
A SHORT COURSE ON THE INTERACTIONS OF RATIONAL HOMOTOPY

THEORY AND COMPLEX (ALGEBRAIC) GEOMETRY

JOANA CIRICI

Abstract. These notes were written for the Summer School on “Rational Homotopy Theory and its
Interactions” (July 2016, Rabat, Morocco). The objective of this course is to do several computations
in rational homotopy theory for topological spaces that carry extra structure coming from complex
geometry. We review results on the rational homotopy theory of complex manifolds, compact Kähler
manifolds and (singular) complex projective varieties.

1. Introduction

A central construction in rational homotopy theory is Sullivan’s algebra of rational piece-wise linear
forms. This is a commutative differential graded algebra (cdga for short) A∗pl(X) over Q, defined for

every topological space X, such that H∗(A∗pl(X)) ∼= H∗(X;Q). This algebra plays the role of the de
Rham algebra of differential forms of a manifold and encodes more topological properties of the space
than the cohomology ring. For instance, it contains Massey products. In general, this algebra is very
large and difficult to deal with. The solution is to replace this algebra by a minimal model : a free
cdga Λ(V ) whose differential d is decomposable (a sum of products of positive elements), together

with a quasi-isomorphism of cdga’s (Λ(V ), d)
∼−→ A∗pl(X). The minimal model can be understood

as the smallest possible sub-cdga with the same cohomology and turns out to be a very powerful
computational tool, as it contains all the rational homotopy information of the space.

A particularly useful situation to compute the minimal model is when the space X is formal : there
is a string of quasi-isomorphisms from Apl(X) to its rational cohomology ring considered as a cdga
with trivial differential. If X is formal then its rational homotopy type is completely determined by
its cohomology ring, and higher order Massey products vanish. Examples of formal spaces include
spheres and their products, H-spaces, symmetric spaces, and compact Kähler manifolds. In these
notes we study properties of minimal models and aspects of formality for topological spaces carrying
extra-structure of complex-geometric origin.

The complex de Rham algebra of forms of every complex manifold admits a decomposition into
complex-valued forms of type (p, q) and its differential decomposes as d = ∂ + ∂. The interplay
of these two differentials and the properties of this decomposition have several implications on the
rational homotopy type of the manifold. In these notes, we review some of these implications. We
first study minimal models of the de Rham and Dolbeault algebras for complex manifolds. Then,
we present topological properties for compact Kähler manifolds and recall the well-known Formality
Theorem of Deligne, Griffiths, Morgan and Sullivan for these spaces.

Another class of topological spaces that carry complex-geometric structures is that of complex
algebraic varieties. The underlying complex structure of these spaces manifests in Sullivan’s algebras
of forms trough the weight and Hodge filtrations. Again, these filtrations and their interplay are
extremely powerful in many aspects and in particular, in discovering rational homotopy properties of
the varieties. In these notes, we review some of these properties for complex projective varieties. In
particular, we will see how in the case of isolated singularities, we can produce formality results.
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2. Differential forms on complex manifolds

We first review the main definitions and properties of complex manifolds. Some good references are
Wells [Wel08] and Griffiths-Harris [GH78].

A complex manifold is a manifold M equipped with a holomorphic atlas: this is given by an open
cover M =

⋃
i Ui together with charts ϕi : Ui → Cn such that ϕi ◦ ϕ−1j : ϕj(Ui ∩ Uj) → Cn are

holomorphic. Examples of complex manifolds:rCn and its open subsets. Also, any open subset of a complex manifold is a complex manifold.rThe set of complex lines through the origin in Cn+1 is the complex projective space CPn =
Cn+1 \ {0}/z ∼ λz. A holomorphic atlas for CPn is given by

Ui := {[z0 : · · · : zn]; zi 6= 0}, ϕi([z0 : · · · : zn]) = (
z0
zi
, · · · , ẑi, · · · ,

zn
zi

).

rComplex tori Tn = Cn/Λ, where Λ = Z2n ⊂ Cn is a discrete lattice.rCalabi-Eckmann manifolds Mm,n
∼= S2n+1 × S2m+1 with the complex structure defined via

the fiber bundle S1 × S1 −→ Mn,m −→ CPn × CPm, with 0 < n ≤ m. For n = 0 these are
Hopf manifolds. The case n = 0 and m = 1 is the Hopf surface.r Iwasawa manifold I := HC/HZ+iZ, where HR =

{(
1 a b
0 1 c
0 0 1

)
; a, b, c ∈ R

}
.

The real tangent bundle TM of every complex manifold M is endowed with an endomorphism
J : TM → TM such that J2 = −1 (which corresponds to multiplication by

√
−1 on tangent vectors).

