SEMINAR ON THE REPRESENTATION THEORY OF THE SYMMETRIC GROUP

VICTORIA HOSKINS

A representation of a group is an action of the group on a vector space; that is, for each element in the
group, we have an automorphism of the vector space, and their compositions are compatible with the
group multiplication. In this seminar we will focus on the representation theory of finite groups, and in
particular the symmetric group. Many prominent mathematicians have studied the representation theory
of the symmetric group, such as Frobenius, Schur and Young. The representation theory of the symmetric
group also has strong connections to combinatorics, geometry and topology, as well as applications to
other branches of mathematics, such as mathematical physics. Every representation is built out of
irreducible representations and the main aim will be to describe these irreducible representations for the
symmetric group combinatorially using partitions and certain diagrams, called Young diagrams. This
forms the foundations for studying the representation theory of matrix groups like the general linear
group (and, more generally, Lie groups).

Prerequisites: Students attending this seminar should have completed LAI and LAII.
Literature: The main reference is the book of Sagan [3]. Other good sources are [2,4,5].

Guidlines for the talks:

e The talks are given either in English or German and should last approximately 80 minutes to
allow for 10 minutes of questions.

e Participants are expected to discuss their talk with the lecturer the week before they are scheduled
to speak (and bring with them a draft of their talk notes).

e The focus of the talk should be on the mathematical arguments, rather than on historical remarks.

e All required definitions and mathematical claims should be clearly stated; in particular, the
definitions of all terms in italics in the descriptions below should be given.

e The speaker should make sure that the assumptions and the claim are clear, in order for the
other participants to be able to follow proofs and explanations.

e All talks should take place at the blackboard.

DESCRIPTION OF THE TALKS

Talk 1: Algebraic foundations. We recall some basic definitions and properties of groups, rings,
fields, modules and algebras; this talk is given by the lecturer.

Talk 2: The symmetric group and its conjugacy classes. Give the definition of the symmetric
group S, and describe the two-line notation and cycle notation for permutations m € S,, (provide examples
of both notations). Define the cycle type of a permutation and explain how this can be encoded using
partitions (the definition of a partition should also be given). Define the conjugacy relation on a group
G and show that this is an equivalence relation; then define the conjugacy classes to be the equivalence
classes. Prove that the conjugacy classes in S,, are in bijection with the set of partitions of n (for more
details, see [2, 1.2.1 and 1.2.6]). Prove that the order of the centralizer group of a permutation with cycle
type given by a partition A can be expressed in terms of A (that is, prove [3, Proposition 1.1.1]). Finally
prove that S, is generated by n — 1 transpositions (see [2, 1.1.16-17]) and, using transpositions, define
the sign of a permutation, which gives a group homomorphism sgn :.S,, - {1}.

References. The primary reference is [3, Section 1.1]; for more details, see also [2, Section 1.1-1.2].

Talk 3: Group representations and the group algebra. For a group G, give the definition of a
(complex) matriz representation p: G — GLg of G of degree! d; then explain how this defines an action of
G on C?. Explain the examples of the sign representation and the defining representation of S,. Define
a (complex) G-module, and explain how a (complex) matrix representation of G of degree d determines a

1Usually d is referred to as the dimension of p; however, in [3], this is called the degree and one writes deg(p) = d
1
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G-module structure on V = C%. Conversely, describe how for a G-module V', one can define an associated
matrix representation pg : G — GL4 of G of degree d := dim(V') by choosing a basis B of V. Explain how
the representations pg and p¢ are related for different choice of bases B and C of a G-module V.

For a group G acting on a finite set .5, define the associated permutation representation as a G-module
(for S,, acting on the set {1,...,n}, this is the defining representation); for the action of a finite group
G on itself by left multiplication, this gives the (left) reqular representation whose associated G-module
has the structure of a C-algebra and is called the group algebra and denoted C[G]. Another example is
the (left) coset representation associated to a subgroup H < G; explain how the regular representation
is a special case of this. Examples of these representations should also be presented. If there is time,
explain that a representation of G is the same as a (left) C[G]-module (see [5, Section 1.1])
References. The primary reference is [3, Sections 1.2-1.3]; see also [5, Section 1.1].

