#### EVALUATION OF COSTS ENSUING FROM THE KYOTO PROTOCOL TO ITALY'S ELECTRICITY SECTOR

**Michele BENINI** 





# Summary

- The EU Emissions Trading System (ETS) and the Italian National Allocation Plan (NAP)
- Simulation of the impact of EU ETS on the Italian electricity sector
- **Evaluation of the increment of the system variable costs**
- □ Valorization of the "opportunity costs"
- Conclusions

# **EU Emissions Trading System (ETS) – Cap and Trade**

- $\Box$  A "cap" is set on the total CO<sub>2</sub> emissions
- An amount of emission allowances equal to the "cap" is allocated for free to the plants of the regulated sectors, according to the National Allocation Plan (NAP)
- □ If a plant emits more than the allocated allowances the owner must buy additional allowances on the market
- □ If a plant emits less than the allocated allowances, the owner can sell the "saved" allowances on the market



# **Italian National Allocation Plan (NAP)**

- Total annual average quantity of allowances allocated for 2005÷2007 is 222.2 MtCO<sub>2</sub>
- Emissions were 221.54 MtCO<sub>2</sub> in 2000 and 210.2 MtCO<sub>2</sub> (estimated) in 1990

|                            | 2005                 | 2006                 | 2007                 |
|----------------------------|----------------------|----------------------|----------------------|
|                            | [MtCO <sub>2</sub> ] | [MtCO <sub>2</sub> ] | [MtCO <sub>2</sub> ] |
| Total allocated allowances | 221.79               | 224.87               | 219.81               |

# **Italian NAP – Electricity Sector**

Total annual average quantity of allowances allocated to the thermoelectric sector for 2005÷2007 is 131.1 M **l**t 0.559% of all the regulated ETS sectors) MtCO<sub>2</sub>/MWh Emissions were 132,94 MtCO<sub>2</sub> in 2000 and 117.7 MtCO<sub>2</sub> (estimated) in 1990 -26% 0.44MtCO<sub>2</sub>/MWh 2005 2006 2007  $[MtCO_2]$ [MtCO<sub>2</sub>] [MtCO<sub>2</sub>] 0.37MtCO<sub>2</sub>/MWh **Total allocated allowances** 128.41 131.08 133.81 (thermoelectric sector, both CHP and non-CHP)

# **Italian NAP – Electricity Sector**

- The "thermoelectric sector" includes plants (both CHP and non-CHP) with a combustion power greater than 20 MW (thermal), that deliver to the network at least 51% of the electric energy produced
- Allowances allocation to CHP plants (at least 15% ratio between thermal energy and total energy produced) is performed on the basis of their average "historical" emissions in 2000÷2003
- Allowances allocation to non-CHP plants is performed on the basis of their estimated working hours in 2005÷2007
- "Historical" data for non-CHP plants are not meaningful, due to the big changes the Italian generation set is undergoing (dismission of several oil fired units, construction of several CCGT units)

# **Allowances allocation to non-CHP plants**

Allocation to each non-CHP plant is carried out according to the following formula:

 $Q_A = P \times h \times \alpha / 1000$ 

Q<sub>A</sub> is the quantity of allowances [tCO<sub>2</sub>]
P is the electric power of the plant [MW]
h are the conventional yearly working hours
X is the emission coefficient [kgCO<sub>2</sub>/MWh]

| Plant type | α [kgCO₂/MWh] | h (2005) | h (2006) | h (2007) |
|------------|---------------|----------|----------|----------|
| Coal fired | 913           | 6900     | 6900     | 6900     |
| Oil fired  | 726           | 1800     | 900      | 900      |
| CCGT       | 396           | 6600     | 5900     | 5500     |
| OCGT       | 579           | 50       | 50       | 50       |

# **EU Allowances (EUA) trades**



CESI

# Impact of EU ETS on the electricity sector

The cost of the CO<sub>2</sub> (price of the EUA) affects the different power plants according to their emission coefficients that, in turn, depend on the "carbon intensity" of the fuel and on the plant efficiency

| Fuel | Lo   | wer Calorific<br>Power                  | CO <sub>2</sub> from combustion |                                                      | [tCO <sub>2</sub> /Gcal] |  |
|------|------|-----------------------------------------|---------------------------------|------------------------------------------------------|--------------------------|--|
| Coal | 6,3  | [Gcal/t]                                | 2,482                           | [tCO <sub>2</sub> /t]                                | 0,39                     |  |
| Gas  | 8,25 | [Gcal/10 <sup>3</sup> Sm <sup>3</sup> ] | 1,928                           | [tCO <sub>2</sub> /10 <sup>3</sup> Sm <sup>3</sup> ] | 0,23                     |  |
| Oil  | 9,8  | [Gcal/t]                                | 3,078                           | [tCO <sub>2</sub> /t]                                | 0,31                     |  |