Such an operator is called an almost complex structure. The decomposition into J-eigenspaces of
TM ⊗ C leads to a decomposition of the complex de Rham algebra of forms of M

AdR(M)⊗ C =
⊕
Ap,q(M)

and the differential decomposes as d = ∂ + ∂, where ∂ has bidegree (1, 0) and ∂ has bidegree (0, 1).
In particular, the pair (A∗,∗(M), ∂) is a differential bigraded algebra, called the Dolbeault algebra of
forms of M . The Dolbeault cohomology is the cohomology of this algebra:

Hp,q

∂
(M) := Hq(Ap,∗, ∂).

The Hodge numbers of M are defined by hp,q(M) := dimHp,q

∂
(M). These are often depicted in a

diamond-shaped diagram, called the Hodge diamond. For instance, if M has complex dimension 3, we
will write Betti and Hodge numbers as:

b6 h3,3

b5 h3,2 h2,3

b4 h3,1 h2,2 h1,3

b3 h3,0 h2,1 h1,2 h0,3

b2 h2,0 h1,1 h0,2

b1 h1,0 h0,1

b0 h0,0

The relation between de Rham and Dolbeault cohomology is measured by the Frölicher spectral
sequence. This is the spectral sequence associated with the double complex (A∗,∗(M), ∂, ∂). It satisfies
(E∗,∗0 (M), d0) = (A∗,∗(M), ∂) and E∗,∗1 (M) = H∗,∗

∂
(M). It converges to H∗dR(M ;C).

Also, there is a rational homotopy version for Dolbeault cohomology. This was introduced by
Neisendorfer and Taylor in [NT78], where they define Dolbeault cohomotopy groups via the indecom-
posables of a bigraded minimal model of the Dolbeault algebra of forms of a manifold. We will not
explain this bigraded theory here, but refer to original paper [NT78] or Chapter 4 of the book [FOT08]
of Félix, Oprea and Tanré, which is an excellent reference for the rational homotopy theory of complex
manifolds and contains numerous illuminating and detailed examples.
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Example 2.1. The de Rham and Dolbeault cohomology rings of CPn are given respectively by:

H∗dR(CPn)⊗ C ∼=
C[w2]

wn+1
2

and H∗,∗
∂

(CPn) ∼=
C[w1,1]

wn+1
1,1

where w2 has degree 2 and w1,1 has bidegree (1, 1). For instance, if n = 2 this gives the following Betti
and Hodge numbers:

1 1

0 0 0

1 0 1 0

0 0 0

1 1

A Dolbeault model of CPn is defined as follows. Consider the free graded algebra Λ(x, y) generated
by x and y in bidegrees |x| = (1, 1) and |y| = (n+ 1, n) respectively. Define a differential ∂ of bidegree
(0, 1) by letting ∂x = yn+1 and ∂y = 0. A morphism (Λ(x, y), ∂) −→ (A∗,∗(M), ∂) is given by sending

x to a representative of w1,1 ∈ H1,1

∂
(CPn) and y 7→ 0. Note the by forgetting the bidegrees we recover

the classical de Rham model for CPn (this is not always the case!).

Example 2.2. Consider the Hopf surface M∼= S1 × S3. Its Betti and Hodge numbers are:

1 1

1 1 0

0 0 0 0

1 0 1

1 1

SinceM is the total space of a holomorphic principal bundle T1 = S1×S1 −→M ∼= S3×S1 −→ CP1,
using the Borel spectral sequence, a Dolbeault model can be computed by taking the product of
Dolbeault models of the fiber and the base and perturbing the differential by a term of bidegree (0, 1)
(see 4.62 of [FOT08]). A Dolbeault model for T1 is given by the free cdga with trivial differential
given by Λ(α, β) where |α| = (0, 1), |β| = (1, 0). A Dolbeault model for CP1 is given by Λ(x, y) where
∂y = x2, |x| = (1, 1) and |y| = (2, 1). A Dolbeault model for M is then given by Λ(α, β, x, y) with
∂α = 0, ∂β = x, ∂x = 0 and ∂y = x2. By forgetting the bidegrees we recover the classical de Rham
model for S1 × S3.

Example 2.3. Consider the Calabi-Eckmann manifold M1,1
∼= S3 × S3. We have:

1 1

0 1 0

0 0 1 0

2 0 1 1 0

0 0 1 0

0 0 1

1 1

A Dolbeault model for M3,3 is given by Λ(x, y, z, w) with |x| = (0, 1), |y| = (1, 1), |z| = |w| = (2, 1)

and the only non-trivial differential given by ∂z = y2. To obtain a de Rham model forM3,3 it suffices
to add a differential ∂x = y.

3. Formality of compact Kähler manifolds

Let M be a complex manifold and let J : TM → TM be its almost complex structure. A hermitian
metric on M is a Riemannian metric h such that h(JX, JY ) = h(X,Y ).

