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Organization

• Lecture: Thursdays 10:15 - 12:00 (room D8H33), start on Oct. 19, 2023 (blackboard lecture, English
language)

• Tutorial session: Wednesdays 12:15 - 14:00 (room D7H33), start on Oct. 25, 2023.

– Tutor: Wilson Santana Martins (wilson.santana-martins@uni-tuebingen.de)
– Weekly homework will be assigned in the lecture on Thursday, each homework contains two exercises.

Solutions are to be handed in via eMail to the tutor or on paper in the tutor’s mailbox on the 8th
floor. Deadline: Tuesday 18:00. The homework will be graded according to a coarse grading scheme
with 0, 1 or 2 points per exercise. In the tutorial session, the graded homework will be handed back
and the solutions will be discussed.

• Requirements to pass the course: (i) at least 50% of all available homework points and (ii) present at
least two exercises on the board in the tutorial session.

• ILIAS: Lecture notes + problem sets in single pdf, please “join” the course.

• Hint: If you electronically annotate the pdf of the lecture notes, the program "PDF Arranger" (for linux)
allows you to merge the newly added sections with your annotated pages.

Prerequisites

• Quantum Mechanics (QM), Solid State Theory, Statistical Physics

Philosophy

• Course time is rather short for the course topic → formalism first, applications second.

• Goal: Learn tools and concepts that can be applied to various condensed matter settings → exercises

Contents

1. Second quantization and applications

2. Mean-field theory

3. Time dependence in quantum theory

4. Green functions (real time)
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5. Equilibrium GF: Imaginary time and Matsubara formalism

6. Measurement: Linear response theory

7. Perturbation theory and Feynman diagrams

8. Interacting electron gas: Random-phase approximation and screening

9. Disordered metals and their conductivity
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1 Second quantization and applications

Idea:

• Find convenient formulation of the formalism of many-body QM beyond symmetrized wavefunctions.

• Despite the name, there is no additional “quantization” step beyond the one of elementary QM: x, p → x̂, p̂
with [x̂, p̂] = iℏ.

• Application to elementary problems.

1.1 First quantization

Single-particle systems

• Single particle (say electron with charge −e) moving in external fields [potentials U(r, t) and A(r, t)]:

H = 1
2m (−iℏ∇r + eA(r, t))2 + U(r, t) (1)

Examples and eigenstates (from elementary QM):

1. No potentials [U = 0, A = 0]: Plane-wave eigenstates |k⟩, labeled by momentum, wavefunction
ψk(r) = ⟨r|k⟩ = eik·r/

√
V ), energy Ek = ℏ2k2/(2m).

2. Harmonic oscillator in d=1 [A = 0, U(x) = mω2x2/2]: Hermite polynomials with Gaussian envelope
|n⟩, n ∈ N , ψn(x) = ⟨x|n⟩ ∝ Hn(x/l)e−x2/l2 with l =

√
ℏ/(mω), energy En = ℏω(n+ 1/2).

3. Electrons in d=2 with B-field in z-direction [Landau gauge A = xBey, U = 0]: Landau level
eigenstates |n, ky⟩ with ⟨r|n, ky⟩ ∝ Hn(x/l − kyl)e−(x/l−kyl)2 1√

Ly
eikyy, energy En,ky = ℏω(n+ 1/2).

• Setup:

– Assume {|ν⟩}ν is the known and complete set of eigenstates of single-particle Hamiltonian H, ν is
the set of quantum numbers ν = (kx, ky, kz) or (n) or (n, ky).

– Recall: Completeness relation
∑
ν |ν⟩ ⟨ν| = 1 in single particle Hilbert space H, wavefunction ψν(r) =

⟨r|ν⟩, probability density to find the particle in state ν at position r is |ψν(r)|2.

Systems with N identical particles

• Many body wavefunction ψ(r1, ..., rN ): Probability density |ψ(r1, ..., rN )|2 to find N particles around
points r1,2,...,N in configuration space.

• Symmetrization requirement: Exchanging identical particles (say 1 ↔ 2) yields sign ψ(r1, r2, ..., rN ) =
±ψ(r2, r1, ..., rN ) with + for bosons and - for fermions.

• For N = 1: Expand wavefunction in eigenstates (or any basis): ψ(r) =
∑
ν Aνψν(r). Similar: Any

N -particle state can be written as superposition of product states where particle j is placed in single
particle state |νj⟩:

ψ(r1, ..., rN ) =
∑

ν1,...,νN

Aν1,...,νNψν1(r1) · · ·ψνN (rN )︸ ︷︷ ︸
product state

(2)

• Note: Product states from Eq. (2) form a basis, but they do not respect symmetrization requirement
(needs to be encoded in Aν1,...,νN ).
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• Physical basis: For efficiency, change to symmetrized product states as basis (SN is the permutation
group with N ! elements p)

S±

N∏
j=1

ψνj (rj) = N
∑
p∈SN

{∏N
j=1 ψνj (rp(j)) : bosons

sgn(p)
∏N
j=1 ψνj (rp(j)) : fermions

(3)

For fermions:

– sign of a permutation, sgn(p) = ±1 is the parity of the number of transpositions of two elements
that is required to build p from identity, e.g. sgn(321) = −sgn(123) = −1.

– the state is known as “Slater determinant”, it is the determinant of the matrix a with entries
anm = ψνn(rm).

– For N = 2 fermions S±ψν1(r1)ψν2(r2) ∝ ψν1(r1)ψν2(r2) − ψν1(r2)ψν2(r1). If ν1 = ν2, we find zero.
We cannot put two (or more) fermions in the same single-particle state → Pauli-principle.

• Use Eq. (3) as basis: Expansion coefficient Bν1,ν2,,...,νN (fully symmetric in indices, only specify which ν
are involved):

ψ(r1, r2, ..., rN ) =
∑

ν1,ν2,...,νN

Bν1,ν2,...,νN [S±ψν1(r1)ψν2(r2) · · ·ψνN (rN )] (4)

One- and two-particle operators T and V

• Use position basis, say, to express local one-particle operator T = T (r,∇r) e.g. T = U(r) or T =
−ℏ2∇2

r/(2m).

• Action of T in single-particle basis |ν⟩:

T =
∑
a,b

|νb⟩Tνbνa ⟨νa| (5)

with the matrix element Tνbνa =
´

r ψ
⋆
νb

(r)T (r,∇r)ψνa(r).

• N > 1: All particle coordinates must appear symmetrically, thus T (r,∇r) → T (rj ,∇rj ) ≡ Tj and
Ttot =

∑N
j=1 Tj .

• Action of Ttot on product state (ket at j-th position gives state of j-th particle):

Ttot |νn1⟩ |νn2⟩ ... |νnN ⟩ =
∑
b

(
Tνbνn1

|νb⟩ |νn2⟩ ... |νnN ⟩ + Tνbνn2
|νn1⟩ |νb⟩... |νnN ⟩ + ...+ TνbνnN |νn1⟩ |νn2⟩ ...|νb⟩

)
(6)

• Two-particle operator V , e.g. Coulomb interaction Vjk = V (rj − rk) = e2/(4πε0|rj − rk|). In general:

Vjk =
∑

νa,νb,νc,νd

∣∣∣ν(j)
c

〉 ∣∣∣ν(k)
d

〉
Vνcνd,νaνb

〈
ν(j)
a

∣∣∣ 〈ν(k)
b

∣∣∣ (7)

where Vνcνd,νaνb is the matrix element and Vtot =
∑
j>k Vjk (the j > k avoids double-counting!).

• Typical N -particle Hamiltonian: Htot = Ttot + Vtot =
∑N
j=1 Tj +

∑
j>k Vjk, e.g. helium atom with two

electrons:
HHe
tot =

∑
j=1,2

(
−ℏ2∇2

rj/(2m) − 2e2

4πε0|rj |

)
+ e2

4πε0|r1 − r2|
(8)

• Note: Even if |ν⟩ are single-particle eigenstates, Eq. (3) is not an eigenstate of a general interacting
many-body Hamiltonian (with Vtot ̸= 0).
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...
vac. 1 body 2 body vac. 1 body

Bosons Fermions

Figure 1: Action of creation and annihilation operators in Fock space, for bosons and fermions. For simplicity only one
single-particle basis state is assumed.

1.2 Second quantization

Occupation number basis

• Consider sym. product state in Eq. (3), S± |νj1⟩ |νj2⟩ · · · |νjN ⟩ with N single-particle states occupied.

• Sym. product states are inconvenient:

– computations are cumbersome, e.g. overlap of two states requires calculation of (N !)2 terms.
– N is fixed, but grand-canonical formulation of statistical mechanics requires fluctuating N

• All information needed for this state is the number of appearances nj (“occupation”) of single-particle
state |νj⟩. Recall: nj = 0, 1 for fermions, and 0, 1, 2, ... bosons.

• Definition of occupation number representation of N -particle basis state:

S± |νj1⟩ |νj2⟩ · · · |νjN ⟩ ≡ |n1, n2, ...⟩ (9)

with N = n1+n2+... and occupation number operator n̂j with n̂j |n1, n2, ..., nj , ...⟩ = nj |n1, n2, ..., nj , ...⟩.

• Important for fermionic case: For Eq. (9) we must fix an ordering of single-particle basis {|ν1⟩ , |ν2⟩ , ...}
and request j1 ≤ j2 ≤ ... ≤ jN .

