Complex Analysis SS15 Fachbereich Mathematik und Informatik J-Prof. Victoria Hoskins Teaching Assistant: Alejandra Rincón

Complex analysis Summer semester 2015

Exercise Sheet 7

Hand-in date: 12:00, Friday 29th May.

Exercise 1. Let $D \subset \mathbb{C}$ be a domain and $\{f_n : D \to \mathbb{C}\}_{n \in \mathbb{N}}$ be a sequence of analytic functions which converges compactly to $f : D \to \mathbb{C}$. Prove that f is analytic and the sequence of kth derivatives $\{f_n^{(k)} : D \to \mathbb{C}\}_{n \in \mathbb{N}}$ converges compactly to $f^{(k)}$. [Hint: to prove f is analytic, use Morera's Theorem.]

Exercise 2. Determine the radius of convergence of the Taylor series expansions of the following functions at the origin 0 and write down their Taylor series in an open ball around the origin:

- $a) \qquad \frac{2z+1}{(z^2+1)(z+1)^2}$
- $b) \qquad \exp(z)\cos(z)$
- c) $\sin^2 z$

Exercise 3. Let $f: \overline{D_r(a)} \to \mathbb{C}$ be a continuous function on the closed ball which is analytic on the open ball $D_r(a)$. Prove the following statements:

a) The modulus |f| attains its maximum on the boundary $\partial D_r(a)$. Furthermore, if f is non-constant, then for $z \in D_r(a)$,

$$|f(z)| < \max\{|f(w)| : w \in \partial D_r(a)\}$$

b) If f has no zeros in $D_r(a)$, then |f| attains its minimum on $\partial D_r(a)$. Furthermore, if f is non-constant, then for $z \in D_r(a)$,

$$|f(z)| > \min\{|f(w)| : w \in \partial D_r(a)\}$$

c) If |f| is constant on the boundary $\partial D_r(a)$, then show either f is constant or f has a zero.