Exercise 3.1. Check that if g is a Riemannian metric then we may obtain a hermitian metric h by
letting h(X,Y ) := 1

2 (g(X,Y ) + g(JX, JY )) . Hence a hermitian metric always exists on an almost
complex manifold.



4 JOANA CIRICI

Given a hermitian metric h, we define its associated fundamental two-form by

wh(X,Y ) := h(X, JY ) ∈ A1,1(M).

Then h is said to be a Kähler metric if dwh = 0. A Kähler manifold is a complex manifold admitting
a hermitian Kähler metric. Examples of Kähler manifolds:rThe complex projective spaces CPn (with the Fubini-Study metric).rCompact Riemann surfaces (since dw ∈ A3 = 0).r Smooth projective varieties.rThe product of two Kähler manifolds is Kähler (Exercise!).rAny complex submanifold N of a Kähler manifold M is Kähler (Exercise!).

The condition of being Kähler imposes strong topological conditions on the manifold. We collect
the main properties of its algebra of forms in the following Theorem. The three statements below are
all a consequence of Hodge theory and are strongly related.

Theorem 3.2. Let M be a compact Kähler manifold.

(1) (∂∂-lemma). If ∂x = ∂x = 0 and ∂y = x then x = ∂∂z for some z.
(2) The complex cohomology of M decomposes as a direct sum

Hk
dR(M)⊗ C ∼=

⊕
p+q=k

Hp,q

∂
(M) and Hp,q

∂
(M) = H

q,p

∂
(M).

(3) The Frölicher spectral sequence degenerates at the first stage.

Note that in particular, for a compact Kähler manifold we have:

bk(M) = hk,0(M) + hk−1,1(M) + hk−2,2(M) + · · ·+ h0,k(M).

Also, the Hodge numbers exhibit special symmetries: hp,q(M) = hn−p,n−q(M) (duality) and hp,q(M) =
hq,p(M) (complex conjugation).

Exercise 3.3. Show that if M is a compact Kähler manifold of dimension n then b2n(M) 6= 0 and
that odd Betti numbers of M are either 0 or even.

The Formality Theorem of Deligne, Griffiths, Morgan and Sullivan is a striking application of Hodge
theory to the topology of compact Kähler manifolds:

Theorem 3.4 ([DGMS75]). Every compact Kähler manifold is a formal topological space.

Proof. By the ∂∂-lemma there are morphisms of cdga’s

(AdR(M)⊗ C, d = ∂ + ∂)
j←− (Ker(∂), ∂)

π−→ (H∂(M), ∂)

such that H(j) and H(π) are both injective and surjective (the map j is just the inclusion, and π is the
projection). We leave the details of this claim as an exercise (the solution can be found in [DGMS75]!).
Since M is Kähler we have that ∂ is trivial on H∂(M) and that H∂(M) ∼= H∂(M) ∼= HdR(M)⊗C, so

(H∂(M), ∂) ∼= (HdR(M)⊗ C, 0). This proves formality over C. But then, formality is independent of
the base field (see [Sul77], see also [HS79]). �

The following is an example of a compact complex manifold which is not formal.

Example 3.5. The Betti and Hodge numbers for the Iwasawa manifold I are:

1 1

4 3 2

8 3 6 2

10 1 6 6 1

8 2 6 3

4 2 3

1 1
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One can already see by looking at the Hodge diamond that the Iwasawa manifold is not Kähler.
Furthermore, it is not formal. Indeed, a minimal model for I is given by M = Λ(x1, x2, y1, y2, θ1, θ2)
with all generators of degree 1 and the differential given by dθ1 = x1y1 − x2y2 and dθ2 = x1y2 − x2y1.
Assume there exists a morphism M −→ H∗(I). Then xi 7→ [xi], yi 7→ [yi] and θi 7→ 0. In degree 6 we
get a contradiction.

4. Basics on complex algebraic varieties

This section is a very quick and superficial introduction to complex projective varieties. There are
uncountable good references to learn complex algebraic geometry. For instance, the book of Griffiths-
Harris [GH78] is very accessible.

A complex projective variety is given by a subset of CPN defined by the vanishing of a system of
homogeneous polynomial equations over the complex numbers. Every complex projective variety is a
compact topological space, with the topology induced by the Euclidean topology of Cn. Examples of
complex projective varieties:rThe projective space CPn and its products CPn × CPm.rA compact Riemann surface (i.e., a compact complex manifold of dimension one).rA compact complex manifold of dimension two with two algebraically independent meromor-

phic functions.rNot all Kähler manifols are projective! The Kodaira embedding gives a criterion for this to
happen. Conversely, every smooth projective variety is a compact Kähler manifold.

