
SEMINAR: ELLIPTISCHE FUNKTIONEN UND MODULFORMEN (HS13)

VICTORIA HOSKINS

Organisation

Participants should attend all talks and are strongly encouraged to ask questions. Each par-
ticipant will be assigned a topic to present in the seminar (see below, for a brief summary of
each topic). Each seminar will last 90 minutes and you should prepare written notes for your
presentation. The written notes for your talk should be submitted to me two weeks before the
date of your presentation for checking. We will then meet to discuss any necessary changes.

Seminar time: Wednesdays, 13-15hr (Y27 H28).

Summary of topics

(1) Meromorphe Funktionen (Seiten 152-158 in [1]).
We give C̄ = C ∪ {∞} a topology and define a notion of meromorphic functions on

open subsets D ⊂ C̄; we show they form a field M(D). We define the Laurent expansion
at ∞ and give notions of ∞ being a removable singularity, pole or essential singularity.
We prove every meromorphic function on C̄ has a non-essential singularity at ∞ and
that every analytic function f : C̄ → C is constant. We view S2 as a model for C̄ and
call it the Riemann sphere. A Möbius tranformation is a type of bijective mapping of
the Riemann sphere to itself; we prove these form a group isomorphic to PGL(2,C)
(the quotient of GL(2,C) by the subgroup of scalar matrices {tI : t 6= 0}) which is also
isomorphic to the set of (meromorphic) automorphisms of C̄.

(2) Satz von Mittag-Leffler (Seiten 166-171 in [2]).
Given a discrete subset of points P in an open set U ⊂ C and ha(z) ∈ C[1/(z − a)]

for each a ∈ P (so ha looks like the principal part of a Laurent expansion of a mero-
morphic function at a pole a), the Mittag-Leffler theorem states there is a meromorphic
function on U whose poles are precisely the set P and furthermore the principal part
of the Laurent expansion of f at a is ha. Thus the Mittag-Leffler theorem gives us a
meromorphic function with prescribed poles.

(3) Weierstrasscher Produktsatz (Seiten 172-177 in [2]).
Given a discrete subset of points N ⊂ C and orders of vanishing na ≥ 1 for each

a ∈ N , we ask if there is an entire function (that is, holomorphic on the complex plane)
whose zero set is precisely N and the order of each zero a ∈ N is na. If f is a solution,
then we see that ehf is also a solution for any other entire function h. For finite zero
sets N , one can immediately construct a polynomial with the prescribed zeros. When
N is infinite, if we order the zeros ai ∈ N so that 0 = |a0| < |a1| ≤ |a2| ≤ . . . , then the
Weierstrass factorization theorem gives a solution as an infinite product of ‘elementary
factors’ ui(z) indexed by the zeros ai ∈ N .

(4) Liouvillesche Sätze (Seiten 251-260 in [1]).
An elliptic function is a meromorphic function on the complex plane such that f(z+

w) = f(z) for all points w in a lattice L = Zw1 + Zw2 ⊂ C where wi are R-linearly
independent. By the first Liouville theorem, every elliptic function without poles is
constant. The second and third theorems concern the residues of an elliptic function at
its poles and the ‘order’ of an elliptic function. It then follows that an elliptic function
has an equal number of poles and zeros (counting modulo the lattice) and there are no
order 1 elliptic functions. The quotient C/L can be geometrically realised as a torus (i.e.
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a compact Riemann surface of genus 1) and we can view elliptic functions as functions
on C/L.

(5) Weierstrassche ℘-Funktion (Seiten 262-271 in [1]).
We now construct the most basic non-constant elliptic function, the Weierstrass ℘-

Function, which has a single pole of order 2 at the lattice points (i.e. ℘ has pole order
2). The derivative of ℘ is computed and is shown to be an order 3 elliptic function;
by Liouville’s third theorem ℘′ has three zeros (modulo the lattice) which we compute
explicitly. The Laurent expansion of ℘ at z = 0 is computed and the coefficients are
so-called ‘Eisenstein series’ Gk. Finally, the field of elliptic functions K(L) for a fixed
lattice L is shown to be given by K(L) = C(℘) + C(℘)℘′. In fact, after we have proved
the Weierstrass ℘-Function satisfies a certain differential equation in the next talk, we
shall see that we have an isomorphism K(L) ∼= C(X)[Y ]/ < Y 2 − 4X3 + g2X + g3 >
where ℘ 7→ X and ℘′ 7→ Y .