• Fock space: Consider FN = span {|n1, n2, ...⟩}n1+n2+...=N and combine via direct product for N =
0, 1, 2, ...:

F = F0 ⊕ F1 ⊕ F2 ⊕ ... (10)

Remarks:

– Due to direct sum (⊕) states with unequal N are orthogonal.
– F0 is spanned by vacuum state |0, 0, ...⟩ ≡ |0⟩ (proper normalized quantum state without particles

̸= 0).
– General many-body state |ψ⟩ ∈ F may consist of contributions with different particle number N

(→ theory of superconductivity).

• Next: Define operators acting on Fock space that can be used to do calculations in a simplified manner.

Bosonic creation and annihilation operators

• Define creation operator b†j : F → F by its action to increase occupation number in single-particle state
|νj⟩ by one (Fig. 1):

b†j |n1, ..., nj , ...⟩ ≡
√
nj + 1 |n1, ..., nj + 1, ...⟩ (11)
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• What is hermitian adjoint bj? Use√
nj + 1 =

〈
n1, ..., nj + 1, ...|b†j |n1, ..., nj , ...

〉⋆
=
〈
n1, ..., nj , ...|

(
b†j

)†
|n1, ..., nj + 1, ...

〉
(12)

so that
(
b†j

)†
= bj acts as an annihilation operator:

bj |n1, ..., nj , ...⟩ = √
nj |n1, ..., nj − 1, ...⟩ (13)

For the case nj = 0, we have bj |n1, ..., nj = 0, ...⟩ = 0 by the prefactor.

• From the definition follows: b†jbj = n̂j is the occupation number operator.

• Further properties of bj , b†j :

– Since b†ib
†
j |n1, ...ni, ..., nj , ...⟩ = b†jb

†
i |n1, ...ni, ..., nj , ...⟩ by definition and this holds for all states

|n1, n2, ...⟩, we have
[
b†j , b

†
i

]
= 0. By hermitian conjugation also [bj , bi] = 0. Similar for i < j:[

bi, b
†
j

]
= 0.

– Careful with bi, b†i : We see this from application to vacuum state bib†i |0⟩ = |0⟩ but b†ibi |0⟩ = 0. This
is consistent with

[
bi, b

†
i

]
= 1. Ex. 1.1 shows that this holds as operator identity in general.

• Represent the sym. product state by running over all single-particle states νj and insert nj bosons:

S+ |νj1⟩ |νj2⟩ · · · |νjN ⟩ = |n1, n2, ...⟩ =

 ∞∏
j=1

1√
nj !

 b†j1b†j2 ...b†jN |0⟩ =
∞∏
j=1

1√
nj !

(
b†j

)nj |0⟩ (14)

Fermionic creation and annihilation operators

• Analogous to bosonic case, define c†j : F → F

c†j |n1, ..., nj , ...⟩ ≡
{

(−1)sj |n1, ..., 1, ...⟩ : nj = 0
0 : nj = 1

(15)

where sj =
∑j−1
i=1 ni depends on the occupation of the single-particle states “below” j.

• Example c†2 |1, 1⟩ = 0 and c†2 |0, 0⟩ = |0, 1⟩ and c†2 |1, 0⟩ = − |1, 1⟩.

• Hermitian adjoint of c†j is found as above for bosons:

cj |n1, ..., nj , ...⟩ =
{

0 : nj = 0
(−1)sj |n1, ..., 0, ...⟩ : nj = 1

(16)

• We can generate any basis state of F by repeated application of the c†j to the vacuum state |0⟩ (note the
order!):

S− |νj1⟩ |νj2⟩ · · · |νjN ⟩ = |n1, n2, ...⟩ = c†j1c
†
j2
...c†jN |0⟩ =

∞∏
j=1

(
c†j

)nj |0⟩ (17)

• Repeated application of c†i and c†j , for i = j it is clear that c†ic
†
i = 0. For i ̸= j: From the definition in

Eq. (15), we have c†ic
†
j |n1, n2, ...⟩ = −c†jc

†
i |n1, n2, ...⟩. Since this holds for every basis vector |n1, n2, ...⟩,

we have 0 = c†ic
†
j + c†jc

†
i =

{
c†i , c

†
j

}
, the hermitian adjoint yields {ci, cj} = 0. In Ex. 1.1 one shows that{

ci, c
†
j

}
= δij ∀i, j. We have the occupation number operator n̂i = c†ici.
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Intermediate summary

• The creation and annihilation operators on Fock space fulfill basic (anti-)commutation relations.
Bosons:

[bi, bj ] = 0 =
[
b†i , b

†
j

]
,
[
bi, b

†
j

]
= δij , (18)

Fermions:
{ci, cj} = 0 =

{
c†i , c

†
j

}
,
{
ci, c

†
j

}
= δij . (19)

• Achievement: Complicated “permutation-entanglement” of the symmetrized product state in Eq. (3) is
generated by applying N creation operators to a single reference state |0⟩.

• Notation: a†j and aj denote either bosonic or fermionic creation and annihilation operators, with respect
to ordered basis {|ν1⟩ , |ν2⟩ , ...}. Next: Express all operators using a†j , aj .

One- and two-body operators via a, a†

• Task: Represent one-body (=single-particle) operators using the a, a†-operators. First consider bosons.

• Recall T =
∑
k,k′ |νk′⟩Tk′k ⟨νk| where Tk′k = ⟨νk′ |T |νk⟩ and Ttot =

∑N
i=1 Ti.

• Apply Ttot to S+ |νj1⟩ |νj2⟩ · · · |νjN ⟩ = |n1, n2, ...⟩ = N b†j1b
†
j2
...b†jN |0⟩, it is clear how it acts on the lhs (Ttot

commutes with S+)

Ttot |n1, n2, ...⟩ =
N∑
i=1

∑
k,k′

Tk′kδk,jiS+ |νj1⟩ |νj2⟩ · · · |νk′⟩︸︷︷︸
pos. i

· · · |νjN ⟩ = N
N∑
i=1

∑
k,k′

Tk′kδk,jib
†
j1
b†j2 ... b

†
k′︸︷︷︸

pos. i

...b†jN |0⟩

(20)

• Goal: Re-express rhs with the original string b†j1b
†
j2
...bji ...b

†
jN

appearing in |n1, n2, ...⟩ and read off mod-
ifying operator in front. Denote ji ≡ j and assume b†j appears p > 0 times in total (for p = 0 the δk,ji
yields zero). Use bjb†j = b†jbj + 1 = n̂j + 1, then

b†k′

(
b†j

)p−1
|0⟩ = b†k′

n̂j + 1
(p− 1) + 1

(
b†j

)p−1
|0⟩ = b†k′

bjb
†
j

p

(
b†j

)p−1
|0⟩ = 1

p
b†k′bj

(
b†j

)p
|0⟩ (21)

The sum
∑N
i=1 yields p identical contributions. We find the operator identity: Ttot =

∑
k,k′ b

†
k′Tk′kbk.

• Generalize to fermions and to two-body operators (note the order!):

Ttot =
∑
k,k′

a†k′ Tk′k ak (22)

Vtot =
∑

k,k′,j,j′
a†k′a

†
j′ Vk′j′,kj ajak (23)

with Vk′j′,kj = ⟨νk′ |
〈
νj′
∣∣V |νk⟩ |νj⟩.

Change of single-particle basis

• Consider a different basis, {|ν̃1⟩ , |ν̃2⟩ , ...} with operators ã†
j̃

and ãj̃ . From insertion of completeness

relation, we find
∣∣∣ν̃j̃〉 =

∑
j |νj⟩

〈
νj |ν̃j̃

〉
. Further, by definition |νj⟩ = a†j |0⟩ and

∣∣∣ν̃j̃〉 = ã†
j̃

|0⟩.

• Then we have ã†
j̃

|0⟩ =
∑
j

〈
νj |ν̃j̃

〉
a†j |0⟩ and this can be extended to N-particle Fock space basis states,

leading to the operator identity:
ã†
j̃

=
∑
j

〈
ν̃j̃ |νj

〉⋆
a†j (24)

Upon taking hermitian adjoint, we find ãj̃ =
∑
j

〈
ν̃j̃ |νj

〉
aj .
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• Simple facts:

– ã
(†)
j̃

also fulfill (anti-)commutation relations

– total particle number operator remains unchanged N̂ =
∑
j a
†
jaj =

∑
j̃ ã
†
j̃
ãj̃

• Example: Change basis to real-space {|ν̃1⟩ , |ν̃2⟩ , ...} = {|r⟩}r, the corresponding creation (and annihila-
tion) operators

ã†r ≡ Ψ†(r) =
∑
j

⟨r|νj⟩⋆ a†j =
∑
j

ψ⋆j (r)a†j , Ψ(r) =
∑
j

ψj(r)aj , (25)

are called quantum-field operators. Remarks:

– ψj(r) ∈ C is 1st quantized wavefunction, Ψ(r) is 2nd quantized annihilation operator
– (anti-)commutator for aj , a†j ⇒

[
Ψ(r),Ψ†(r′)

]
= δ(r−r′) (bos.) or {Ψ(r),Ψ†(r′)} = δ(r−r′) (ferm.)

– If initial basis is momentum eigenstates {|k⟩}: Ψ(r) = 1√
V

∑
k e

ik·rak.