Let X be a complex projective variety. A point x ∈ X is called regular if there is an open neigh-
borhood U of x in CPN and homogeneous polynomials f1, · · · , fm in N + 1 variables such that

X ∩ U = {(x0 : · · · : xN ) ∈ U ; fj(x0 : · · ·xN ) = 0, 1 ≤ j ≤ m}

and the Jacobian matrix of partial derivatives
∂fj
∂xi

has rank m at x. Otherwise, we say that x is a
singular point. A variety is said to be smooth if it has no singular points. Denote by Σ the set of
singular points of X. The set Xreg = X −Σ of regular points is a dense open subset of X, which is a
complex submanifod of CPN . The variety X is said to have dimension n if each connected component
of Xreg is a complex manifold of complex dimension n. Varieties of dimension 1 (resp. 2) are called
curves (resp. surfaces).

All the examples listed above are smooth varieties. We will see examples of singular varieties in the
following pages. For the moment, here is a favorite:

Example 4.1 (Nodal cubic). Let X = {y2z − x2z − x3 = 0} ⊂ CP2. This is a projective curve with
one singular point (0, 0, 1). The nodal cubic is irreducible, meaning that it is not a union of other
curves. Topologically, it is just the pinched torus.

Real and complex representations of the nodal cubic
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We have the following diagram of strict inclusions:

Compact Kähler
manifolds

� � // Complex
manifolds �

y

++WWWW
WWWWW

W

Complex analytic
spaces

� � // Topological
spaces

Smooth projective
varieties

?�

OO

� � // Complex algebraic
varieties

% �
33ggggg

5. The weight filtration in cohomology

We next explain the main ideas of the weight filtration in cohomology. For a very first glimpse to
mixed Hodge theory, Durfee [Dur83] is very helpful. We also recommend the notes of Griffiths-Schmid
[GS75]. The book of Peters-Steenbrink [PS08] and the original works of Deligne [Del71] and [Del74]
are more advanced. The lecture notes [GNAPP88] contain the treatment of mixed Hodge theory via
cubical hyperresolutions, which may be more accessible than Deligne’s theory of simplicial resolutions.

Let X be a complex projective variety. Deligne introduced a filtration

0 = W−1H
k(X) ⊂W0H

k(X) ⊂ · · · ⊂WkH
k(X) = Hk(X)

on the k-th rational cohomology of X, for each k ≥ 0, in such a way that any of the successive quotients

GrWmH
k(X) := WmH

k(X)/Wm−1H
k(X)

“behaves” as the cohomology of a smooth projective variety, in the sense that it has a Hodge decom-
position: the complexification of each of the above quotients admits a direct sum decomposition

GrWmH
k(X)⊗ C ∼=

⊕
p+q=m

Hp,q such that Hp,q = H
q,p
.

The filtration W is called the weight filtration. Together with the above Hodge decompositions, this
data constitutes a mixed Hodge structure. If X is a smooth projective variety, then the weight filtration
on Hk(X) is pure of weight k, for all k ≥ n, that is, 0 = Wk−1H

k(X) ⊂WkH
k(X) = Hk(X).

Let us briefly explain how W is defined. The main tool is Hironaka’s Theorem on resolution of
singularities, which states that for every complex variety X with singular locus Σ, there exists a
cartesian diagram

D

g

��

j // X̃

f
��

Σ
i // X

where X̃ is a smooth projective variety, f : X̃ −→ X is an isomorphism outside Σ and D is a simple

normal crossings divisor (you can think of D as a codimension 1 subvariety of X̃ which locally looks
like a union of coordinate hyperplanes intersecting transversally). The above square gives a long exact
sequence in cohomology

· · · −→ Hk(X) −→ Hk(Σ)⊕Hk(X̃) −→ Hk(D) −→ Hk+1(X) −→ · · ·
By iterating this process (i.e., by applying again Hironaka’s resolution on Σ and D, and so on...) one
gets a simplicial resolution X• → X of X: this is a collection of smooth projective varieties X• = {Xp}
together with morphisms

· · · ////

//// X2
//
//// X1

//// X0
// X

satisfying cohomological descent (see [Del74], see also [PS08], II.5 for a precise definition or [GNAPP88]
for the alternative approach of cubical hyperresolutions). The main idea of cohomological descent is
that one may compute the cohomology of X from the cohomologies of Xp. The weight spectral sequence
is given by:

Ep,q1 (X) := Hq(Xp) =⇒ Hp+q(X)
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where the differential d1 : Ep,q1 (X) −→ Ep+1,q
1 (X) is defined via a combinatorial sum of the restriction

morphisms of the various maps Xp → Xp−1.
Deligne showed that this spectral sequence degenerates at the second stage, and that the induced

filtration on the rational cohomology of X is well-defined (does not depend on the chosen resolution)
and is functorial for morphisms of varieties. The weight filtration W on H∗(X) is defined as the
induced filtration. We have GrWq H

p+q(X) ∼= Ep,q2 (X). The picture looks like this:

E∗,∗1 (X) =

...
...