(6) Tori und ebene elliptische Kurven (Seiten 272-279 in [1]).
We firstly prove that the Weierstrass ℘-Function satisfies a differential equation:

℘′(z)2 = 4℘(z)3 − g2℘(z) − g3 where g2 := g2(L) and g3 := g3(L) are constants de-
termined by the lattice L. Complex projective space PnC is the set of punctured lines
through the origin in Cn+1; we can also give it a topology and see it is as a complex
manifold. We refer to P1

C as the Riemann sphere (or projective line) which as a set is
equal to C̄ := C ∪ {∞}. Notions of affine plane curves X ⊂ C2 and projective plane

curves X̃ ⊂ P2
C are given. We define a bijective map from C/L−{[0]} to an affine plane

curve X(g2, g3) ⊂ C2 and show that this can be extended to a bijection from C/L to a

projective completion X̃(g2, g3) ⊂ P2
C of X(g2, g3). We refer to X̃(g2, g3) as the elliptic

curve (associated to the lattice L).
(7) Additionstheorem (Seiten 281-285 in [1]).

Firstly, the addition theorem for the Weierstrass ℘-Function is stated as an equation
relating ℘(z + w) with ℘(z) and ℘(w). From this, we deduce a formula for ℘(2z). As

the torus C/L is an additive group, we can use the bijection C/L → X̃(g2, g3) to give
the elliptic curve a group structure. Then a geometric reformulation of the addition
theorem states if a, b, c ∈ X̃(g2, g3) satisfy a+ b+ c = 0, then they lie on a straight line

M ∼= P1
C in X̃(g2, g3). The initial formulation of the addition theorem is then deduced

from this geometric formulation and a proof of the geometric formulation is given using
a theorem of Abel about the zeros and poles of elliptic functions (see Topic (9)).

(8) Elliptische Integrale und Perioden (Seiten 287-292 in [1]).
Given a degree 3 or 4 polynomial P without repeated roots, we consider the associated

‘elliptic integral’ of the first kind: g(z) :=
∫ z
a 1/

√
P (t)dt (historically such integrals

were used to compute arc lengths of ellipses). The main theorem states that the inverse
function of such an elliptic integral is an elliptic function f . We reduce from degree four
to degree three and then to the case when P (t) = 4t3 − g2t − g3 where g2 and g3 are
constants determined by a lattice L. Using the differential equation for the Weierstrass
℘-function, we deduce that f = ℘ is the inverse of the elliptic integral defined by the
above P . The theory of elliptic functions (e.g. the addition formula) is applied to study
elliptic integrals. Finally we geometrically justify the claim that given (g2, g3) satisfying
∆ := g32 − 27g23 6= 0, there is a lattice L such that (g2, g3) = (g2(L), g3(L)).

(9) Abelsches Theorem (Seiten 294-302 in [1]).
The theorem of Abel describes the permitted zeros and poles (modulo L) of an elliptic

function. We start with a simpler case: consider the quotient of two polynomials as a
function from the Riemann sphere to itself f(z) = P (z)/Q(z) : C̄ → C̄, then f has the
same number of poles as zeros (counted with multiplicity). Abel’s theorem says there is
an elliptic function with prescribed zeros ai and poles bi for i = 1, . . . , n if and only if
a1 + · · ·+an ≡ b1 + · · ·+bn mod L. The hardest direction of the proof - the construction
of an elliptic function with prescribed poles satisfying the above congruence relation -



SEMINAR: ELLIPTISCHE FUNKTIONEN UND MODULFORMEN (HS13) 3

consumes most of the section and two proofs are given: one after Weierstrass and the
other via theta functions.

(10) Gitter und elliptische Modulgruppe (Seiten 305-312 in [1]).
We define an equivalence relation on lattices by L ∼ L′ if L′ = aL for a 6= 0; we see

every L is equivalent to a lattice Lτ := Z + Zτ where τ ∈ H = {z : Imz > 0}. Every
M ∈ GL(2,R) with positive determinant defines a conformal mapping M : H→ H. The
modular group Γ := SL(2,Z) acts on the upper half plane H so that Z + Zτ ∼ Z + Zτ ′
where τ, τ ′ ∈ H if and only if τ ′ = Mτ for M ∈ Γ. We return to the problem of
showing that given (g2, g3) satisfying ∆ := g32 − 27g23 6= 0, there is a lattice L such
that (g2, g3) = (g2(L), g3(L)). For a 6= 0, we relate gi(L) with gi(aL) for i = 2, 3 and
construct an ‘absolute j-invariant’ for lattices as a rational function of the gis so that
j(L) = j(aL). As j is constant on equivalence classes of lattices and every lattice is
equivalent to some Lτ for τ ∈ H, we view it as a function j : H→ C.