Talk 4: Reducibility and Maschke’s Theorem. Define a G-submodule of a G-module and give the
definition of a reducible (resp. irreducible) G-module V; then explain how the reducibility of V' can be
equivalently formulated in terms of the matrix representation pp having a block upper triangular form
with respect to some basis B of V. Explain when the defining representation of .S,, is reducible and when
the group algebra C[G] is reducible.

Recall the notion of (internal) direct sums and linear complements of vector subspaces; then define
the analogous notion of (G-)complements for G-submodules and rephrase this in terms of matrix rep-
resentations. Explain how one can define a G-complement of a G-submodule W c V' using an inner
product on V that is invariant under the G-action on V (see [3, 1.5.2]). Then, for a finite group, describe
how to produce such an invariant innner product from any inner product on V by averaging over the
group and state and prove Maschke’s Theorem, which asserts that for a finite group G,any non-zero
G-module decomposes into a direct sum of irreducible representations. Finally introduce the notion of a
completely reducible G-module and rephrase Maschke’s Theorem in this language. Examples should be
given throughout and, if there is time, an example should be given to show that the finiteness condition
on (G in Maschke’s theorem cannot be dropped.

References. The primary reference is [3, Sections 1.4-1.5]; see also [5, Section 1.2].

Talk 5: Schur’s Lemma and the commutant algebra. Give the definition of a G-homomorphism
and G-isomorphism between G-modules V' and W; then explain how to rephrase this in terms of the
matrix representations associated to bases of ¥V and W. Provide some examples (with focus on the
symmetric group; however, [3, Example 1.6.3] can be skipped, as it requires some terminology from
later on). Prove that the kernel and image of a G-homomorphism are G-submodules [3, Proposition
1.6.4] and then state and prove Schur’s Lemma, which says that any non-zero G-homomorphism be-
tween irreducibles G-modules is an G-isomorphism, and provide the corresponding statement for matrix
representations [3, Corollary 1.6.7]. State and prove [3, Corollary 1.6.8] for irreducible complex matrix
representations.

Define the commutant algebra Com(p) of a matrix representation p : G - GLg4 and the endomorphism
algebra End(V') of a G-module V' ( [3, Definition 1.7.1]); then explain why these are C-algebras and show
that the commutator algebra of a matrix representation pp associated to a basis B of a G-modules V'
is isomorphic (as an algebra) to the endomorphism algebra of V; that is Com(pg) ~ End(V'). Finally,
describe the commutant algebra of a representation p which is a direct sum of two non-isomorphic (resp.
isomorphic) representations [3, Examples 1.7.2-3].

References. The primary reference is [3, Sections 1.6 & 1.7.1-1.7.3]; see also [5, Section 2.1].

Talk 6: Tensor products of matrix representations and the commutant algebra. Define the
tensor product X ® Y of square complex matrices X € Maty and Y € Mat, as a de x de-matrix [3,
Definition 1.7.4]. Recall the definition of the commutant algebra Com(p) of a matrix representation
p: G - GLg from the previous week (see [3, Definition 1.7.1]). For a representation p, which has a
decomposition p = Eszl(pi)@m" where p; are pairwise non-isomorphic irreducible matrix representations
as given by Maschke’s Theorem, describe Com(p) using tensor products of matrices and compute deg(p)
and dim Com(p) in terms of m; and d; := deg(p;)’s (see [3, page 25-26]). Give the definition of an abstract
tensor product V@ W of two (finite dimensional complex) vector spaces V and W as in [1, Definition
3.1] and outline the construction of the tensor product [1, Theorem 3.2]; moreover, explain that if
A={vi,...,v,} and B = {wy, -, wy, } are bases of V and W, then {v;®w; :1<i<n,1<j<m} is a basis
of Ve W (thus dim(V @ W) = dim(V) dim(W)) [1, Theorem 3.3]. If V = Maty and W = Mat,, explain
that there is an isomorphism Mat,; ® Mat, @ Matg. and that the tensor product of matrices defined above
uses this isomorphism.
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Define the center Z, of a C-algebra A and prove that Zy.s, = C [3, Proposition 1.7.6]. State and
prove [3, Theorem 1.7.8] which describes Com(p) and its center; then state the alternative formulation
of this result in terms of G-modules and endomorphism algebras [3, Theorem 1.7.9] and also state [3,
Proposition 1.7.10].