...

H4(X0) // H4(X1) // H4(X2) // · · ·

H3(X0) // H3(X1) // H3(X2) // · · ·

H2(X0) // H2(X1) // H2(X2) // · · ·

H1(X0) // H1(X1) // H1(X2) // · · ·

H0(X0) // H0(X1) // H0(X2) // · · ·

=⇒ E∗,∗2 (X) ∼=

...
...

...

GrW4 H4(X) GrW4 H5(X) GrW4 H6(X) · · ·

GrW3 H3(X) GrW3 H4(X) GrW3 H5(X) · · ·

GrW2 H2(X) GrW2 H3(X) GrW2 H4(X) · · ·

GrW1 H1(X) GrW1 H2(X) GrW1 H3(X) · · ·

GrW0 H0(X) GrW0 H1(X) GrW0 H2(X) · · ·

For readers not familiar with spectral sequences, there is no need to be scared. Indeed, the sentence
“degenerates at the second stage” is very good news. What we just have here is a cochain complex

E∗,q1 (X) : 0 −→ Hq(X0)
d0,q−→ Hq(X1)

d1,q−→ Hq(X2) −→ · · ·

for each q ≥ 0. The above picture says that the cohomology of these complexes is

Hp(E∗,q1 (X), d∗,q) :=
Ker(dp,q : Ep,q1 (X)→ Ep+1,q

1 (X))

Im(dp−1,q : Ep−1,q1 (X)→ Ep,q1 (X))
∼= GrWq H

p+q(X).

In particular, if we want to recover the cohomology of X, we just need to sum over the diagonals of
the above right table:

Hq(X) ∼= GrW0 Hq(X)⊕GrW1 Hq(X)⊕ · · · ⊕GrWq Hq(X).

We now compute the weight spectral sequence in some particular simple examples.

Example 5.1. Let X be a complex projective variety of dimension n with only isolated singularities

(so that dim Σ = 0). Assume that there is a resolution f : X̃ → X such that D := f−1(Σ) is a
smooth projective variety of dimension n − 1 (this happens, for instance, when the singularities are

ordinary multiple points). Then we have a simplicial resolution D ⇒ Σ t X̃ −→ X and Deligne’s
weight spectral sequence is given by:

E0,q
1 (X) = Hq(Σ)⊕Hq(X̃) , E1,q

1 = Hq(D) and Ep,q1 (X) = 0 for p > 1.

The differential d1 : E0,q
1 (X) −→ E1,q

1 (X) is given by d1(σ, x) = j∗(x) − g∗(σ), where j : D ↪→ X̃ is
the inclusion and g : D −→ Σ is the restriction of f to D.

Subexample 5.2 (Nodal cubic). Let C be the nodal cubic of Example 4.1. The normalization of C
is CP1. Hence a resolution of C is given by the following diagram.

By Example 5.1 we have:

E∗,∗1 (C) =

Q
0

Q2 // Q2

=⇒ E∗,∗2 (C) ∼=
Q
0

Q Q
.

This gives GrW0 H0(C) = Q, GrW0 H1(C) = Q and GrW2 H2(C) = Q.

Example 5.3. Let X be a complex projective surface with isolated singularities Σ. Then by Hironaka

there exists a resolution f : X̃ −→ X such that D := f−1(Σ) is a simple normal crossings divisor. We
may write D = D1 ∪ · · · ∪DN as the union of N smooth projective curves meeting transversally. Let
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Resolution of the nodal cubic

D̃ :=
⊔
Di and Z :=

⊔
i 6=j Di ∩Dj . Note that D̃ is the disjoint union of N smooth projective curves

and Z is just a finite number of points. Deligne’s weight spectral sequence is then given by:

E0,q
1 (X) = Hq(X̃)⊕Hq(Σ) , E1,q

1 (X) = Hq(D̃) and E2,q
1 (X) = Hq(Z).

The differential d1 : E0,q
1 (X) −→ E1,q

1 (X) is given by (x, σ) 7→ j∗(x)− g∗(σ), where j : D̃ −→ X̃ and

g : D̃ −→ Σ are the obvious maps. Let i1 : Z −→ D̃ be given by Di ∩Dj 7→ Di for i < j and define

i2 : Z −→ D̃ by letting Di ∩ Dj 7→ Dj for i < j. The differential d1 : E1,q
1 (X) −→ E2,q

1 (X) is then
given by i∗1 − i∗2.