Solution of non-interacting many-particle systems

• Consider many-particle system where H is only comprised of one-body operators (=”non-interacting”),

H = Ttot =
∑
k̃,k̃′

ã†
k̃′Tk̃′k̃ãk̃ =

∑
l

a†l al︸︷︷︸
n̂l

εl (26)

where we diagonalized the hermitian matrix T = Udiag(ε1, ε2, ...)U † where the εl ∈ R are the real
eigenvalues on the diagonal.

• All symmetrized product states |n1, n2, ...⟩ are eigenstates of H,

H |n1, n2, ...⟩ =
(∑

l

nlεl
)

|n1, n2, ...⟩ ≡ En1,n2,... |n1, n2, ...⟩ (27)

and the En1,n2,... are the eigenenergies of the many-body problem. For an N -particle system, we select
those with n1 + n2 + ... = N .

• Remark: In a similar way, we can solve non-interacting systems in which the total particle number N̂ is
not conserved, H =

∑
k,k′ ã

†
k̃′Tk̃′k̃ãk̃ + (ãk̃′Xk̃′k̃ãk̃ + h.c.) → Bogoliubov transform to H =

∑
l a
†
l alεl, see

Ex. 1.2.

Specific operators in second quantization

• Kinetic energy T : In first quantization ⟨r|T |r′⟩ = − ℏ2

2mδ(r − r′)∇2
r or ⟨k|T |k′⟩ = ℏ2k2

2m δk,k′ . In 2nd
quantization, in these two bases, we have from Eq. (22):

Ttot =
∑

k

ℏ2k2

2m a†kak = − ℏ2

2m

ˆ
r

Ψ†(r)
(
∇2

rΨ(r)
)

(28)

• Spin of electron S: Use basis {|νj , σ⟩}j,σ=↑,↓. In 1st quantization, the spin operator is S = (Sx, Sy, Sz) =
ℏ
2τ , with τ = (τx, τy, τy) = (

(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)
) the vector of Pauli matrices. It acts as

an identity in the non-spin part of the Hilbert-space. In second quantization:

Sxtot =
∑

j,σ,j′,τ ′

〈
νj , σ|Sx|νj′ , σ′

〉
c†j,σcj′,σ′ = ℏ

2
∑
j,σ,σ′

〈
σ|τx|σ′

〉
c†j,σcj,σ′ = ℏ

2
∑
j

(
c†j,↑cj,↓ + c†j,↓cj,↑

)
. (29)

• Particle density ρ(r): In 1st quantization ⟨r′|ρ(r)|r′′⟩ = δ(r − r′)δ(r′ − r′′), then

ρtot(r) =
ˆ

r′

ˆ
r′′

Ψ†(r′)δ(r−r′)δ(r′−r′′)Ψ(r′′) = Ψ†(r)Ψ(r) = 1
V

∑
k,k′

ei(k
′−k)·ra†kak′ = 1

V

∑
q

[∑
k
a†kak+q

]
eiq·r

(30)
Fourier transform ρtot(q) ≡

´
r e
−iq·rρtot(r) =

∑
k a
†
kak+q.
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1.3 Second quantization and statistical mechanics

• Assume all eigenstates of isolated many-body quantum system are known: H |ψ⟩ = Eψ |ψ⟩

• Couple system to thermal bath (allow energy exchange) → system state given by thermal density matrix
(=Gibbs state, canonical ensemble) at temperature β = 1/(kBT ):

ρ = e−βH

Z
= 1
Z

∑
ψ

|ψ⟩ e−βEψ ⟨ψ| (31)

• The normalization factor Z is the partition function:

Z = Tre−βH =
∑
ψ

〈
ψ|e−βH |ψ

〉
=
∑
ψ

e−βEψ (32)

→ link to thermodynamics, free energy F = −β−1 lnZ = U − TS is minimized, here U = ⟨H⟩ and
S = −kBTr [ρ ln ρ].

• Thermal average of quantum mechanical operator A:

⟨A⟩ = Tr [Aρ] = 1
Z

∑
ψ

⟨ψ|A|ψ⟩ e−βEψ (33)

Do not confuse this with the quantum expectation value of A in pure many-body state |ψ⟩, denoted by
⟨ψ|A|ψ⟩.

• Bath with particle exchange → grand canonical ensemble, replace H → H−µN̂ with µ chemical potential
and N̂ particle number operator in system.

• Example: Distribution function = thermal average of occupation number operator n̂ν in single-particle
eigenstate |ν⟩ at energy εν in non-interacting system H =

∑
ν ενa

†
νaν − µN̂

– Fermions: 〈
c†νcν

〉
=
∑
nν=0,1 nνe

−nνβ(εν−µ)∑
nν=0,1 e

−nνβ(εν−µ) = 0 + e−βξν

1 + e−βξν
= 1
eβξν + 1 ≡ nF (ξν) (34)

where ξν ≡ εν − µ is the energy measured relative to chemical potential.
– Bosons: A similar calculation (→ Ex. 1.3) yields〈

b†νbν
〉

= 1
eβξν−1 ≡ nB(ξν) (35)

– At small occupation numbers (when βξν ≫ 1) the ±1 can be neglected against eβξν . Then for both
fermions and bosons n(ξν) ≃ e−βξν (classical Maxwell-Boltzmann result).

1.4 Application: Non-interacting quantum particles

• Consider identical particles of mass m in d = 3 dimensions at temperature T . Classical viewpoint:
Thermal momentum per particle from Tkin = 1

2mp
2 = 3kBT where p =

√
⟨p2⟩ is the classical root-mean-

square momentum.

• At which T can we expect quantum effects (see differences between bosons/fermions)? Thermal de-Broglie
wavelength

λT = h/p = h/
√

3mkBT (36)

→ Quantum effects to matter when particle-particle distance r = ρ−1/3 > λT where ρ is the particle
density.

• Next: Full quantum treatment, approximate particles as non-interacting.

9



Bosons: CondensateFermions: Fermi surface

Figure 2: Non-interacting ground state of non-interacting (spinful) fermions and bosons confined in a box of linear size
L with periodic boundary conditions. A cut through momentum space in the kz = 0 plane is shown.

Non-interacting fermions (Fermi surface)

• Examples: Conduction electron gas in metals, 3He, neutron star

• Hamiltonian H =
∑

k,σ(εk − µ)c†kσckσ with isotropic εk = ℏ2k2/(2m) in free space where |k, σ⟩ is plane-
wave eigenstate in box of linear size L, kx,y,z = 2πnx,y,z/L.

• Alternative: Lattice potentials, lattice constant a. Then εk is a band structure, could still be approx-
imately parabolic m → m⋆ or more strongly deformed, e.g. from tight-binding model on cubic lattice
εk = −2t

∑
α cos kαa, then we have Brillouin zone kα ∈ [−π

a ,
π
a ).

• Occupation of single-particle eigenstate |k, σ⟩ from Eq. (34): nk,σ = 1
eβ(εk−µ)+1

T=0→ Θ (µ− εk). At T = 0
this is a step-function, all states with energies below µ (also called Fermi-energy εF ) are occupied. The
largest occupied wavevector k = |k| is the Fermi wavevector kF with εF = ℏ2k2

F /(2m) (kF generalizes to
Fermi surface for anisotropic case).

• Ground state = Fermi sea (FS): All single-particle levels with k < kF occupied, |FS⟩ =
∏
k<kF ,σ

c†k,σ |0⟩
, see Fig. 2.

• Excitations with spin σ and momentum k: Adding electrons above Fermi surface or create hole below
Fermi surface by removing electron of opposite spin and momentum

f †kσ =
{
c†kσ : k > kF

c−kσ̄ : k < kF
(37)

For k < kF , use c†kσckσ = 1 − f †−kσ̄f−kσ̄, then

H =
∑
k,σ

|εk − µ|︸ ︷︷ ︸
≥0 (exc.)

f †kσfkσ + EFS (38)

where EFS = 2V
´
k<kF

(εk − µ) = −2
5NεF is the ground-state energy (factor 2 for spin) and the Fermi

sea |FS⟩ is the vacuum of f-excitations (fkσ |FS⟩ = 0).

• Ground-state density:

ρ =
〈
N̂
〉
/V = 2

V

∑
k<kF

= 2
(2π)3

ˆ k=kF

0
dk = 2

(2π)3 × 4
3πk

3
F = 1

3π2

(2mεF
ℏ2

)3/2
(39)

Example: Gas of conduction electrons in Cu: ρ ∼ 1029m−3 , εF ∼ 7eV ∼ kB × 80000K. → Electrons in
metals are strongly “quantum” even at room temperature and their behavior is dominated by fermionic
statistics.
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• Finite T : Free energy

F = −kBT lnZ = −kBT
∑
k,σ

ln
[
1 + e−β(εk−µ)

]
= −2kBTV

ˆ
k

ln
[
1 + e−β(εk−µ)

]
(40)

where 1
V

∑
k →

´
k = 1

(2π)d
´

dk and the factor 2 is for spin. From this, obtain pressure and particle
number

P = −∂F/∂V = −F/V = f = 2kBT
ˆ

k
ln
[
1 + e−β(εk−µ)

]
N = −∂F/∂µ = 2

ˆ
k
nF (εk − µ)

which means that for given N the value of µ is to be adapted (→ Sommerfeld expansion).

