993; Darvas et al., 2004). The elemental model
sources of MEG signals are current dipoles oriented normally to the
cortex and neighboring current dipoles are too close to be resolved if
they are parallel to one another. However, due to the highly convoluted
nature of the cortical manifold, neighboring current dipoles are rotated
in space thus producing distinct magnetic fields (Hari et al., 1996). Two
activation patterns on cortex that differ on the scale of orientation
columns would therefore give rise to different magnetic field topogra-
phies outside the head. Orientation information represented on the
scale of orientation columns might as a result be resolvable with multi-
variate MEG methods given the complex folding pattern of cortex.

To test this hypothesis, we evaluated whether simulated random
activation patterns in V1, differing at the spatial scale of columns,
could be discriminated by the corresponding MEG sensor patterns
when signal strength and noise were equated to empirically measured
data. The simulation was based on a triangulated surface of the V1 cor-
tical sheet with an average node distance of 880 μm (s.d. = 279 μm),
comparable to the diameter of orientation columns in human (Yacoub
et al., 2008) (Fig. 6A). We generated neuronal activation patterns on
the V1 surface by assigning random activation values to each node
(Fig. 6B), and then computed the corresponding MEG sensor level
signals by forward modeling. These simulated MEG measurements
had overall similar topographies, but with weak differences
(Fig. 6B,C). The data was scaled to match the range of measured data,
and sensor-level Gaussian noise was then added at various signal-to-
noise ratios (SNRs).

We used multivariate pattern classification to discriminate different
V1 activation patterns from the noisy instantiations of MEG sensor
signals. We found that simulated V1 patterns were discriminated with
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96.1% accuracy from MEG sensor patterns when adding sensor-level
noise at the same SNR level as the experimental data (Fig. 6D). For
lower SNR levels, decoding accuracy declined gradually.

These modeling results demonstrate the theoretical feasibility of
discriminating activation patterns in V1, differing at the spatial scale of
cortical columns, from MEG signals.
Discussion

We investigated the bound on the spatial scale of neuronal
activation patterns from which information can be decoded from MEG
signals. Our analysis focused on decoding of contrast edge orientation,
a visual feature known to be encoded in fine-scale neuronal activation
patterns in V1. In five empirical experimentswe found thatMEG signals
contained orientation information even when controlling for factors
known to induce coarse-scale activation in V1, such as overrepresenta-
tion of particular orientations, boundary interaction effects between
background and stimulus, and global form-related signals. Theoretical
modeling demonstrated the feasibility of discriminating signals at the
spatial scale of orientation columns from MEG data under realistic
noise conditions. Taken together, under the assumption that no other
unknown coarse-scale activation confound existed in our experimental
stimuli, our results show that neural signals at the level of cortical orien-
tation columns are accessible by electrophysiological measurements in
humans, and likely subserve orientation decoding. This result has
wide implications for the interpretation of studies using MEG and
multivariate pattern classification, suggesting that any type of informa-
tion encoded in the human brain at the level of cortical columns should
be accessible by MEG.
Fig. 5. Influence of global form on orientation encoding. A,B) The stimulus set comprised obliqu
periment 3) in both intact and patch-swapped forms. Whereas intact stimuli differed both in l
C) Time course of orientation decoding for intact and patch-swapped gratings and spirals. O
Table 1E). D) Comparison of classification between intact and patch-swapped stimuli. Gray vert
old, p b 0.05 cluster threshold).
Non-invasive electrophysiological signals in humans carry information
about orientation

