

EXPERIENCES OF GREEN-X, FORRES, OPTRES.... – LESSONS LEARNED FOR POLICY

Reinhard Haas, Gustav Resch, Claus Huber, Thomas Faber Energy Economics Group (EEG), Vienna University of

Technology,

1. Introduction

- 2. What is the problem / target?
- **3. The model GREEN-X**
- **4. Results GREEN-X**
- **5. Difference in transfer costs**
- 6. Harmonisation ?
- 7. Design criteria for effectiveness
- 8. Conclusions

CORE MOTIVATION:

Heading towards sustainability!

Policy targets for an INCREASE of RES-E!

(e.g. RES-E directive of the EC to increase the share of RES-E)

Is international

burden sharing for

consumer an important goal?

Should the system be implemented on a national or international level? How should the premium costs / burden for consumer be distributed over time?

Method of approach

Minimise transfer costs for consumers = Producer Surplus + Generation costs - Revenues electricity market

Transfer costs for consumers = Extra costs finally to be paid by the final customers

(and in every promotion scheme these costs will finally be paid by the final customers)

by technology

EU 15

Promising future options: Wind energy (on- & offshore), Biomass, Biogas but also emerging new technologies: tidal stream & wave power, solar thermal electricity

EU-10+ and CC by technology

Promising future options: Biomass, Biogas, Wind energy (on- & offshore) but also hydropower

3. The simulation tool Green-X

EU-Project Green-X

The toolbox Green-X

... to simulate various policy strategies for the promotion of RES-E in a dynamic framework on a national or international level

(Current: EU15, end 2005: EU27, future: EU 39???)

RES-E deployment over time EU-15

Investment needs up to 2020 "1000 TWh"

Cost reduction due to technological learning (2002-2020)

...in case of "1000 TWh"-development

TOTAL Transfer costs for society (1000TWh)

5. Differences in transfer COStS – 1. Producer surplus (Assumption: Same cost curves for FIT and TGC)

- Currently: "Competition" between promotion schemes and design features on two levels:
 - * Deployment of RES-e
 - * Public acceptance (Transfer costs...)
- Hopefully, the worst systems will disappear....

How can a harmonised approach look like?

- High investor confidence (stable planning horizon, predictability, creditability);
- Pursue a continuous RES-E policy (no stop-and-go nature);
- Existing capacities and new capacities should not be mixed;
- Financial support given by any instrument should be restricted to the same time frame (e.g. 13 years);
- Encourage competition among the manufacturers;
- Remove non economic barriers
- Compatibility with other policies (climate policy, agricultural policy, demand-side measures);

7. DESIGN CRITERIA FOR EFFECTIVE INSTRUMENTS

SUCCESS CRITERIA FOR FIT's

1 Use a tough stepped premium FIT

2 Decrease over time

3 Limited time frame

FOR QUOTA-BASED TGC's

MAJOR PITFALLS

- **1 Market is to small:**
- e.g. in a small country for one
- technology with very limited potential
- -> Non-Liquid because every single plant is known
- **2 Creation of an artificial market:**
- To many parameters are regulated
- **3 Penalty is to low**

QUOTA: EXISTING VS NEW CAPACITY

Demand Scenarios according to EU Energy Outlook 2030 (DG TREN 2003)

Design of instruments

- The careful design of a strategy is by far the most important success criteria!
- There should be a clear focus on NEW capacities!
- To ensure significant RES-E deployment in the long-term, it is essential to promote a broad portfolio of different technologies
- Encourage competition among manufacturers
- Consider "learning" for price-based strategies
- Ensure credibility of the system! Avoid "stopand-go approaches

Design of instruments

- FIT: rather diversified structure of investors
- Why should competition in the TGC market work if it does not in the conventional electricity market?
- In addition, it is hard to imagine that a Europeanwide TGC market will work disconnected from the large incumbent generators
- Utilities/generators are in favour of TGC because they can make much more money and can easier control the market
- A well-designed (dynamic) FIT system provides a certain deployment of RES-e fastest and at lowest costs for society