image: 0_home_bjoern_Desktop_99_Orga_MeinePublikationen_BJOERN_SBIERSKI_2021_cropped.jpg

Björn Sbierski


I am a postdoc at Tübingen University working in condensed matter theory.
Before, I obtained my PhD under the supervision of Piet Brouwer (Thesis: “On disorder effects in topological insulators and semimetals”, defended May 2016), and joined the Emmy-Noether group of Christoph Karrasch at Freie Universität Berlin for a first postdoc. In 2019-2021, I was a Leopoldina-Postdoc with Joel Moore at the University of California, Berkeley. After that, in 2021-2023 I worked as group leader and START-fellow of the Munich Center for Quantum Science and Technology (MCQST).

Group members

Benedikt Schneider (LMU-DFG)
Ruben Burkhard (Tübingen)
PhD student since 10/2021
MSc thesis since 12/2023
image: 1_home_bjoern_Desktop_99_Orga_MeinePublikationen_BenediktSchneider.jpg

Open positions

Master thesis: “Pseudo-Majorana diagrammatic Monte Carlo for frustrated spin systems” topic taken
Master thesis: “From Ising- to Heisenberg spins via functional renormalization”

Research interests


Publications (ordered according to arXiv submission date)

  1. (32) B. Schneider, J. Reuther, M. Gonzalez, B.S., N. Niggemann: Temperature flow in pseudo-Majorana functional renormalization for quantum spins, accepted in PRB, [ArXiv:2312.14838].
  2. (31) T. Müller, D. Kiese, N. Niggemann, B.S., J. Reuther, S. Trebst, R. Thomale, Y. Iqbal: Pseudo-fermion functional renormalization group for spin models (REVIEW), Rep. Prog. Phys. 87 036501 (2024), [ArXiv:2307.10359].
  3. (30) B.S., M. Bintz, S. Chatterjee, M. Schuler, N.Y. Yao, L. Pollet: Magnetism in the two-dimensional dipolar XY model, PRB 109, 144411 (2024), [ArXiv:2305.03673].
  4. (29) J. Halbinger, B. Schneider, B.S.: Spectral representation of Matsubara n-point functions: Exact kernel functions and applications, SciPost Phys. 15.5.183 (2023), [ArXiv:2304.03774].
  1. (28) B. Schneider, D. Kiese, B.S.: Taming pseudo-fermion functional renormalization for quantum spins: Finite-temperatures and the Popov-Fedotov trick, PRB 106, 235113 (2022), [ArXiv:2209.13484]
  1. (27) E. J. Dresselhaus, B.S., I. A. Gruzberg: Scaling collapse of longitudinal conductance near the integer quantum Hall transition, PRL 129.026801 (2022), [Editors' suggestion] [ArXiv:2112.09847].
  2. (26) N. Niggemann, J. Reuther, B.S.: Quantitative functional renormalization for three-dimensional quantum Heisenberg models, SciPost Phys. 12, 156 (2022), [ArXiv:2112.08104].
  3. (25) B.S., M. Geier, A-P. Li, M. Brahlek, R.G. Moore, J. E. Moore, Identifying Majorana vortex modes via non-local transport, PRB 106, 035413 (2022), [ArXiv:2107.11226].
  4. (24) E. J. Dresselhaus, B.S., I. A. Gruzberg: Numerical evidence for marginal scaling at the integer quantum Hall transition, Annals of Physics 435, 168676 (2021) [ArXiv:2101.01716].
  1. (23) N. Niggemann, B.S., J. Reuther: Frustrated Quantum Spins at finite Temperature: Pseudo-Majorana functional RG approach, PRB 103.104431 (2021) [ArXiv:2012.14836].
  2. (22) B.S., E. J. Dresselhaus, J. E. Moore, I. A. Gruzberg: Criticality of 2d disordered Dirac fermions in the unitary class and universality of the integer quantum Hall transition, PRL 126.076801 (2021) [ArXiv:2008.09025].
  3. (21) B.S., S. Syzranov: Non-Anderson critical scaling of the Thouless conductance in 1D, Annals of Physics 418, 168169 (2020) [ArXiv:2002.12299].
  4. (20) Z. Shi, B.S., P. W. Brouwer: Disorder correction to the minimal conductance of a nodal-point semimetal, PRB 102.024204 (2020) [ArXiv:2002.10353].
  1. (19) B.S., J. Karcher, M. S. Foster: Spectrum-wide quantum criticality at the surface of class AIII topological phases: An "energy stack" of integer quantum Hall plateau transitions, PRX 10, 021025 (2020) [ArXiv:1912.06748] [see also Rice university press release].