Most recent studies investigating orientation encoding in the human
brain have used fMRI (Haynes and Rees, 2005; Kamitani and Tong,
2005; Mannion et al., 2009, 2010; Kriegeskorte et al., 2010; Freeman
et al., 2011, 2013; Alink et al., 2013; Carlson, 2014; Wardle et al.,
2015; Pratte et al., 2014), and only a few studies used non-invasive
electrophysiological methods (Campbell and Maffei, 1970; Duncan
et al., 2010; Koelewijn et al., 2011; Garcia et al., 2013). However, using
an electrophysiological method such as MEG offers new insights not
possible with fMRI. MEG is not confounded by interpretative complica-
tions posed by the complex relationship between neural activity, BOLD
contrast, and voxel sampling (Haynes and Rees, 2005; Kamitani and
Tong, 2005; Mannion et al., 2009, 2010; Kriegeskorte et al., 2010;
Freeman et al., 2011, 2013; Alink et al., 2013; Carlson, 2014; Wardle et
al., 2015; Pratte et al., 2014). Importantly, it allows resolving the
precise timing of orientation encoding in the order of milliseconds,
impossible with fMRI due to the sluggishness of the BOLD response.
This allows timing-based dissociation of first-pass responses in early
visual regions from possibly more distributed responses that may
involve feedback information. Our study decoded orientation directly
from neural activity in millisecond resolution.

Previous electrophysiological studies investigating orientation
decoding used adaptation (Campbell and Maffei, 1970) or decoding in
frequency space (Duncan et al., 2010; Koelewijn et al., 2011; Garcia
et al., 2013), providing a temporal resolution of 25 ms at best. Recently,
a study employed multivariate pattern classification to resolve the time
course of orientation encoding of Cartesian gratings in millisecond
resolution (Ramkumar et al., 2013). Our experiments build upon those
e gratings (same as experiment 1) and radially balanced exponential spirals (same as ex-
ocal orientation and global form, patch-swapped stimuli differed only in local orientation.
rientation was discriminated by visual representations in all conditions (for details see
ical lines and lines below plots same as in Fig. 1 (N= 12, p b 0.05 cluster definition thresh-
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studies by clarifying the nature of the sources of orientation-selective
signals in noninvasive electrophysiological methods. By controlling for
possible stimulus confounds that could induce coarse-scale activation
patterns in V1, our results indicate that orientation information in
MEG signals originates from the spatial scale of cortical columns.

Note that our analysis framework does not allow us to unequivocally
localize signal sources to V1 only, and thus exclude up-stream sub-
cortical relay LGN (Xu et al., 2002; Cheong et al., 2013; Piscopo et al.,
2013; Vidyasagar and Urbas, 2013; Ling et al., 2015) or down-stream
cortical areas such as V2 and V3 (Haynes and Rees, 2005; Kamitani
and Tong, 2005) that have been shown to encode orientation or
global form (Ostwald et al., 2008; Seymour et al., 2010). However, the
timing of our results argues against both alternatives. We observed
orientation-selective MEG signals starting already approximately
50 ms after stimulus onset. This short latency is consistent with the
latency of V1 spike time in monkeys (Schmolesky et al., 1998; Bullier,
2001; Mormann et al., 2008) and the C1 component in the visual
event-related brain potential (Jeffreys and Axford, 1972; Clark et al.,
1994; Vanni et al., 2001; Russo et al., 2003), and inconsistent with a
large contribution of down-stream cortical areas V2 and V3 with longer
spiking latencies, as well as feedback processing. Concerning a role of
up-stream LGN, typically LGN responses have considerably earlier
latency than observed here (29 ms, Schmolesky et al., 1998). Also,
MEG is far more sensitive to sources in proximity to the sensors,
such as V1, than to distant sources, such as LGN. Although in principle
MEG can detect signals in distant sources (Goldenholz et al., 2009;
Parkkonen et al., 2009), such as LGN, signals are extremely weak with
only a handful of publications reporting MEG thalamic signals typically
after collecting thousands of trials (Tesche, 1996; Papadelis et al., 2012).

This suggests that the observed MEG signals, at least in their early
phase, likely originate in V1. Further studies that would localize
MEG components to V1 based on subject-specific cortical surfaces
reconstructed from MRI might yield corroborative evidence.

