

Theoretical Possibilities for Increase of RES-e in Slovenia

University of Ljubljana - Faculty of Mechanical Engineering Center for Energy and Environmental Technologies (CEET) Laboratory for Heating, Sanitary and Solar Technology (LOS)

Dr. Uroš Stritih, Prof. Dr. Vincenc Butala, Gregor Zupan

- Primary energy: 293,3 PJ
- Final energy: 194,2 PJ
- Electrical energy consumption: 45 PJ

$1 \text{ PJ} = 1 \cdot 10^{15} \text{ J} = 277,77 \text{ GWh}$

HYDRO ENERGY₁

• Four main rivers in Slovenia are used in this evaluation (Sava, Drava, Soča and Mura).

• Length of river in Slovenia and on border:

- SAVA: 221 km
- DRAVA: 142 km
- SOČA: 96 km
- MURA: 95 km

HYDRO ENERGY 2

• Whole potential of four main rivers in Slovenia:

Q = 52,2 PJ/a

 Whole potential of electrical energy production from hydro power plants in Slovenia (η = 80%):

 $Q_{el} = 41,7 \text{ PJ/a}$

SOLAR ENERGY₁

- Theoretical potential of solar radiation comprises the whole amount of solar energy falling to the earth.
- Average value of annual solar radiation in Slovenia: 3102,6 Wh/m²dan

SOLAR ENERGY₂

• Theoretical potential of solar radiation in Slovenia:

Q = 82.580 PJ/a

• Theoretical potential of solar radiation without fields, rivers, lakes and roads: Q = 16.980 PJ/a

- Theoretical potential of solar radiation with consideration of all roofs in houses: Q = 308,6 PJ/a
- Theoretical potential of electrical energy production ($\eta = 10\%$):

 $Q_{el} = 30,8 \text{ PJ/a}$

WOOD BIOMASS

• Theoretical potential at burning whole wood biomass:

Q = 2.385 PJ/a

• Theoretical potential at burning allowed increase (57%):

Q = 34,5 PJ/a

• Allowed increase used in a steam turbine ($\eta = 30\%$):

 $Q_{el} = 10,35 \text{ PJ/a}$

BIOGAS

• Theoretical potential at burning whole amount of landfill gas (stored waste):

Q = 1,77 PJ/a

• Theoretical potential of electricity production from landfill gas ($\eta = 30\%$):

 $Q_{el} = 0,531 \text{ PJ/a}$

• Theoretical potential at burning whole amount of sewage sludge gas (wastewater treatment plants):

Q = 0,896 PJ/a

• Theoretical potential of electricity production ($\eta = 30\%$):

 $Q_{el} = 0,268 \text{ PJ/a}$

• Theoretical potential at burning whole amount of biogas from animal waste (pigs, caws, horses, chickens):

Q = 25,5 PJ/a

• Theoretical potential of electricity production ($\eta = 30\%$):

 $Q_{el} = 7,65 \text{ PJ/a}$

• Theoretical potential at planting all farm lands (490.000 ha) with feed beet:

Q = 71,66 PJ/a

• Theoretical potential at planting areas in growing over (60.000 ha):

Q = 8,74 PJ/a

• Theoretical potential of electricity production from growing areas ($\eta = 30\%$):

 $Q_{el} = 2,62 \text{ PJ/a}$

• Theoretical potential of wind energy in Slovenia (0,1 % of solar energy changes into the wind energy).

Q = 82,6 PJ/a

• Theoretical potential of electricity production from wind energy ($\eta = 59\%$):

 $Q_{el} = 48,7 \text{ PJ/a}$

GEOTHERMAL ENERGY

- Geothermal energy is the energy in the interior of the earth and the energy which is produced by radioactive decay in the earth.
- Theoretical potential of geothermal energy calculated on Slovenian area:

Q = 19,7 PJ/a

 Theoretical potential of electricity production from geothermal energy in Slovenia (η = 5,5%):

 $Q_{el} = 1,08 \text{ PJ/a}$

• Theoretical potentials for electricity from RES and evaluation of actual situation on this field.

	Theo. poten. for electricity (PJ)	Actual situation in (PJ)	Utilized potential (%)
Hydro energy	41,7	15,28	36,6
Solar energy	35	0,1.10-6	0,28 ·10 ⁻⁶
Wood biomass	10,35	0,32	3,1
Landfill gas	0,531	0,14	26,3
Sewage sludge gas	0,268	0,05	18,6
Biogas from animal waste	7,65	0,018	0,23
Vegetable biomass	2,62	0	0
Wind energy	55,3	0	0
Geothermal energy	1,08	0	0

UTILIZED POTENTIAL

Thank you very much for your attention

Dr. Uroš Stritih

University of Ljubljana – Faculty of Mechanical Engineering

E-mail: uros.stritih@fs.uni-lj.si