References. The primary reference is [3, Section 1.7].

Talk 7: Group characters and the character table. Define the character tr(p) : G — C of a matrix
representation p : G - GL4. For a G-module V', define the character of V' by using a basis of V' (and
check this is independent of the choice of basis). Give the notions of #rreducible characters and linear
characters. Compute the character of the defining representation of S,, and the regular representation
C[G] of a finite group G. State and prove [3, Proposition 1.8.5] on the properties of characters. Define
the set R(G) of all class functions on G and prove that R(G) is a C-vector space and compute dim R(G)
by finding a basis indexed by the conjugacy classes in G.

Define the character table of a finite group G; make the remark that we do not yet know that there
are only finitely many irreducible representations of G, but we will eventually prove that the number of
irreducible representations of G is equal to the number of conjugacy classes of G and so the character
table is always finite and square. Compute a few examples of character tables. As a step towards proving
that the character table is square, introduce the inner product of two functions G — C and prove the
inner product of two group characters is given by the formula in [3, Proposition 1.9.2]; then explain the
special version of this formula for class functions (see [3, p. 35]).

References. The primary reference is [3, Sections 1.8 & 1.9.1-1.9.2]; see also [5, Section 3.1].

Talk 8: Orthogonality relations for characters. Start by recalling the definition of the inner product
of two group characters from the previous talk. Prove that irreducible characters are orthonormal with
respect to this inner product; that is, state and prove [3, Theorem 1.9.3]. Then state and prove [3,
Corollary 1.9.4], which says that for a matrix representation p with a decomposition p = @le(pi)@mi
where p; are pairwise non-isomorphic irreducible representations as in Maschke’s Theorem, the associated
character x = tr(p) can be written in terms of the characters x; = tr(p; ), and moreover the inner products
of all these characters can be computed, which gives an equivalent formulation of irreducibility of p.
Using these results give a full description of the character table of S3. Compute the character of the
complement of the trivial representation C{1 + --- + n} in the defining representation of S,,. Finally,
apply Maschke’s Theorem to give a decomposition of the group algebra C[G] into a direct sum of non-
isomorphic irreducible representations with multiplicities and state and prove [3, Proposition 1.10.1]
about the properties of this decomposition.

References. The primary reference is [3, Sections 1.9 & 1.10.1]; see also [5, Section 3.2].

Talk 9: Consequences of the orthogonality relations. State and prove [3, Proposition 1.10.2],
which says that the set of irreducible characters of G form a basis for the space R(G) of class functions
on G; here all the necessary ingredients should be recalled. As a corallary, deduce that the number of
irreducible characters of G' equals the number of conjugacy classes in GG, which proves that the character
table is finite and square. Then state and prove [3, Theorem 1.10.3], and explain how this gives an
alternative method to compute character tables.

Define the tensor product of two matrix representations (for two groups G and H), prove that this is
a matrix representation of G x H and compute its character [3, 1.11.1-2]. Explain that when V and W
are two modules for groups G and H, then the tensor product V @ W (as vector spaces) has a natural
G x H-module structure and moreover p 45 = p4 ® pg for bases A and B of V and W, where A® B is the
associated basis of V' @ W. Prove that the irreducible representations of G and H completely determine
the irreducible representations of G x H; that is, state and prove [3, Theorem 1.11.3].
References. The primary reference is [3, Sections 1.10 & 1.11]; see also [5, Section 3.3].

