Algebra III (Algebraic Geometry II) WS15-16 Fachbereich Mathematik und Informatik J-Prof. Victoria Hoskins Teaching Assistant: Eva Martínez

Algebraic Geometry II

Exercise Sheet 3

Hand-in date: 10am, Monday 2nd November.

Exercise 1. Consider the action of $GL_n \times GL_m$ on $Mat_{n \times m}$ by

$$(g,h)\cdot M = gMh^{-1}.$$

Classify the orbits of this action and determine the open and closed orbits, as well as the closure of each orbit.

Exercise 2. Let G be an algebraic group scheme (over k).

- i) Prove that G is separated. In particular, G is a group variety if and only if G is reduced.
- ii) Prove that G is reduced if and only if G is smooth.
- iii) Prove that the reduced scheme G_{red} underlying G is a smooth subgroup of G.
- iv) Prove that if G is connected, then G is irreducible.

Exercise 3. Let n > 1 and consider the moduli functor $\mathcal{E}nd_n$ classifying endomorphisms of an n-dimensional space.

- i) Show that there is a natural transformation $\eta: \mathcal{E}nd_n \to h_{\mathbb{A}^n}$ such that $\eta_{\operatorname{Spec} k}$ sends an endomorphism $T: V \to V$ of an n-dimensional vector space V to the coefficients of the characteristic polynomial of T.
 - [Hint: For a family (\mathcal{E}, T) over S, choose a covering S_i of S on which \mathcal{E} is trivial and a basis of generating sections of $\mathcal{E}|_{S_i}$, then interpret T as a $n \times n$ -matrix with coefficients in $\mathcal{O}(S_i)$.]
- ii) Define a new moduli functor $\mathcal{E}nd_n^{ss}$ classifying semisimple endomorphisms of an n-dimensional space by
 - $\mathcal{E}nd_n^{ss}(S) := \{(\mathcal{E},T) \text{ family of endomorphisms over } S: T_s \text{ is semisimple for all } s\}/\sim_S.$

Prove that the restriction of the above natural transformation to $\mathcal{E}nd_n^{ss}$ is a bijection at the level of k-points.

- iii) Show that \mathbb{A}^n is a coarse moduli space for $\mathcal{E}nd_n^{ss}$. [Hint: To show universality with respect to all natural transformations $\mathcal{E}nd_n^{ss} \to h_N$, it may help to first assume N is affine and then cover N by affines.]
- iv) Is \mathbb{A}^n a fine moduli space for $\mathcal{E} nd_n^{ss}?$