  1. (18) B.S., C. Fräßdorf: Strong disorder in nodal semimetals: Schwinger-Dyson–Ward approach, PRB 99.020201 (2019), [ArXiv:1808.09860].
  2. (17) B.S., C. Karrasch: Topological invariants for the Haldane phase of interacting SSH chains -- a functional RG approach, PRB 98.165101 (2018), [ArXiv:1805.00839].
  3. (16) L. Markhof, B.S., V. Meden, C. Karrasch: Detecting phases in one-dimensional many-fermion systems with the functional renormalization group, PRB 97.235126 (2018), [ArXiv:1803.00272]
  1. (15) J. Behrends, F. Kunst, B.S.: Transversal magnetotransport in Weyl semimetals: Exact numerical approach, PRB 97.064203 (2018), [ArXiv:1801.00126].
  2. (14) B.S., C. Karrasch: Second order functional renormalization group approach to one-dimensional systems in real and momentum space, PRB 96.235122 (2017), [ArXiv:1710.06373].
  3. (13) S.-H. Lin, B.S., F. Dorfner, C. Karrasch, F. Heidrich-Meisner: Many-body localization of spinless fermions with attractive interactions in one dimension, SciPost Phys. 4, 002 (2018), [ArXiv:1707.06759].
  4. (12) B.S., K. A. Madsen, P. W. Brouwer, C. Karrasch: Quantitative analytical theory for disordered nodal points, PRB 96.064203 (2017), [ArXiv:1704.08457]
  1. (11) M. Trescher, B.S., P. W. Brouwer, E. J. Bergholtz: Tilted Disordered Weyl Semimetals, PRB 95.045139 (2017), [ArXiv:1611.02513].
  2. (10) B.S., K. Decker, P. W. Brouwer: Weyl node with random vector potential, PRB 94.220202(R) (2016), [Editors' suggestion] [ArXiv:1606.09209].
  3. (9) B.S., M. Trescher, E. J. Bergholtz, P. W. Brouwer: Disordered double Weyl node: Comparison of transport and density-of-states calculations, PRB 95.115104, (2017) [ArXiv:1606.06941].
  4. (8) B.S., M. Schneider, P. W. Brouwer: The weak side of strong topological insulators, PRB 93.161105(R) (2016), [ArXiv:1602.03443]
  1. (7) B.S., E. J. Bergholtz, P. W. Brouwer: Quantum critical exponents for a disordered three-dimensional Weyl node, PRB 92.115145 (2015) [ArXiv:1505.07374].
  2. (6) M. Trescher, B.S., P. W. Brouwer, E. J. Bergholtz: Quantum transport in Dirac materials: Signatures of tilted and anisotropic Dirac and Weyl cones, PRB 91.115135 (2015) [ArXiv:1501.04034] (Featured in the 'Journal Club for Condensed Matter Physics' in a commentary by Carlo Beenakker.)
2014 and earlier
  1. (5) B.S., G. Pohl, E. J. Bergholtz, P. W. Brouwer: Quantum Transport of Disordered Weyl Semimetals at the Nodal Point, PRL 113.026602 (2014) [ArXiv:1402.6653]
  2. (4) B.S. and P.W. Brouwer: Z2 phase diagram of three-dimensional disordered topological insulators via a scattering matrix approach, PRB 89.155311 (2014) [Editors' suggestion] [ArXiv1401.7461]
  3. (3) B.S., M. Hanl, A. Weichselbaum, H. E. Türeci, M. Goldstein, L. I. Glazman, J. von Delft, and A. Imamoglu: Proposed Rabi-Kondo Correlated State in a Laser-Driven Semiconductor Quantum Dot, PRL 111.157402 (2013) [ArXiv1211.6837]
  4. (2) B.S., G. F. Quinteiro and P. I. Tamborenea: Twisted-light-induced intersubband transitions in quantum wells at normal incidence, J. Phys. Condens. Matter 25 385301 (2013) [ArXiv1309.1729] (see also blog post).
  5. (1) B.S., P. Gieschke and O. Paul, Shear Piezoresistance in MOSFET Devices Under General Operating Conditions, IEEE Trans. Electron Devices, vol. 58, no. 12, pp. 4145-4154, (2011).

Conference talks, seminars, posters

2014 and earlier

Selected collaborators

Emil Bergholtz (Stockholm, Sweden)
Piet Brouwer (Berlin, DE)
Matthew S. Foster (Rice University, USA)
Ilya Gruzberg (Ohio State University, USA)
Christoph Karrasch (Braunschweig, DE)
Joel Moore (University of California, Berkeley, USA)
Volker Meden (RWTH Aachen, DE)
Johannes Reuther (Berlin, DE)
Sergey Syzranov (University of California, Santa Cruz, USA)

Thesis supervision

LMU Munich
UC Berkeley
FU Berlin


at Universität Tübingen
at LMU München:
at Freie Universität Berlin: