Advanced Statistical Physics Problem Set 6

 ${\rm due:~01.12.2010}$ available at http://userpage.fu-berlin.de/psilvest/

1. Extension of problem (3) from the previous set. Random matrices: As a model for energy levels of complex nuclei, Wigner considered $N \times N$ symmetric matrices whose elements are random. Let us assume that each element M_{ij} (for $i \geq i$) is an independent random variable taken from the PDF

$$p(M_{ij}) = \frac{1}{2a}$$
 for $-a < M_{ij} < a$, and $p(M_{ij}) = 0$ otherwise. (1)

(d) The eigenvalues of the random matrix M, λ_i $(i=1,2,\cdots,N)$ also form a set of random variables with a certain PDF. The easy way to access the properties of this distribution is to consider the quantities $TrM^n = \sum \lambda_i^n$. Prove that λ_i are not independent random variables.

(One more hint, consider $\langle Tr(M^2) \rangle$ and $\langle (TrM)^2 \rangle$.) [2p]

2. Probabilities and Microcanonical ensemble: Consider random depositions of N 1-cent coins into M glasses. The Macrostate is specified by the numbers N and M. Individual microstates are described by the occupation numbers (n_1, n_2, \dots, n_M) of (indistinguishable) coins over (distinguishable) glasses. Find the number of microstates $\Omega(N, M)$ and the entropy S(N, M).

(A standard approach to this problem is to consider the 1-dimensional chain of N+M-1 circles, N-white and M-1-black. Each subchain of n_i , $0 \le n_i \le N$, consecutive white circles models coins in one glass.) [2p]

Physical applications of this financial problem will be given in the next problem set.

- **3.** Suppose now we have two "weakly interacting" subsystems: $N^{(1)}$ 1-cent coins and $N^{(2)}$ 2-cent coins, distributed over the same M glasses. Let any distribution $(n_1^{(1)}, n_2^{(1)}, \cdots, n_M^{(1)}, n_1^{(2)}, n_2^{(2)}, \cdots, n_M^{(2)})$ with $\sum_i (n_i^{(1)} + 2n_i^{(2)}) = N$ be a different microstate of the joint macrosystem (N, M).
 - (a) Find again the entropy S(N, M).

- (b) For $N \gg 1$, $M \gg 1$ find an equilibrium values of each sort of coins $N^{(1)*}$ and $N^{(2)*}$. By changing the parameters N and M, can we reach the situation in which in equilibrium:
- 1) Almost all the money will be kept in one sort of coins?
- 2) The same amounts of money will be stored in 1-cent and 2-cent coins?
- 3) There will be the same numbers of 1-cent and 2-cent coins? [2p]
- 4. Microcanonical Ensembe: Consider N classical 3-dimensional isotropic oscillators described by the Hamiltonian

$$\mathcal{H}(\{\vec{q}_i, \vec{p}_i\}) = \sum_{i=1}^{N} \left[\frac{\vec{p}_i^2}{2m} + \frac{m\omega^2 \vec{q}_i^2}{2} \right]. \tag{2}$$

- (a) Calculate the entropy S(E, N).
- (b) Calculate the energy E and heat capacity C as functions of temperature T and N.
- (c) Find the unconditional probability density $p(\vec{p}, \vec{q})$ for a single oscillator. [2p]
 - **5.** Answer the questions (b) and (c) of the previous problem for:
- (a) N 2-dimensional oscillators described by the same Hamiltonian Eq. (2).
- (b) N anisotropic oscillators

$$\mathcal{H}(\{\vec{q}_i, \vec{p}_i\}) = \sum_{i=1}^{N} \left[\frac{\vec{p}_i^2}{2m} + \frac{m\omega_x^2 x_i^2}{2} + \frac{m\omega_y^2 y_i^2}{2} + \frac{m\omega_z^2 x_i^2}{2} \right]. \tag{3}$$

In fact you do not need to redo any calculations for solving this problem. [2p]