# Impact of EU ETS on the electricity sector

□ To assess the impact of EU ETS it is therefore necessary to "internalize" the cost of CO<sub>2</sub> (EUA price) into fuel costs

| Base Fuel Cost<br>(beginning 2005) |            | Extra Fuel Cost [€/Gcal]<br>with an EUA price of: |                |                |                |       |  |
|------------------------------------|------------|---------------------------------------------------|----------------|----------------|----------------|-------|--|
|                                    |            | 10<br>[€/tCO₂]                                    | 20<br>[€/tCO₂] | 30<br>[€/tCO₂] | 40<br>[€/tCO₂] |       |  |
| Cool                               | 54         | 8,64                                              | 2.04           | 7 00           | 11,82          | 15,76 |  |
| Cual                               | [€/t]      | [€/Gcal]                                          | 3,94           | 7,00           |                |       |  |
| Can                                | 213        | 25,81                                             | 2.24           | 4.67           | 7,01           | 9,35  |  |
| Gas                                | [€/10³Sm³] | [€/Gcal]                                          | 2,34           | 4,07           |                |       |  |
| Oil                                | 198        | 20,62                                             | 2.24           | 6.44           | 0.62           | 42.02 |  |
| 0II                                | [€/t]      | [€/Gcal]                                          | 3,21           | 0,41           | 9,02           | 12,03 |  |



# Impact of EU ETS on the electricity sector

- Starting from the fuel costs with "internalized" CO<sub>2</sub> costs, the impact of EU ETS on the electricity sector can be evaluated, under various assumptions, using an electricity market simulator
- We used PROMED, developed by CESI, that simulates the Italian electricity market on a yearly time horizon with an hourly detail and calculates energy prices and productions on the basis of different scenario parameters:
  - fuel costs
  - zonal demand
  - hydro resources available during the year
  - hydro and thermal plants characteristics (fuel mix, consumption curves, minimum and maximum power, start-up / shut-down flexibility, etc.)
  - market zonal topology
  - market players bidding strategy on the power exchange
  - ✤ electric energy imports
  - etc.

# **Evaluation criteria**

- Simulations have been performed on the reference year 2008, assuming the same fuel prices of beginning 2005 and an amount of allocated allowances of 120 MtCO<sub>2</sub> (w.r.t. an amount of 128.41 MtCO<sub>2</sub> allocated for 2007)
- □ Two different evaluation criteria:
  - increment of the system variable costs
  - valorization of the "opportunity costs"



## Simulation results – year 2008



# Simulation results – year 2008



# **Increment of the system variable costs**

# The increment of the system variable costs is due to:

- the variation of the overall fuel mix used by the thermal generation set, due to the "internalization" of CO<sub>2</sub> costs into fuel costs (the higher is EUA price, the less competitive are coal plants w.r.t. CCGTs, the less "cheap" coal is used w.r.t. "expensive" gas)
- the cost of additional EUA the electric system could bear in case the free allowances allocated by the NAP are not sufficient



# Increment of the system variable costs

| EUA price                                               | € / tCO <sub>2</sub> | 10   | 20   | 30   | 40   |  |  |
|---------------------------------------------------------|----------------------|------|------|------|------|--|--|
| Increment of the system variable costs                  |                      |      |      |      |      |  |  |
| Cost due to the variation of the overall fuel mix       | M€                   | 25   | 62   | 293  | 603  |  |  |
| Cost of additional EUA                                  | M€                   | 179  | 327  | 274  | 53   |  |  |
| Increment of the system<br>variable costs               | M€                   | 204  | 389  | 567  | 656  |  |  |
| Average increase of the energy price (demand = 353 TWh) |                      |      |      |      |      |  |  |
| Average price increase<br>(100% costs pass-through)     | €/MWh                | 0,58 | 1,10 | 1,60 | 1,86 |  |  |

# Valorization of the "opportunity costs"

- When a producer "saves" an allowance, he/she can sell it on the market and gain the EUA price
- When a producer "burns" an allowance, even if it was allocated for free, he/she "burns" the opportunity to sell it on the market and gain the EUA price (it is an "opportunity cost", since it is a lost profit)
- The producer could try to "extract" the market value of the "burned" allowance by passing-through its "opportunity cost" on the electric energy price
- The "opportunity cost" is equal to the EUA price, "internalized" in the fuel costs

# Valorization of the "opportunity costs"

| EUA price                                                                                                     | € / tCO <sub>2</sub> | 10   | 20   | 30    | 40    |  |  |
|---------------------------------------------------------------------------------------------------------------|----------------------|------|------|-------|-------|--|--|
| Average increase of the energy price due to the valorization of the<br>"opportunity costs" (demand = 353 TWh) |                      |      |      |       |       |  |  |
| Average price increase<br>(100% pass-through)                                                                 | €/MWh                | 3,53 | 7,88 | 13,29 | 17,78 |  |  |



# **Conclusions**

□ The application of the Kyoto protocol to the Italian electricity sector can increase the electricity prices

- Price increases justified by the increment of the system variable costs ("real" costs) range from 0.58 to 1.86 • /MWh in 2008 (fuel prices of beginning 2005, 120 MtCO<sub>2</sub> freely allocated, EUA price 10÷40 • /tCO<sub>2</sub>)
- Price increases due to the valorization of the "opportunity costs" can be much higher (from 3.53 to 17.78 /MWh)
- Anyway, producers can hardly pass-through 100% of the "opportunity costs" on the price without causing the intervention of the regulatory bodies ...

# **Conclusions**

- Moreover, additional costs could derive from a possible "wrong" allocation of allowances, due to a wrong estimation of plants yearly working hours
- A correct allocation is the one proportional to each plant working hours corresponding to the optimal dispatching that minimizes system costs (perfectly competitive market); this can easily be calculated with a market simulator like PROMED
- In the simulated 2008 scenario, CO<sub>2</sub> emissions decrease significantly only when the EUA price is over 20 • /tCO<sub>2</sub>, due to the high "carbon efficiency" of the Italian generation set, composed by several CCGTs



# Thank you for your attention!