• Combine to get equation of state PV = ...:

– at high T : nF (εk − µ) ≃ e−β(εk−µ) ≃ ln
[
1 + e−β(εk−µ)

]
and we find the ideal gas law: PV = NkBT

– at low T : P ≃ 2kBT
´
|k|<kF [−β(εk − µ)] = 2NεF /(5V ) which means PV = 2NεF /5 is independent

of T .

Non-interacting bosons (Bose-Einstein condensation [BEC])

• Assume spinless bosons (e.g. 4He or potassium atoms), otherwise same Hamiltonian as for fermionic gas
in a box above. Note: µ ≤ min{εk} for convergent density integral,

ρ =
〈
N̂
〉
/V = 1

V

∑
k
nB(εk − µ) =

ˆ
k

1
eβ(εk−µ)−1

(41)

• Define x = βεk = βℏ2k2/(2m) and λ̄T =
√

2πℏ2/(mkBT ) the thermal de-Broglie wavelength [the bar is
for changed prefactor as compared with Eq. (36)]. Then

ρ = 1
λ̄3
T

ˆ ∞
0

dx 2
√
x/π

ex−βµ − 1 (42)

which implicitly determines µβ as ρ = N/V is fixed. As T is decreased, µ increases towards zero.

• At µ = 0, the integral is ζ(3/2) = 2.61 and we obtain with a = ρ−1/3 the particle spacing (λ̄T /a)3 = 2.61
which corresponds to temperature kBT0 = 3.31 ℏ2

ma2 .

• What happens at T < T0? In Eq. (41), need to split off the k = 0 singe-particle level before taking
thermodynamic limit V → ∞:

N = N0 +
∑
k ̸=0

nB(εk − µ) −→ ρ = N/V = ρ0(T ) + 1
λ̄3
T

ˆ ∞
0

dx 2
√
x/π

ex − 1 (43)

As the temperature lowers, the second term decreases as ∼ T 3/2 but N/V must stay fixed.

• This is compensated by an increase of the particle density in the condensate which is ρ0 = ρ
[
1 − (T/T0)3/2

]
→ N0 ∼ N , a macroscopic number of particles sit in a single lowest energy level! This can be seen as a
condensation (droplet formation) in momentum space.

• Experiment: BEC of cold bosonic atoms (Rb) in magnetic trap, first seen in 1995 by Eric Cornell, Carl
Wiemann and Wolfgang Ketterle groups. → Nobel prize 2001.
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Exercises

Exercise 1.1. Creation and annihilation operators

(a) Using equations (11) and (13) for the bosonic Fock space operators show that
[
bi, b

†
j

]
= δij holds for all i, j

as an operator identity.
(b) For fermions, from the equations (15) and (16) show analogously

{
ci, c

†
j

}
= δij .

(c) The harmonic oscillator in d=1, see Eq. (1) case 2, was treated algebraically in your elementary quantum
mechanics course. Recall that this Hamiltonian can be written as H = ℏω(ā†ā+ 1/2). Discuss similarities and
differences between the operators ā, ā† and the operators a, a† discussed in this lecture.

Exercise 1.2. Transverse field Ising model (TFIM) in 1D

Here we are interested in finding the exact eigenenergies of the 1D TFIM, H = −
∑
i σ

z
i σ

z
i+1 − Γ

∑
i σ

x
i where

σxi , σ
z
i are Pauli matrices acting in the spin-1/2 Hilbert space at site i = 1, 2, .., L and we assume periodic

boundary conditions, i.e. σzL+1 ≡ σz1 . We will find the excitation spectrum, in particular the gap ∆ between
the ground- and lowest excited state. This is done as a function of the transverse field Γ and we determine
the critical value Γc at which a quantum phase transition between a paramagnetic ground state (for large Γ
approximated by a product state of spins pointing in x-direction, |→,→,→, ...⟩) and the two degenerate ground
states (for Γ = 0 exactly given by |↑, ↑, ...⟩ and |↓, ↓, ...⟩) occurs.

1. Consider the Jordan-Wigner transformation in 1D that maps spin-1/2 to fermionic operators ci, c†i :

σxi =
(
1 − 2c†ici

)
σzi = −

∏
j<i

(
1 − 2c†jcj

)(ci + c†i

)

Confirm that σxi and σzi indeed fulfills the spin algebra by computing σαi σαi = 1, σαi σαi′ = σαi′σ
α
i for i ̸= i′

and α ∈ {x, z} and σxi σ
z
i = −σzi σxi as well as σxi σzi′ = σzi′σ

x
i and for i ̸= i′.

2. Insert the Jordan-Wigner transformation in the 1D TFIM Hamiltonian and use a Fourier-transformation
ck = 1√

L

∑
j cje

−ikj to obtain

H =
∑
k

(
2 [Γ − cos k] c†kck + i sin k

[
c†−kc

†
k + c−kck

]
− Γ

)
(44)

3. Solve this c-particle number non-conserving Hamiltonian using a Bogoliubov transformation, ck = ukγk+
ivkγ

†
−k where γ(†)

k again fulfill fermionic anti-commutation relations if uk, vk are real numbers satisfying
u2
k + v2

k = 1, u−k = uk and v−k = −vk. They can be parameterized by an angle, uk = cos (θk/2) and
vk = sin (θk/2). Find (k-dependent!) θk such that

H =
∑
k

εkγ
†
kγk + const. (45)

and show that the single-particle energy is εk = 2
√

1 − 2Γ cos k + Γ2. What is the critical value of Γ at
which εk becomes gapless (at which k,Γ do we find εk = 0 ?).

Exercise 1.3. Non-interacting bosons in equilibrium
Consider non-interacting bosons with Hamiltonian H =

∑
ν ενb

†
νbν − µN̂ in equilibrium at temperature T and

chemical potential µ.

1. Derive the equilibrium bosonic occupation number formula (35). Use the explicit formula for the thermal
expectation value, Eq. (33), and evaluate the geometrical sum. What condition must be fulfilled for µ?

12



2. We are now interested in the total particle number, N = nB(ξ1) + nB(ξ2) + .... As an alternative to just
summing Eq. (35) found in 1., consider the following:
For a general many-body Hamiltonian H = H0 −µN̂with possibly fermionic or interacting H0 but known
partition function Z (Eq. 32) show that the total particle number can be calculated as N ≡

〈
N̂
〉

=
−∂F/∂µ where F = −β−1 lnZ is the free energy. Specialize to the non-interacting bosonic case, find a
closed expression for F and, by taking a µ-derivative, confirm N = nB(ξ1) + nB(ξ2) + ....

Exercise 1.4. Effective low energy Hamiltonians: From Anderson’s impurity model to the Kondo model
It is often useful to simplify Hamiltonians to effective models which are only valid below a certain energy
scale. Here we explore such a procedure for the example of the Anderson impurity model which describes a
localized electronic level of an impurity atom (at energy εd, operators d(†)

σ , σ ∈ {↑, ↓}) embedded in a host
metal described by a Fermi gas of non-interacting conduction (ckσ) with an extended Fermi surface.

H = H0 +
∑
σ

εdd
†
σdσ + Und,↑nd,↓ +

∑
k,σ

Vkd
†
σckσ + h.c., H0 =

∑
k,σ

εkc
†
kσckσ. (46)

Here, nd,σ = d†σdσ and the spin-preserving hopping of electrons on (or off) the impurity level is described by the
matrix element Vk (V ⋆

k ). The chemical potential has been set to zero. The difficulty in this Hamiltonian sits
in the interaction term ∼ U > 0 that models the effective Coulomb repulsion felt by two electrons (of opposite
spin) simultaneously occupying the impurity site.

1. Consider the atomic limit Vk → 0 for which the impurity atom decouples from the metal. What are the
eigenstates of the latter? What are the conditions on εd and U so that in the ground state the impurity
level is occupied by a single electron? Assume that these conditions hold in the following. What is the
energetic distance (“gap”) ∆E to the lowest excited impurity state?

2. Denote the ground state energy of H0 by E0 (Fermi sea energy). We now want to switch back on a small
Vk (with |Vk| smaller than all other energy scales) and derive a low energy effective Hamiltonian valid
for excitations at energies E close to the ground state energy of the decoupled system, E ≃ E0 + εd.
Start with the (many-body) Schrödinger equation H |ψ⟩ = E |ψ⟩, multiply with projection operators
Pn(= P †n = P 2

n) which project to the Hilbert space with impurity occupation number nd = 0, 1, 2:

P0 = (1 − nd,↑)(1 − nd,↓), P1 = (1 − nd,↑)nd,↓ + (1 − nd,↓)nd,↑, P2 = nd,↑nd,↓, (47)

and define |ψ⟩n ≡ Pn |ψ⟩ and Hnn′ ≡ PnHPn′ = H†n′n. Show that the Schrödinger equation can then be
decomposed in block form as H00 H01 0

H10 H11 H12
0 H21 H22


 |ψ⟩0

|ψ⟩1
|ψ⟩2

 = E

 |ψ⟩0
|ψ⟩1
|ψ⟩2

 (48)

What are H00, H11, H22, H10, H21 in the language of 2nd quantization? Show that upon elimination of
|ψ⟩0 and |ψ⟩2 one has:

E |ψ⟩1 =
[
H11 +H12 (E −H22)−1H21 +H10 (E −H00)−1H01

]
|ψ⟩1 . (49)

3. If the term [...] on the rhs of Eq. (49) would not depend on E, we could interpret it as the effective
Hamiltonian Heff for the physics of the low-E subspace in which the impurity level is singly occupied.
Show that

H12 (E −H22)−1H21 =
∑
k,σ

∑
k′,σ′

V ⋆
k′c
†
k′σ′ndσ̄′dσ′ (E −H0 − 2εd − U)−1 Vkd

†
σndσ̄ckσ

≃
∑
k,σ

∑
k′,σ′

−V ⋆
k′Vk

U + εd − εk′
c†k′σ′ckσndσ̄′cdσ′c†dσndσ̄
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and approximate Vk = V as k-independent for momenta k close to the Fermi surface, for which U +
εd − εk′ ≃ U + εd. Use d-electron spin operators S+ = d†↑d↓, S− = d†↓d↑ and Sz = 1

2

(
d†↑d↑ − d†↓d↓

)
(c.f. Eq. (29) with ℏ = 1) to show that

H12 (E −H22)−1H21 ≃ |V |2

U + εd

∑
k,k′

(
S+c†k′,↓ck↑ + S−c†k↑ck′,↓ + Sz

[
c†k′↑ck↑ − c†k′↓ck↓

])
+ pot. scat. (50)

where the rightmost term describes (spin-independent) potential scattering
∑

k,k′,σKk,k′c†k,σck′,σ. The
Kk,k′ does not need to be determined as it could be removed by a redefinition of ck,σ.

4. Argue that the term H10 (E −H00)−1H01 in (49) yields a similar contribution as in 3. where only the pref-
actor is changed to |V |2/(−εd), no detailed calculation is necessary. Show that the effective Hamiltonian
takes the form (up to pot. scattering)

Heff ≃ H0+εd+
∑
k,k′

J

V

(
S+c†k′,↓ck↑ + S−c†k↑ck′,↓ + Sz

[
c†k′↑ck↑ − c†k′↓ck↓

])
= H0+εd+2JS·Sc(r = 0) (51)

with J = V|V |2 U
(U+εd)(−εd) > 0 known as the Kondo model and V the volume. Discuss in words the

physical content of this model.

Exercise 1.5. Coulomb interactions in first-order perturbation theory
Consider electrons in a metal at T = 0 in their Fermi sea ground-state |FS⟩ =

∏
k≤kF ,σ c

†
k,σ |0⟩. The Coulomb

interaction can be written as

V ′el−el = 1
2V

′∑
k1,2,q

∑
σ1,2

4πe2
0

q2 c†k1+q,σ1
c†k2−q,σ2

ck2,σ2ck1,σ1 (52)

and the prime at the sum excludes the q = 0 term which cancels the positive background charge of the
ions. We have seen that the non-interacting (FS) ground state energy per electron depends on density ρ as
E0/N ∼ εF ∼ ρ2/3. What about the typical potential energy? It depends inversely on the mean electron-
electron distance a = ρ−1/3, thus Epot/N ∼ e2

0/a ∼ ρ1/3. It follows that Epot/E0 ∼ ρ−1/3 and we read off the
(possibly counter-intuitive) fact that interactions are negligible at high densities where the kinetic energy in
E0 due to Pauli exclusion dominates. Thus at high densities, perturbation theory should be a good starting
point to treat interactions. We introduce the Bohr radius a0 = ℏ2/(me2

0) = 0.053nm as our unit of length and
the Rydberg 1Ry = e2

0/(2a0) = 13.6eV as the unit of energy. (In this problem, do not include the chemical
potential in E0.)

1. Define the dimensionless quantity rs as the radius (in units of a0) of a sphere containing exactly one
electron and express rs in terms of a0 and kF . Confirm that for the ground-state energy per particle, we
have E0/N ≃ 2.21

r2
S

Ry.

2. Find the first-order perturbative correction to the ground-state energy, E(1)
0 /N =

〈
FS|V ′el−el|FS

〉
/N.

Confirm E
(1)
0 /N ≃ −0.916

rs
Ry.

3. Plot the final result for the total energy per particle
(
E0 + E

(1)
0

)
/N as a function of rs. According to

1st order perturbation theory, is the electron gas stable under Coulomb interactions? If yes, what r⋆s
minimizes the energy E⋆/N?
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2 Mean-field theory

Idea:

• Approximate interacting problems as “non-interacting problem + self-consistency condition” (non-perturbative
method!)

• Concept of spontaneous symmetry breaking (for more extensive discussion → course on stat. mech.)

From now on, we will work in units such that ℏ = 1 and kB = 1.

2.1 Basic concepts

Setup

• Consider many-body problem with one- and two-body interactions, c.f. Eq. (22) and (23) (a(†)
j are bosonic

or fermionic Fock-space operators):

H =
∑
i

ξia
†
iai + 1

4
∑

i,i′,j,j′

Vij,i′j′a†ia
†
jaj′ai′ (53)

Remarks:

– The factor 1/4 is a convention. For fermions, it ensures that the interaction term V12,34a
†
1a
†
2a4a3 only

appears one time after the sum is written out. Alternatively, we could replace 1
4
∑
i,i′,j,j′ →

∑
i<i′,j<j′ .

– To treat bosons and fermions alike, introduce ζ = ±1 for bosons/fermions. Then a†ia
†
j = ζa†ja

†
i and

aiaj = ζajai. It follows that Vij,i′j′ = ζVji,i′j′ = ζVij,j′i′ = Vji,j′i′ .

• Goal: Approximate unknown thermal state ρ of the system as a thermal state of a non-interacting “trial”
Hamiltonian ρ

!= ρ0 = e−βH0/Z0.
This state is characterized by H0, which has the non-interacting part of H and a part that should capture
the effect of interactions.

H0 =
∑
i

ξia
†
iai +

∑
i,i′

a†ih
(0)
ii′ ai′ (54)

• Physical picture:

– h
(0)
ii′ is a potential generated by the effect of all other particles and their interactions in H → “mean-

field theory (MFT)”, see Fig. 3(a)
– the Hamiltonian H0 is called the mean-field Hamiltonian

• Note:

– We can in principle always solve H0, see Sec. 1.2, the eigenstates will be number states |nν̃1 , nν̃2 , ...⟩
which are properly symmetrized product states (Slater determinants / permanents).

– The used orbitals |ν̃j⟩ will in general differ from the orbitals |νj⟩ that a(†)
i refer to.

– Rephrase goal of mean-field theory (for T = 0): Find a set of orbitals |ν̃j⟩ such that a product state
using these orbitals best represents the true ground state of H.

• Question: What is h(0)
ij ? → Via variational principle using minimization of free energy.
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(a)

Stoner model

(c)(b)

Figure 3: (a) Mean-field idea: Instead of treating the full correlations between individual particles, a single particle
(centered) is considered in the averaged field (grey background) exerted by all other particles. (b) MFT free energy
landscape for a system undergoing spontaneous symmetry breaking below Tc. (c) Spin density inbalance in the ground
state of the Stoner model according to MFT as a function of the paramter γ, see Eq. (70).

Gibbs-Bogoliubov-Feynman inequality

• Consider two general Hamiltonians, we call them H and H0 (although H0 could also be interacting). It
holds:

F ≤ F0 + ⟨H −H0⟩0 (55)

where F(0) = −T lnZ(0) = −T ln Tre−βH(0) are the free energies of the systems associated to H,H0 (both
in contact with thermal bath) and ⟨A⟩0 ≡ 1

Z0
Tr
[
Ae−βH0

]
the thermal average with respect to state

ρ0 = e−βH0/Z0.

• Proof: TODO

Variational approach to h
(0)
ii′

• Associate the H0 in the Eq. (55) with the trial Hamiltonian in Eq. (54).
Determine h(0)

ii′ such that the rhs of Eq. (55) is minimized.

• Search for extrema of the rhs of Eq. (55). For all k, l demand:

0 != ∂

∂h
(0)
kl

(F0 + ⟨H −H0⟩0) (56)

• Prepare:

∂F0

∂h
(0)
kl

= −T 1
Z0

Tr
[
−βa†kale

−βH0
]

=
〈
a†kal

〉
0
,

∂(Z−1
0 )

∂h
(0)
kl

= − ∂Z0

∂h
(0)
kl

1
Z2

0
=
β
〈
a†kal

〉
0

Z0
,

and for any operator A we use the product rule and the above to obtain

∂ ⟨A⟩0

∂h
(0)
kl

= ∂

∂h
(0)
kl

( 1
Z0

Tr
[
Ae−βH0

])
= β

〈
a†kal

〉
0

⟨A⟩0 +
〈
∂A

∂h
(0)
kl

〉
0

− β
〈
Aa†kal

〉
0

(57)

• We insert these preparations in Eq. (56), use A = H −H0 =
∑
i,i′ a

†
i

(∑
j,j′ Vij,i′j′a†jaj′ − h

(0)
ii′

)
ai′ :

0 !=
〈
a†kal

〉
0

+ β
〈
a†kal

〉
0

⟨H −H0⟩0 −
〈
a†kal

〉
0

+
〈
−β (H −H0) a†kal

〉
0

0 !=
〈
(H −H0) a†kal

〉
0

− ⟨H −H0⟩0

〈
a†kal

〉
0

(58)
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• Wick’s theorem (simplified form): For any non-interacting Hamiltonian H0 with thermal state
ρ0 = e−βH0/Z0, the following holds for a normal ordered (= a† left of a) string of n creation and n
annihilation operators (with respect to a fixed basis):〈

a†1a
†
2...a

†
nan′ ...a2′a1′

〉
0

=
∑
p∈Sn

ζP (p)
〈
a†1ap(1′)

〉
0

〈
a†2ap(2′)

〉
0

· · ·
〈
a†nap(n′)

〉
0

(59)

with P (p) ≡ [1 − sgn(p)]/2 which is zero for an even permutation p [sgn(p) = +1] and unity for and odd
one [sgn(p) = −1] so that ζP (p) is unity except for an odd permutation of fermions where it is −1. As an
example 〈

a†1a
†
2a2′a1′

〉
0

=
〈
a†1a1′

〉
0

〈
a†2a2′

〉
0

+ ζ
〈
a†1a2′

〉
0

〈
a†2a1′

〉
0

(60)

We will prove a more general version later, but in Ex. 2.1 you will show that Eq. (60) holds.

• Continue in Eq. (58), insert H − H0 and normal order the term
〈
(H −H0) a†kal

〉
0

by using the (anti-)
commutation relations (apa†p′ = δp,p′ + ζa†p′ap). Then apply Wick’s theorem.

• After straightforward algebra (→ Ex. 2.2) and remembering that Eq. (58) should hold for all k, l, we find
the condition:

h
(0)
ii′ =

∑
j,j′

Vij,i′j′

〈
a†jaj′

〉
0

∀i,i′ . (61)

This is a self-consistency condition.

• Eq. (61) is only a necessary condition, if there are multiple solutions for h(0)
ii′ pick the one that yields the

smallest bound on F , i.e. minimizes the rhs of Eq. (55).

Heuristic approach to MFT

• We can argue for the self-consistency Eq. (61) in a simpler but somewhat sloppy way, see discussion
below.

• Consider full interacting H and assume state ρ0 ∼ e−βH0 with non-interacting H0 → can apply Wick’s
theorem

⟨H⟩0 =
∑
i

ξi
〈
a†iai

〉
0

+ 1
4
∑

i,i′,j,j′

Vij,i′j′

(〈
a†iai′

〉
0

〈
a†jaj′

〉
0

+ ζ
〈
a†iaj′

〉
0

〈
a†jai′

〉
0

)
(62)

• Pick H0 such that ⟨H⟩0
!= ⟨H0⟩0, this yields

H0 =
∑
i

ξia
†
iai0

+ 1
4
∑

i,i′,j,j′

Vij,i′j′

(
a†iai′

〈
a†jaj′

〉
0

+
〈
a†iai′

〉
0
a†jaj′ −

〈
a†iai′

〉
0

〈
a†jaj′

〉
0

)
(”Hartree − term”)

+ ζ

4
∑

i,i′,j,j′

Vij,i′j′

(
a†iaj′

〈
a†jai′

〉
0

+
〈
a†iaj′

〉
0
a†jai′ −

〈
a†iaj′

〉
0

〈
a†jai′

〉
0

)
(”Fock − term”)

We can drop the (constant) last terms in line two and three and compare to the ansatz for H0 in Eq. (54).
If we re-label summed-over indices i, i′, j, j′ and use symmetries of V we reproduce the self-consistency
condition (61).

• Remark: If the i, i′ and j, j′ refer to different types of particles (e.g. electrons with spin ↑ and ↓) the mean-
field approximation is also called Hartree-Fock approximation with the purple terms the “Hartree-
terms” involving densities of equal particles and the brown mixing “Fock-terms”.

• Discussion:

– this shortcut yields the correct self-consistency conditions, but is not based on variational principle
– in the case of multiple solutions for h(0)

ii′ we would not be able to decide which h
(0)
ii′ to pick

– see Ex. 2.3 for a simple example case where this is crucial
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Example: Electron gas (Hartree-Fock approximation)

• Consider the electron gas (ζ = −1) with Coulomb interactions as in Ex. 1.5 (but keep q = 0 term).

• Perform mean-field decoupling. Crucial: We guess/assume spin-rotational symmetry and translation
invariance

〈
c†k1+q,σck1,σ′

〉
0

= δσ,σ′δq,0nk1 :

H =
∑
k,σ

εkc
†
k,σck,σ + 1

2V
∑

k1,2,q

∑
σ1,2

V (q)c†k1+q,σ1
c†k2−q,σ2

ck2,σ2ck1,σ1

→
H0 =

∑
k,σ

εkc
†
k,σck,σ + 1

2V
∑
k1,2

∑
σ1,2

{

+V (0)
(
nk1,σ1

〈
n̂k2,σ2

〉
0 +

〈
n̂k1,σ1

〉
0 nk2,σ2 −

〈
n̂k1,σ1

〉
0
〈
n̂k2,σ2

〉
0
)

−V (|k2 − k1|)
(〈
c†k2,σ1

ck2,σ2

〉
0
c†k1,σ2

ck1,σ1 + c†k2,σ1
ck2,σ2

〈
c†k1,σ2

ck1,σ1

〉
0

−
〈
c†k2,σ1

ck2,σ2

〉
0

〈
c†k1,σ2

ck1,σ1

〉
0

)
}

• This can be written as H0 =
∑

k,σ ε
HF
k c†k,σck,σ − const. with

h
(0)
ii′ ∼ εHFk = εk + 1

V
∑
k′

∑
σ′

(
V (0) − δσ,σ′V (

∣∣k − k′
∣∣))nk′

= εk + V (0)n− 1
V
∑
k′

V (
∣∣k − k′

∣∣)nk′ (63)

The second term is the interaction with average electron density n = 2
V
∑

k′ nk′ . It is canceled against
interaction with opposite ion charge. Need to solve self-consistently:

nk = 1/(eβεHFk + 1). (64)

2.2 Spontaneous symmetry breaking and MFT

• General MFT for N single-particle orbitals:

– Self-consistency equation (61) needs to be solved for N ×N matrix h(0)
ii′ → difficult for large N

– Idea: Use symmetries to restrict h(0)
ii′ (c.f. Hartree-Fock for electron gas: Ansatz respects translation

invariance and spin-rotation symmetry)

• Spontaneous symmetry breaking:
The free energy bound F0 + ⟨H −H0⟩0 from rhs of Eq. (55) attains a global minimum for H0(h(0)) that
breaks a symmetry.

• Note:

– The statement that the symmetry-broken trial state ρ0(h(0)) approximates the true state implies
ergodicity breaking and ρ��∼e−βH , because ρ0(Sh(0)) with symmetry-transformed h(0) → Sh(0) should
lead to degenerate minimum.

– Ergodicity breaking only applies for infinite systems when the free energy barrier between state
ρ0(h(0)) and ρ0(Sh(0)) is impossible to overcome.

• Example from classical physics: FM Ising model H = −J
∑
⟨i,j⟩ sisj , si = ±1 on lattice, see Fig. 3(b).

– H invariant under discrete spin flip symmetry si → −si∀i and lattice translation symmetry
– Ansatz for mean-field H0: Maintain translation, break spin flip symmetry (for fixed m):

H0 = −Jzm
∑
j

sj (65)

with m = ⟨si⟩0 from self-consistency equation and z the number of nearest neighbors per site
(coordination number).
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– At T = Tc = zJ : Free energy bound as function of m changes from single-well to double-well form.
– Global minima move from m = 0 to finite m = ±m0 corresponding to finite magnetization.

• Warning: MFT can be completely wrong! It generally tends to overestimate spontaneous symmetry
breaking tendencies (e.g. FM Ising model in 1d with known solution which is always disordered at T > 0.)

• Thermal average ⟨O⟩ of operator O as order parameter: ⟨O⟩ ≠ 0 is signature of symmetry-broken
state. Examples:

broken symmetry order parameter sym. broken state
translation (discrete or continuous)

∑
k

〈
a†kak+Q

〉
= ρ(Q) for Q ̸= 0 density-wave or crystal

spin-rotation ⟨Sj⟩ (anti-)ferromagnet
U(1) (particle number conservation)

〈
ck↑c−k↓

〉
superconductor

Example: Stoner ferromagnetism from point-like interactions

• Metallic magnetism (e.g. in Fe or Ni) happens if conduction bands are formed by narrower d or f orbitals.
This leads to larger and more localized interactions.

• Consider electron gas with point-like interactions U(r) ∼ δ(r):

H =
∑
k,σ

ξkc
†
k,σck,σ + U

2V
∑

k1,2,q

∑
σ1,2

c†k1+q,σ1
c†k2−q,σ2

ck2,σ2ck1,σ1 (66)

• Search for magnetic mean-field solution which breaks spin-rotation symmetry
〈
c†k+q,σck,σ′

〉
= δσ,σ′δq,0nk,σ.

• Similar steps as above yield the mean-field Hamiltonian:

H0 =
∑
k,σ

(
ξk + U [n↑ + n↓ − nσ]︸ ︷︷ ︸

nσ̄

)
c†k,σck,σ − U

V
2
∑
σ1,2

nσ1nσ2 + U
V
2
∑
σ

n2
σ (67)

where n↑+n↓ comes from the Hartree and −nσ from the Fock terms and nσ = V−1∑
k nk,σ is the density

of electrons with spin σ and ↑̄ =↓, ↓̄ =↑.

• Interpretation: Repulsive interactions are only between opposite spin densities, U favors fully polarized
state which costs more kinetic energy.

• Self-consistency condition:

nσ = V−1∑
k

〈
n̂k,σ

〉
0 = V−1∑

k

1
exp [β (ξk + Unσ̄)] + 1 (68)

• We use ξk = k2/(2m) − εF and work at T = 0. The kF,σ depends on the effective εFσ = εF − Unσ̄
(c.f. Sec. 1.4) which might differ for the two spins:

nσ = 1
(2π)3

4π
3 k3

F,σ = 1
6π2 (2m [εF − Unσ̄])3/2 (69)

We introduce n = n↑ + n↓ , ζ = (n↑ − n↓)/n and γ = 2mUn1/3/(3π2)2/3. We obtain

(1 + ζ)2/3 − (1 − ζ)2/3 = γζ. (70)

• Eq. (70) has three types of solution depending on interaction and density via γ ∼ Un1/3 > 0, see Fig. 3(c):

– 0 < γ < 4/3: ζ = 0 → n↑ = n↓ (no spontaneous magnetization)
– 4/3 < γ < 22/3 ≃ 1.58: ζ ∈ (0, 1) → n↑ > n↓ > 0 (partial polarization, weak ferromagnet)
– 22/3 < γ: ζ = 1 → n↑ = 1, n↓ = 0 (full polarization, strong ferromagnet)
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Exercises

Exercise 2.1. Proof of simplified Wick theorem

Show by explicit calculation that Eq. (60),
〈
a†1a
†
2a1′a2′

〉
0

=
〈
a†1a2′

〉
0

〈
a†2a1′

〉
0
+ζ

〈
a†1a1′

〉
0

〈
a†2a2′

〉
0

holds. Hint:
Careful, this should hold for thermal averages of any non-interacting state ρ0 ∼ e−βH0 where H0 =

∑
ij a
†
ihijaj

with hij not necessarily diagonal. Although this result holds for fermions and bosons, you may limit your
efforts to the fermionic case.

Exercise 2.2. Mean-field self-consistency condition

Show the self-consistency equation (61). Start from Eq. (58) and perform the steps outlined in the lecture.

Exercise 2.3. MFT for the AFM Ising model (pitfalls of heuristic approach)
This problem illustrates the necessity to work with the variational formulation of MFT instead of the heuristic
approach if one needs to go beyond the self-consistency equations. For simplicity, the model is the anti-
ferromagnetic (AFM) Ising model on a square lattice with N = L2 sites ri = (xi, yi) with xi, yi = 0, 1, ..., L
and periodic boundary conditions. The Hamiltonian is

H = J
∑
⟨i,j⟩

szi s
z
j (71)

with J > 0 and the sum is over nearest-neighbor bonds ⟨i, j⟩. As the “operators” {szi = ±1}i commute, the
model is classical in nature (and amply studied in statistical mechanics). We drop the z-superscript in the
following. As temperature is lowered below the Néel temperature TN , we expect a phase transition between a
paramagnetic phase ⟨si⟩ = mi = 0 and an AFM phase mi = ma for i on the a sublattice (xi + yi even) and
mi = mb = −ma for i on the b sublattice (xi + yi odd).
1) For the mean-field Hamiltonian, make the ansatz H0 = 4Jmb

∑
i∈a si + 4Jma

∑
i∈b si, insert the associated

ρ0 in the rhs of the Bogoliubov inequality (55), F0 + ⟨H −H0⟩0 ≡ ϕ(ma,mb) and find the global minimum of
ϕ(ma,mb) as a function of ma,b ∈ [−1, 1]. You should obtain the self-consistency conditions, confirm TN = 4J
and add a 3d plot of ϕ(ma,mb) for a complete picture for T = 5J > TN and T = 3J < TN .
2) In the heuristic approach start from H and replace si → ⟨si⟩ + δsi where δsi ≡ si − ⟨si⟩. Neglect interacting
terms of order (δs)2. Then introduce the ansatz for ma,b as above. Show that this leads to

H ′0 = −2NJmamb + 4Jmb

∑
i∈b

si + 4Jma

∑
j∈b

sj . (72)

Find the “free energy” F ′0 = −T lnZ ′0 with Z ′0 =
∑
{si}i e

−βH′
0 and produce a 3d plot of F ′0(ma,mb) as a function

of ma and mb at T = 3J < TN . For which ma,b does F ′0(ma,mb) assume the global minimum? On the landscape
of F ′0, what is the nature of the points characterizing the AFM state found in 1) above?
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3 Time dependence in quantum theory

Idea:

• So far we only treated static problems: H, ρ and observables did not change over time

• Combine time-dependent Schrödinger equation with many-body framework

3.1 Schrödinger picture and evolution operator

• Schrödinger picture: State evolves in time according to Schrödinger equation

i
d

dt
|ψ(t)⟩ = Ht |ψ(t)⟩ (73)

and operators Ot and Hamiltonian Ht have only explicit time dependence denoted by subscript (e.g. time-
dependent external fields in solid state experiment or laser-controlled Hamiltonian in cold-atom experi-
ment).

• Write formal solution of Schrödinger eq. as unitary time-evolution operator U(t, t0) that mediates evolu-
tion of state from time t0 to t:

|ψ(t)⟩ = U(t, t0) |ψ(t0)⟩ . (74)

For density matrix ρ(t) = U(t, t0)ρ(t0)U(t0, t) (von-Neumann eq.).

• Determine U(t, t0) from Schrödinger eq.:

i
d

dt
U(t, t0) = Ht U(t, t0) (75)

and U(t0, t0) = 1. How to solve for U(t, t0)?

– For time-independent Ht = H have U(t, t0) = exp [−i(t− t0)H]. Note: The exponential of an
operator is defined by series expansion.

– For general Ht, try:

U(t, t0) ?= exp
[
−i
ˆ t

t0

dt̃ Ht̃

]
=
∞∑
n=0

1
n!

[
−i
ˆ t

t0

dt̃1Ht̃1

] [
−i
ˆ t

t0

dt̃2Ht̃2

]
...

[
−i
ˆ t

t0

dt̃nHt̃n

]
(76)

If we act with i ddt , use i ddt
[
−i
´ t
t0

dt̃1Ht̃1

]
= Ht but we need to apply product rule also to the other

[...]. Problem: Since [Ht, Ht′ ] ̸= 0 in general, the Ht does not commute with [...] and cannot be
moved to the left to satisfy Eq. (75)! → Solution: Apply time-ordering operator.

• Definition: Time-ordering operator for general time-dependent operators At, Bt′ (not necessarily Hamil-
tonians Ht, but later also operators in Heisenberg picture). Put later times to the left:

Tt [AtBt′ ] =
{
AtBt′ : t > t′

ζBt′At : t′ > t
(77)

where ζ encodes the statistics, ζ = +1 for bosons, ζ = −1 for fermions. Remarks:

– H = c†c with c fermionic is a bosonic operator.
– Tt generalizes to 3,4,5... operators, with a sign ζP (p) (see Eq. (59)) and p the permutation needed

to achieve the time ordering
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• Use time-ordering to write time evolution operator:

U(t, t0) = Tt exp
[
−i
ˆ t

t0

dt̃ Ht̃

]
=
∞∑
n=0

(−i)n

n!

ˆ t

t0

dt̃1...
ˆ t

t0

dt̃n Tt
(
Ht̃1 ...Ht̃n

)
(78)

Due to time-ordering and since t is the largest time, Ht always appears on the left and Eq. (75) is satisfied.

• Properties of U(t, t0):

– unitarity condition [U(t1, t2)]† = U(t2, t1)
– group properties: U(t, t) = 1 and U(t3, t2)U(t2, t1) = U(t3, t1)

• The conjugate evolution (backward in time) is given by U(t0, t) = [U(t, t0)]† = T̃t exp
[
i
´ t
t0

dt̃ Ht̃

]
with T̃t

anti-time-ordering (puts later times to the right).

3.2 Heisenberg picture

• Time evolution of average of operator Ot:

⟨Ot⟩ (t) = 1
Trρ(t)Tr [Otρ(t)] = 1

Trρ(t)Tr [OtU(t, t0)ρ(t0)U(t0, t)]
cycl.= 1

Trρ(t0)Tr
[
U(t0, t)OtU(t, t0)︸ ︷︷ ︸
≡Ot(t) Heisenberg pic.

ρ(t0)
]

(79)
The right-hand side defines the Heisenberg picture, in which operators carry the time-dependence (t) in
addition to their explicit time dependence denoted in superscript.

• Equation of motion for Heisenberg picture operator Ot(t):
d

dt
Ot(t) = i [Ht(t), Ot(t)] +

(
dOt
dt

)
(t) (80)

withHt(t) = U(t0, t)HtU(t, t0) the time-evolved Hamiltonian and ∂Ot/∂t capturing explicit time-dependence
of Ot (proof in Ex. 3.1).

• For a time-independent Hamiltonian and operator: O(t) = eiH(t−t0)Oe−iH(t−t0) and H(t) = H.

• Example: For a non-interacting and time-independent Hamiltonian H =
∑
ν ενa

†
νaν , we have for t0 = 0

and for Fock space operators of both fermions and bosons (proof in Ex. 3.1)

aµ(t) = e−iεµtaµ, a†µ(t) = e+iεµta†µ (81)

3.3 Interaction picture

• Split the Hamiltonian as H = H0 + Vt with H0 time-independent (and usually “simple” in some sense,
e.g. non-interacting)

• Evolve operators as in Heisenberg picture, but with respect to H0 only,

OI,t(t) = eiH0(t−t0)Ote
−iH0(t−t0) (82)

and the state evolves with respect to |ψI(t)⟩ = UI(t, t0) |ψ(t0)⟩ where

UI(t, t0) = eiH0(t−t0)U(t, t0) (83)

• The UI(t, t0) satisfies the Schrödinger eq., i∂tUI(t, t0) = VI,t(t)UI(t, t0) where VI,t(t) = eiH0(t−t0)VI,te
−iH0(t−t0).