Complementing the experimental results, our modeling experiment
demonstrated the theoretical feasibility of discriminating activation
patterns in V1 differing at the spatial scale of cortical columns from
Fig. 6.Decodingof simulated randompatterns differing at columnar-level spatial scale inhuman
distance of 880 μm (s.d. = 279 μm) comparable to the diameter of orientation columns in hum
tivity inV1 (top), and topographyof the correspondingMEGmeasurements (bottom). C)Differe
of V1 activity at different SNR levels. Decoding accuracy was 96.1% when SNR was equal to exp
MEG signals. Despite the low spatial resolution of MEG, the highly
folded V1 cortex around the calcarine fissure gave rise to distinct and
decodable magnetic fields outside the head. Conventional MEG model-
ing approaches consider either a small number of focal cortical sources,
or cortically distributed source models with extended but similar
activity in cortical patches (Baillet et al., 2001). Our results show that
distributed sources of high spatial structure are also resolvable with
MEG in folded areas of the cortex.

In total, our results indicate that MEG potentially can distinguish
edge orientations based on signals originating at the level of orientation
columns. This sets the stage for a direct investigation of edge orientation
in the human brain, a fundamental visual property. Further, our results
have implications for the interpretation of MEG studies using multivar-
iate pattern classification in other visual contents, such as objects
(Carlson et al., 2013; Cichy et al., 2014; Isik et al., 2014). Although for
complex objects coarse-scale activation pattern differences are expect-
ed (Op de Beeck et al., 2008), a contribution of signals at the level of
cortical columns (Fujita et al., 1992; Wang et al., 1996) should also be
considered.

How strong is the cardinal and radial bias?

When stimuli are not balanced in their cardinal or radial compo-
nents, how strong can this influence orientation decoding from MEG
data? Concerning the cardinal bias, experiment 2 unexpectedly did
not reveal any differences in decoding for cardinal versus non-cardinal
orientations. This suggests that the cardinal bias has weak influence
in orientation decoding. Note however that existing studies on the
neural basis of the cardinal effect have been mixed. Using fMRI and
MEG in humans, some studies reported stronger (Zemon et al., 1983;
Moskowitz and Sokol, 1985; Furmanski and Engel, 2000; Yang et al.,
2012), others reduced (Serences et al., 2009; Mannion et al., 2010;
Swisher et al., 2010) responses to cardinal orientations, or both depend-
ing on timing (Koelewijn et al., 2011). While many studies have found
or postulated larger population sizes for neurons tuned to cardinal
orientations (Maffei and Campbell, 1970; Mansfield, 1974; Rose and
V1 fromMEGsensor data. A)Refined triangulatedmeshof V1 cortexwith an average node
an. B) Two example random activation patterns of simulated columnar-level neuronal ac-
nce between the twoMEG topographies shown inB.D)Decoding randomactivity patterns
erimental data, and decayed gradually for lower SNR levels.
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Blakemore, 1974; Zemon et al., 1983; Moskowitz and Sokol, 1985; Yang
et al., 2012), others have indicated large variability across subjects
(Chapman and Bonhoeffer, 1998). Finally, the behavioral effect itself is
complex and dependent on factors, such as context of the oriented
edges and eccentricity (Essock et al., 2003, 2009; Westheimer, 2003,
2005; Hansen and Essock, 2004), suggesting that the neural effect may
also be strongly dependent on particular stimulus parameters.

Concerning the radial bias, findings from experiment 3 are consis-
tent with a possible contribution of coarse-scale radial bias signals to
orientation decoding: classification accuracy for gratings (radially
unbalanced) was higher than for spirals (radially balanced) in all exper-
iments (Sasaki et al., 2006; Carlson et al., 2013). A direct comparison of
gratings and spirals however is not possible, as radial gratings change
stripe width with eccentricity, while Cartesian gratings do not.
Differences in decoding accuracy might instead reflect cortical differ-
ences in spatial frequency sensitivity varying with eccentricity (Sasaki
et al., 2006). Finally, a recent fMRI study observed coarse-scale biases
for spirals of different turning direction, questioning the validity of
logarithmic spirals as a proper control for coarse-scale activation biases
(Freeman et al., 2013). However, the reported resultsmay be influenced
by edge-related artifacts (Carlson, 2014), and may be crucially depen-
dent on particular analysis choices (Pratte et al., 2014). In general, future
MEG studies that address any newly observed coarse-scale biases by
proper stimulus material will be necessary to test the relative contribu-
tions of fine- and coarse-scale sources of orientation decoding.

Orientation signals in MEG are not explained by edge-related effects

Previous research has suggested that interaction effects at the
boundary between background and oriented grating stimuli might
carry information about orientation (Carlson, 2014). Controlling for
these effects in experiment 4 did not abolish robust orientation
decoding from MEG signals. Thus, although edge related effects might
have biased previous studies, they are not necessary for orientation
decoding from MEG signals, and unlikely to produce large effects for
commonly used stimulus configurations.

Global form influences orientation encoding, but is not necessary for
orientation decoding

What is the source of the global form effects on orientation
encoding? An fMRI study that found global form influences in orienta-
tion encoding in early visual cortex proposed three possibilities (Alink
et al., 2013): a) feedback from inferior temporal cortex, b) attentional
spread along Gestalt criteria, and c) contextual modulation effects. Our
MEG results can tentatively differentiate between those alternatives
by timing: global form effects can originate only from a neuronal
processwith an earlier onset, and should have comparable peak latency.
Intracranial recordings in inferior temporal cortex have shown that
global form modulates neural activity with short onset latency
(~80 ms), but with late peak responses at ~200 ms (Brincat and
Connor, 2006), which is at odds with the earlier peak latency observed
here. Attentional spread along Gestalt criteria has been observed in V1
with an onset latency of approximately 330 ms (Wannig et al., 2011),
strongly inconsistent with the onset of global form effects. However,
contextual modulation effects in V1, which occur with an onset latency
of 100 ms and peak latencies of 150 ms (Lamme, 1995; Zipser et al.,
1996), are consistent in timing with our findings.

Limitations of the approach

Our approach has two limitations in providing evidence for a role of
columnar-level patterns in MEG decoding. First, by the nature of the
physics of MEG we did not resolve and observe columnar level
activation patterns directly at the spatial level they exist. Instead, our
evidence is indirect in that the results are in agreement with cortical
columns being the source of the observed signals.

Second, our conclusions depend on the assumption that all known
coarse scale confounds have been properly addressed. However, several
possibilities exist that this might not be so. Concerning the cardinal and
radial bias in experiments 1–3, the stimuli can control for biases only if
such biases are perfectly symmetrical. If however systematic or subject-
specific imperfections in those biases existed in the brain, our stimuli
would not have fully controlled for those biases. Future studies measur-
ing irregularities of radial and cardinal biaseswith fMRImight be able to
guide subject-specific stimulus generation to address this confound.
Concerning global form, the patch-swapped stimuli in experiment 4
controlled for global form effects on a first level, but did not address
potential higher order global effects. Future studies that control for
higher-level statistics of the images, for example comparing stimuli
consisting of randomly positioned Gabor patches, are needed (Wardle
et al., 2015). Also, the validity of the control of edge related confounds
by shape deformation in experiment 4 depends on the validity of the
ice cube model as a model of V1. Future studies evaluating increasingly
realistic models of V1, e.g., including the cortical magnification factor
and differences in receptive field size across the visual field, could
address this issue.

Conclusions

We found that MEG signals allowed decoding of contrast edge
orientation as early as ~50 ms. Importantly, corroborating evidence
from 5 experiments indicated that this information originates from
spatially fine patterns in orientation columns, since decodingwas possi-
ble even when controlling for multiple known confounds known to
induce coarse-scale activation in V1, such as overrepresentation of par-
ticular orientations, boundary interaction effects between background
and stimulus, and global form-related signals. Our V1 modeling study
further demonstrated the feasibility of decoding information encoded
at the spatial scale of cortical columns. Generalizing from this evidence,
any information encoded in the human brain at the level of cortical
columns, and not only contrast edge orientation, should in principle
also be accessible by multivariate analysis of electrophysiological
signals.
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