The following is an example of a projective surface with non-trivial weight filtration:

Subexample 5.4 (Cusp singularity). Let C be the nodal cubic of Example 4.1, sitting in CP2. We
would like to contract C a point. However, we want to do it so that the contraction is a projective
variety. By Castelnuovo’s criterion, we are allowed to do this whenever the curve has negative self-
intersection. Note that in CP2, we have |C ∩ C| = 9 > 0. To fix this, we choose a smooth quartic C ′

in CP2 given by a homogeneous polynomial f(x, y, z) = 0 of degree 4 in such a way that it intersects
transversally with C at the smooth points of C, so that |C ∩ C ′| = 12.

The curves C and C ′ in their complex representations

The trick now is to consider the blow-up Y = Bl12CP2 of CP2 at these 12 points (this procedure
substitutes each of the 12 points in CP2 by a projective line). We get a space Y that is homeomorphic

to the connected sum of 13 projective planes CP2. The proper transform C̃ ∼= C of C in Y satisfies
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Real representation of the curves C and C ′ intersecting in general position

|C̃ ∩ C̃ ′| = −3 < 0. Hence now we may contract C̃ to a point, and get a normal projective surface X:

C̃

��

// Y

��
{∗} // X

The variety X can be described as the set of points (x, y, z, w) ∈ CP3 such that:

X = {w(y2z − x2z − x3) + f(x, y, z) = 0} ⊂ CP3.

To find a simplicial resolution of X we turn C̃ into a simple normal crossings divisor. This can be

done by blowing-up Y twice the singular point of C̃. We get

D

��

// X̃

��
{∗} // X

where D is a cycle of three projective lines, as shown in the picture below and X̃ is homeomorphic to
the connected sum of 15 projective planes.

Real and complex representations of the divisor D

Now we may apply Example 5.3. The variety D̃ is the disjoint union of 3 projective lines, while Z
is given by 3 points. We get:

E∗,∗1 (X) =

Q
0

Q15 // // Q3

0 0

Q2 // Q3 // Q3

=⇒ E∗,∗2 (X) ∼=

Q
0

Q12 0

0 0

Q 0 Q

.

Hence H2(X) has a non-trivial weight filtration:

GrW0 H2(X) ∼= Q, GrW1 H2(X) = 0 and GrW2 H2(X) ∼= Q12.
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6. The weight filtration in rational homotopy

For the applications to rational homotopy we are interested in a multiplicative version of Deligne’s
weight spectral sequence. This was first defined by Morgan [Mor78] in the case of smooth quasi-
projective varieties and by Hain [Hai87] and Navarro-Aznar [NA87] independently, for general algebraic
varieties. A description of the multiplicative weight spectral sequence in terms of a resolution of
singularities, in the case of projective varieties with isolated singularities is given in [CC].

Theorem 6.1 ([Mor78],[NA87], [Hai87]). The Sullivan algebra Apl(X) of every complex algebraic
variety X carries functorial mixed Hodge structures. In particular, the weight filtration W on Apl(X)

defines a multiplicative weight spectral sequence (Ê1(X), d1) which is quasi-isomorphic to Deligne’s
weight spectral sequence (E1(X), d1) as a cochain complex.

The multiplicative weight spectral sequence (Ê1(X), d1) is a well-defined algebraic invariant of X
in the homotopy category of differential bigraded algebras. The main advantage of this object with
respect to Deligne’s weight spectral sequence is that the former carries information about the rational
homotopy type of X:

Theorem 6.2 ([CG14]). Let X be a complex algebraic variety. There is a string of quasi-isomorphisms

of complex cdga’s from (A(X)⊗ C, d) to (Ê1(X)⊗ C, d1) compatible with W .

Proof. The proof uses Sullivan’s theory of minimal models together with the Hodge decompositions of
a mixed Hodge structure. The main idea is to use Theorem 6.1 to construct a Sullivan minimal model
M −→ A(X) of the algebra of forms of X in such a way that for each degree n ≥ 0, Mn carries a mixed
Hodge structure, with products and differentials compatible with such structures. The second step is
to show that, over C, the algebra M admits a splitting, so that M ⊗ C ∼= Ê1(M)⊗ C, where Ê1(M)
is defined via the weight filtration of M . inner weight filtration. We refer to [CG14] for details. �

In particular, a Sullivan model for a complex algebraic varietyX, can be computed from (Ê1(X), d1).
We next explain how to compute this differential bigraded algebra in terms of a resolution of singular-
ities, in two very particular examples. For more general constructions we call upon the imagination of
the reader and perhaps some knowledge on Navarro’s definition of the Thom-Whitney simple functor
[NA87]. Alternatively, see [Mor78] for the construction in the case of smooth quasi-projective varieties
and [CC] for the case of projective varieties with isolated singularities.

Example 6.3. In the situation of Example 5.1, the multiplicative weight spectral sequence for X is:

Ê0,q
1 (X)

y
��

// Hq(D)⊗ Λ(t)

(δ0,δ1)

��
Hq(Σ)×Hq(X̃)

(
g∗ 0
0 j∗

)
// Hq(D)×Hq(D)

,

Ê1,q
1 (X) = Hq(D) ⊗ Λ(t) ⊗ dt and Êp,q1 (X) = 0 for p > 1. The map d1 : Ê0,q

1 (X) −→ Ê1,q
1 (X)

is defined by differentiation with respect to t. The non-trivial products of Ê∗,∗1 (X) are the maps

Ê0,q
1 (X) × Ê0,q′

1 (X) −→ Ê0,q+q′

1 (X) given by (x, a(t)) · (y, b(t)) = (x · y, a(t) · b(t)) and the maps

Ê0,q
1 (X)× E1,q′

1 (X) −→ Ê1,q+q′

1 (X) given by (x, a(t)) · b(t)dt = a(t) · b(t)dt.

Example 6.4. Let X be a complex projective surface with isolated singularities. With the notation
of Example 5.3, we have:

Ê0,q
1 (X)

y
��

// Hq(D̃)⊗ Λ(t)

(δ0,δ1)
��

Hq(Σ)×Hq(X̃)

(
g∗ 0
0 j∗

)
// Hq(D̃)×Hq(D̃)

,
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Ê1,q
1 (X) = Hq(Z)⊗Λ(t)⊕Hq(D̃)⊗Λ(t)⊗ dt and Ê2,q

1 (X) = Hq(Z)⊗Λ(t)⊗ dt. The differentials are
defined via the restriction maps of Example 5.3 together with differentiation with respect to t. The
products are defined as in Example 6.3.

We have seen that the complex homotopy of a complex algebraic variety can be computed using
the multiplicative weight spectral sequence. On the other hand, we have seen how one may write this
spectral sequence in terms of cohomologies of smooth projective varieties. We next use these results
facts to prove formality for a large family of complex projective varieties. Most of the results of this
section are proven in [CC].

The following first result can be thought of an abstract version of the Formality Theorem of
[DGMS75] in the setting of complex algebraic geometry.

Theorem 6.5 (Purity implies formality). Let X be a complex algebraic variety. Assume that the
weight filtration on Hk(X) is pure of weight k for all k ≥ 0. Then X is formal.

Proof. It is an easy exercise using Theorem 6.2. (Hint: it suffices to define an injection (E2(X), 0) ∼=
(Ker(d1), 0) ↪→ (Ê1(X), d1) and to check that this is compatible with products. This gives formality
over C. Then apply independence of formality on the base field to get formality over Q.). �

Example 6.6. Let X be a complex projective variety whose rational cohomology satisfies Poincaré
duality. Then X is formal.

Example 6.7. Let X be a complex projective variety of dimension n. Assume that X is a Q-homology
manifold (for all x ∈ X, Hk

{x}(X) = 0 for k 6= 2n and H2n
{x}(X) ∼= Q). Then X is formal.

By purely topological reasons we know that every simply connected, 4-dimensional CW-complex is
formal. We also know there exist non-formal 4-dimensional CW-complexes. Thanks to deep results
of Simpson and Kapovich-Kollár [KK14] we know that there exist non-formal complex projective
surfaces. However, if the singularities are normal (i.e., the link of every singular point is connected),
we have:

Theorem 6.8 ([CC]). Every normal complex projective surface is formal.

Proof. The multiplicative weight spectral sequence for a normal surface has the form

Ê∗,∗1 (X) =

E0,4

E0,3

E0,2 d0,2−−→ E1,2

E0,1 d0,1−−→ E1,1

E0,0 d0,0−−→ E1,0 d1,0−−→ E2,0

=⇒ E∗,∗2 (X) ∼=

H4(X)

H3(X)

Ker(d0,2) 0

Ker(d0,1) Coker(d0,1)

Ker(d0,0) 0 Coker(d1,0)

By Theorem 6.2 it suffices to define a quasi-isomorphism from (E∗,∗2 (X), 0) to (Ê∗,∗1 (X), d1). This is

done by taking a section E∗,∗2 (X) −→ Ker(d∗,∗) ⊂ Ê∗,∗1 (X) of the projection Ker(d∗,∗) � E∗,∗2 (X).
Then one needs to prove that this gives a morphism compatible with products. Note that there are
only a couple of verifications to do. The details can be found in [CC]. �

Example 6.9 (Cusp singularity). Consider the singular surface X defined in Subexample 5.4. Since
X is simply connected, we may compute the rational homotopy groups of X with their weight fil-
tration from a bigraded minimal model ρ : M

∼−→ E∗,∗2 (X) of the bigraded algebra E∗,∗2 (X). The
weight filtration on πi := πi(X) ⊗ Q satisfies GrWq πp+q