(11) Eisensteinreihen und Modulfunktionen (Seiten 313-319 in [1]).
We recall that the Eisenstein series Gk(Lτ ) appear as the coefficients in the Laurent

expansion at 0 of the Weierstrass ℘-function associated to the lattice Lτ where τ ∈ H.
The first result in this section is that the Eisenstein series Gk are analytic functions on
H. We study how they transform under the modular group Γ and their limit as τ →∞.
We prove the j-invariant is a modular function (that is, an analytic function on H which
is Γ-invariant) - only the analytic part remains to be checked. We also prove that there
is a ‘Modulfigur’ F ⊂ H such that every point in H is mapped to a point in F by an
element M ∈ Γ. Finally, the surjectivity of the j-invariant j : H→ C is proved.

(12) Fundamentalbereich der Modulgruppe (Seiten 321-329 in [1]).
We recall that the modular group Γ acts on H and we write Γp for the stabiliser of a

point p ∈ H under this action. We say p is an elliptic fixed point of Γ is this stabiliser
contains an element other than ±I. Recall that the upper half plane H is covered by
translates MF of the ‘Modulfigur’ F ⊂ H as M ranges over Γ; we next classify the
elements M ∈ Γ, such that F ∩MF 6= ∅ and also describe this intersection. Finally we
see that for M ∈ Γ the following are equivalent: M has a fixed point in H; M had finite
order; and either M = ±I or M is an ‘elliptic element’ of M (that is, |Tr(M)| < 2).
Hence, the elliptic fixed points in H correspond precisely to the elliptic elements of Γ.

(13) Komplexe Fourierreihen und k/12-Formel (Seiten 147-150, 330-335 in [1]).
Generalising the notion of a modular function, we define a (weight k) modular form

to be an analytic function f : H → C which satisfies some equation (depending on k)
describing how f transforms under the modular group Γ and is ‘holomorphic as z → i∞’.
We can also speak about meromorphic modular forms which are meromorphic functions
from H to the Riemann sphere C̄. Every (meromorphic) modular form has a Fourier
expansion and associated Laurent expansion in a punctured disc around zero; we use this
to extend the modular form to H∪{i∞} and require that i∞ is a removable singularity
or perhaps a pole (if the modular form is meromorphic). The k/12-formula can be seen
as an analogue of Liouville’s theorem (that an elliptic function has an equal number of
poles and zeros): more precisely, we see that for a non-zero modular function of order k,
a weighted sum over the orders of all poles and zeros in H ∪ {i∞} (modulo Γ) is k/12.

(14) Algebra der Modulformen (Seiten 335-342 in [1]).
Using the k/12-formula we prove: every modular form of negative weight is zero;

every weight zero modular form is constant and every modular form of positive weight
has at least one zero in H ∪ {i∞}. The Eisenstein series G2k are weight 2k modular
forms for k ≥ 2 and we prove that G4 and G6 have exactly one first order zero each.
We also use the k/12-formula to show that the j-invariant j : H/Γ→ C is bijective. We
prove the field of modular functions (which are precisely the weight zero modular forms)
is equal to C(j). Finally, we study the C-algebra A(Γ) of all modular forms (graded by
order). We use monomials in G4 and G6 to give a finite C-basis of the space of weight k
modular forms and in particular calculate the dimension of this space. The culmination
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of these results is that A(Γ) is a polynomial ring in two variables corresponding to the
Eisenstein series G4 and G6.

(15) Moduli von eindimensionalen komplexen Tori.
The conclusion of our seminar is a description of the moduli space of 1-dimensional

complex tori. A lattice L ⊂ C defines a torus C/L and two tori are biholomorphic if
and only if their corresponding lattices are equivalent (i.e. related by a non-zero scalar).
Therefore, we consider the set of equivalence classes of lattices and try to give this set a
geometric description. We have already seen that every lattice is equivalent to a lattice
Z ⊕ Zτ for τ ∈ H and, moreover, the modular group Γ := SL(2,Z) acts on H such
that the orbits correspond to equivalence classes of lattices. Hence, we consider the
‘moduli space’ M := H/Γ which is a 1-dimensional complex manifold (the Γ-action is
not free, but is properly discontinuous). Finally, we see that the j invariant yields a
biholomorphism M→ C.
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