Talk 10: Restricted and induced representations. For a subgroup H < G, define the restriction to
H of a representation of G and prove that this is a representation of H. Conversely given a representation
of H, explain how to define the induced representation of G using representations of the set of left H-
cosets; then prove that this is a representation of G (that is, state and prove [3, 1.12.3-4]). Furthermore,
show that this definition is (up to isomorphism) independent of the choice of representatives of these
cosets [3, Proposition 1.12.5]. Provide some examples of restriction and induction. Then prove a formula
for the character of an induced representation and state and prove Frobeinus reciprocity [3, Theorem
1.12.6], which relates the inner products of restricted and induced characters.

References. The primary reference is [3, Section 1.12]; see also [5, Sections 4.2 & 4.3].
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Talk 11: Young tabloids and dominance. We now focus our attention on the symmetric group S,,.
Recall that the conjugacy classes in .S, are in bijection with the set of partitions of n and also in bijection
with the set of irreducible representations of S,,. For a partition A of n, define: the Ferrer’s diagram of
shape \, the Young subgroup Sy < S,, and the induced module V* associated to this subgroup, a Young
tableau of shape X\ and the equivalence relation on Young tableaux of shape A whose equivalence classes
are called Young tabloids of shape ), and then finally the permutation module M* (see [3, 2.1.1-2.1.5]
and provide examples). Prove that M* is a cyclic G-module and compute its dimension, and then show
that M* =~ V* as S,-modules [3, Theorem 2.1.12].

Give an overview of our strategy to describe all irreducible representations of S,: since M* will
not be irreducible in general, we plan to find an ordering of partitions of n such that the associated
permutation module for the first partition is irreducible and each M?* is a sum of irreducibles appearing
in lower permutation modules plus a unique new irreducible representation S* called the associated
Specht module (we will prove that the Specht modules give a full set of irreducible representations of
Sn). The required ordering on partitions is called dominance. First recall the notion of a partial (resp.
total) order on a set as a relation. Then define the dominance relation on the set of partitions of n and
describe how one can construct the associated Hasse diagram for this partial order (draw this diagram
for some small values of n). Prove the dominance lemma for partitions and prove that the lexicographic
order refines the dominance order [3, 2.2.2-6].

References. The primary reference is [3, Sections 2.1 & 2.2].

Talk 12: Specht modules and the main result. Recall our strategy to describe all irreducible
representations of S,,: we plan to prove that the dominance ordering of partitions of n has the property
that the associated permutation module for the lowest partition 1" is irreducible and each M?* is a sum
of irreducibles appearing in lower permutation modules plus a unique new irreducible representation S*
which is called a Specht module. In this talk we will prove this statement and show that the Specht
modules give a full set of irreducible representations of S,,. First to define the Specht modules, we define
the row and column stabilizers of a Young tableau and associated polytabloid, prove some propeties of
these definitions [3, Lemma 2.3.3], and define the Specht module S* to be the submodule of M* equal
to the span of all polytabloids of shape . Show that S* is cyclic and the lowest Specht module (") is
the sign representation. (Optional): Calculate the Specht modules for n = 3.

To prove our main result (that the Specht modules give a full set of irreducible representations of Sy, ),
we need to prove the Submodule Theorem. First prove the Sign Lemma and deduce two corollaries [3,
2.4.1-2.4.3]; then state and prove the Submodule Theorem and, in particular, explain why this implies
the Specht modules are irreducible. Finally, prove [3, Proposition 2.4.5] and from this deduce the main
result of the seminar [3, Theorem 2.4.6].

References. The primary reference is [3, Sections 2.3 & 2.4].

Talk 13: TBA.
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