∼= Hom(Q(M)p,q,Q), where Q(M)p,q denotes

the indecomposables of M of bidegree (p, q). We may write E∗,∗2 (X) ∼= Q[α, γ1, · · · , γ12] where the
generators have bidegree |α| = (2, 0) and |γi| = (0, 2). The only non-trivial products are given by
γ2i = −T and γi · γj = T , for all i 6= j. We compute the first steps of a minimal model for E∗,∗2 (X).
Let M2 be the free bigraded algebra M2 = Λ (α, γ1, · · · , γ12) with trivial differential generated by
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elements of bidegree |α| = (2, 0) and |γi| = (0, 2). Then the map ρ2 : M2 −→ E∗,∗2 (X) given by x 7→ x
is a 2-quasi-isomorphism of bigraded algebras. Hence we have

GrW0 π2 ∼= Q, GrW1 π2 = 0 and GrW2 π2 ∼= Q12.

Let M3 = M2 ⊗d Λ(V3,0, V−1,4) where Vi,j are the graded vector spaces of pure bidegree (i, j) given
by V3,0 = Q〈x〉 and V−1,4 = Q〈ξij〉, with 1 ≤ i, j ≤ 12 and (i, j) 6= (1, 1). The differentials are given
by dx = α2 and dξij = γiγj . Then the extension ρ3 : M3 → E∗,∗2 (X) of ρ2 given by Vi,j 7→ 0 is a

3-quasi-isomorphism. The formula GrWp π3
∼= Hom(V3−p,p,Q) gives:

GrW0 π3 ∼= Q, GrW1 π3 = 0, GrW2 π3 ∼= Q12, GrW3 π3 = 0 and GrW4 π3 ∼= Q77.

We invite the reader to compute some next steps.

Theorem 6.8 generalizes to projective varieties of arbitrary dimension as follows:

Theorem 6.10 ([CC]). Let X be a complex projective variety of dimension n with normal isolated
singularities. Denote by Σ the singular locus of X, and for each σ ∈ Σ let Lσ denote the link of σ in

X. If H̃k(Lσ) = 0 for all k ≤ n− 2 for every σ ∈ Σ, then X is a formal topological space.

Proof. The proof is a straightforward generalization of that of Theorem 6.8 after showing that, thanks
to the conditions on the link, the weight spectral sequence for X has the form

Ê∗,∗1 (X) =

2n

n

0

•
•
• •
• •
• • •
• • •
• • • •
• • • •
• • • • •

n

=⇒ E∗,∗2 (X) =

2n

n

0

•
•
•
•
•
• •
• •
• •
• •

n

where the bullets denote the non-trivial elements. See [CC] for details. �

Example 6.11. The above theorem gives formality for the following spaces:rHypersurfaces with isolated singularities.rComplete intersections with isolated singularities.rProjective varieties whose singularities are ordinary multiple points.rProjective cones over smooth projective varieties.

Example 6.12. The Segre cubic S is a simply connected projective threefold with 10 ordinary singular
points, and is described by the set of points (x0 : x1 : x2 : x3 : x4 : x5) of CP5

S :
{
x0 + x1 + x2 + x3 + x4 + x5 = 0, x30 + x31 + x32 + x33 + x34 + x35 = 0

}
.

A resolution f :M0,6 −→ S of S is given by the moduli space M0,6 of stable rational curves with

6 marked points, and f−1(Σ) =
⊔10
i=1CP1 × CP1, where Σ = {σ1, · · · , σ10} is the singular locus of S.
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Real representation of the Segre cubic

By Example 5.1 we have

E∗,∗1 (S) ∼=

Q
0

Q16 � Q10

0 0

Q16 → Q20

0 0

Q11 � Q10

=⇒ E∗,∗2 (S) =

Q
0

Q6 0

0 0

Q Q5

0 0

Q 0

.

Hence S has a non-trivial weight filtration, with 0 6= GrW2 H3(S) ∼= Q5. Since S is simply connected,
we may compute the rational homotopy groups π∗(S)⊗Q with their weight filtration from a minimal
model of E∗,∗2 (S) ∼= Q[a, b1, · · · , b5, c0, · · · , c5, e] with the only non-trivial products a2 = c0 and a3 = e.
The bidegrees are given by |a| = (0, 2), |bi| = (1, 2), |ci| = (0, 4) and e = (0, 6). In low degrees:

GrW2 π2 ∼= Q, GrW2 π3 ∼= Q5, GrW4 π4 ∼= Q5, GrW3 π5 ∼= Q10, GrW5 π5 ∼= Q5,

GrW4 π6 ∼= Q25, GrW5 π6 ∼= Q25, GrW4 π7 ∼= Q40, GrW5 π7 ∼= Q50, GrW7 π7 ∼= Q26.

We leave as an exercise to compute the higher degrees.
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