This is solved similar to above as UI(t, t0) = Tt exp
[
−i
´ t
t0

dt̃VI,t̃(t̃)
]
.

Exercises

Exercise 3.1. Operators in Heisenberg picture

Derive the general equation of motion for operators in the Heisenberg picture in Eq. (80) and also show Eq. (81).

22



4 Green functions (real time)

Idea:

• Description of many-body quantum system: Wavefunction ψ(r1, r2, ..., rN ; t)?

• Problem: No analytical solution known, N ∼ 1023 is very demanding for numerics, too much information
(cannot measure all N particle positions)

• Alternative: GF are averages of two or more operators taken at different times, e.g.
〈
Ψr(t)Ψ†r′(t′)

〉
(→

Heisenberg picture)

• GFs are efficient because closely related to measurement (→ Sec. 6) and intuition (follow propagation in
full many-body background), c.f. Fig. 4.

• Like the wavefunction (or density matrix), the full set of GFs characterizes many-body system

4.1 Zoo of real-time Green functions

• We define a variety of different GFs and study their mutual relations.
This may first seem annoying, but we will see later that some of them are measurable objects while others
are easier to compute.

• Operators A,B:

– in Heisenberg picture → A(t), B(t′)
– do not need to be hermitian, e.g. A(t) = a†µ(t) or Ψr(t)
– ζ = ±1 for bosonic or fermionic operators, also define [A,B]ζ ≡ AB − ζBA

• Zoo of GFs:

– Greater and lesser GFs (do not care about order of times):

G>AB(t, t′) = −i
〈
A(t)B(t′)

〉
G<AB(t, t′) = −iζ

〈
B(t′)A(t)

〉
For A = Ψr, B = Ψ†r′ , we have G>AB(t, t′) ∼

〈
Ψr(t)Ψ†r′(t′)

〉
describes propagation of a particle added

at (t′, r′) to (t, r) under the full many-body dynamics (correlation)
– Retarded and advanced GFs are averages of commutators [with θ(0) ≡ 1/2]:

GRAB(t, t′) ≡ −iθ(t− t′)
〈[
A(t), B(t′)

]
ζ

〉
= +θ(t− t′)

(
G>AB(t, t′) −G<AB(t, t′)

)
GAAB(t, t′) ≡ +iθ(t′ − t)

〈[
A(t), B(t′)

]
ζ

〉
= +θ(t′ − t)

(
G<AB(t, t′) −G>AB(t, t′)

)
The retarded GRAB(t, t′) is only non-vanishing for t − t′ ≥ 0, the advanced GAAB(t, t′) for t − t′ ≤ 0.
The GRAB(t, t′) describes the linear response of a system (measured via A) to perturbation B (Kubo
formula): Thus, retarded (and advanced) Green functions are also called response functions.

– Time ordered GF:

GTA,B(t, t′) = −i
〈
TtA(t)B(t′)

〉
= θ(t− t′)G>AB(t, t′) + θ(t′ − t)G<AB(t, t′)

These GFs are useful for actual calculations and can be related to the other GFs.
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time t: add particle at
or perturb system (e.g. laser) 

time t': remove particle at     or
measure response (e.g. current)

system in eq.

Figure 4: Sketch for two different processes in a quantum many-body systems described by appropriate Green functions.

• Relations:
G≶
AB(t, t′) = −G≶

B†A†(t′, t)∗, G>AB(t, t′) = ζG<BA(t′, t), (84)

GAB†A†(t′, t) = GRAB(t, t′)∗, GABA(t′, t) = ζGRAB(t, t′). (85)

• Temporal Fourier transform for stationary state [G(t, t′) != G(t− t′), in particular for equilibrium]:

G(ω) =
ˆ ∞
−∞

dt eiωtG(t) (86)

G(t) = 1
2π

ˆ ∞
−∞

dω e−iωtG(ω)

Note that ω ∈ R is continuous.

4.2 GFs in thermal equilibrium

Spectral density

• In equilibrium, we can work with single-frequency representation Eq. (86).

• Claim: All GFs can be calculated from the spectral density:

AAB (ω) ≡ i
(
GRAB(ω) −GRB†A†(ω)∗

)
(87)

• Remark: For A = cµ, B = c†µ, the spectral density is real and non-negative and has the meaning of an
energy resolution of the single-particle state |µ⟩ in the many-body system, → Ex. 4.2.

• Define “real” and “imaginary” parts of GFs (not the same as for complex numbers unless A = B†, thus
denoted by “Gothic” letters).
Applies for time-ordered, retarded and advanced GFs:

GT/R/A = RGT/R/A + iIGT/R/A (88)

where

RG
T/R/A
A,B (t, t′) ≡ 1

2
(
G
T/R/A
A,B (t, t′) +G

T/R/A

B†,A† (t′, t)∗
)
,

IG
T/R/A
A,B (t, t′) ≡ 1

2i
(
G
T/R/A
A,B (t, t′) −G

T/R/A

B†,A† (t′, t)∗
)
,

or, for stationary states, after Fourier transform,

RG
T/R/A
A,B (ω) ≡ 1

2
(
G
T/R/A
A,B (ω) +G

T/R/A

B†,A† (ω)∗
)
,

IG
T/R/A
A,B (ω) ≡ 1

2i
(
G
T/R/A
A,B (ω) −G

T/R/A

B†,A† (ω)∗
)
.
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• Relations which follow from definitions:

RGR = RGA = RGT (89)

IGR = −IGA = −1
2A (90)

Relation A ↔ IGT

• Integral relation: Shift t-integration from real axis to the line t − iβ (use definition of ⟨...⟩ and A(t) =
eiHtAe−iHt) ˆ

dt eiωt ⟨A(t)B(0)⟩ = eωβ
ˆ

dt eiωt ⟨B(0)A(t)⟩ (91)

• We derive a relation between IG
R/A
AB (ω) and G>AB(ω):

IGRAB(ω) = −IGAAB(ω)

= 1
2i
(
GRAB(ω) −GRB†A†(ω)⋆

)
= 1

2i

ˆ ∞
−∞

dt
(
eiωtGRAB(t, 0) − e−iωtGRB†A†(t, 0)⋆︸ ︷︷ ︸

GAAB(0,t)

)

= 1
2i

ˆ ∞
−∞

dt eiωtθ(t)
(
G>AB(t, 0) −G<AB(t, 0)

)
− e−iωtθ(t)

(
G<AB(0, t) −G>AB(0, t)

)︸ ︷︷ ︸
eq.:G<AB(−t,0)−G>AB(−t,0)

(right : t → −t) = 1
2i

ˆ ∞
−∞

dt eiωtθ(t)
(
G>AB(t, 0) −G<AB(t, 0)

)
− eiωtθ(−t)

(
G<AB(t, 0) −G>AB(t, 0)

)
= 1

2i

ˆ ∞
−∞

dt eiωt
(
G>AB(t, 0) −G<AB(t, 0)

)
= −1

2

ˆ ∞
−∞

dt eiωt ⟨A(t)B(0) − ζB(0)A(t)⟩ (92)

[(91)] = − i

2
(
1 − ζe−ωβ

)
G>AB(ω) (93)

Similar for time-ordered Green function:

IGTAB(ω) = − i

2
(
1 + ζe−ωβ

)
G>AB (ω)

• Combine the last two equations, eliminate G>AB (ω), we find a relation between the imaginary parts of
time-ordered Green functions and spectral density A:

−1
2A = IGR = −IGA = 1 − ζe−βω

1 + ζe−βω
IGT (ω) (94)

Relation A ↔ RGR/A/T (Kramers-Kronig)

• We show that IGRAB = −AAB/2 determines the full GRAB(ω).

• Use FT of step-function (η is positive infinitesimal for convergence of the FT):

FT [θ(t)](ω) = lim
η→0

ˆ ∞
0

dteiωte−ηt = lim
η→0

−1
iω − η

= i lim
η→0

ω

ω2 + η2︸ ︷︷ ︸
P 1
ω

+ lim
η→0

η

ω2 + η2︸ ︷︷ ︸
πδ(ω)

(95)

or
θ(t) = 1

2πi

ˆ +∞

−∞
dω

eiωt

ω − iη
(96)
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• Find retarded Green function (use convolution theorem for FT):

GRAB(ω) =
ˆ ∞
−∞

dt eiωt
[
θ(t)

(
G>AB(t, 0) −G<AB(t, 0)

)]
= − 1

2πi

ˆ +∞

−∞
dω′ 1

ω′ − ω − iη

ˆ ∞
−∞

dt eiω′ti ⟨A(t)B(0) − ζB(0)A(t)⟩

[(92)] = 1
π

ˆ +∞

−∞
dω′ IG

R
AB(ω′)

ω′ − ω − iη

= − 1
2π

ˆ +∞

−∞
dω′ AAB(ω′)

ω′ − ω − iη
(97)

Fluctuation-dissipation theorem

• Similar expressions for G≷ in terms of A:

G>AB(ω) = − iAAB(ω)
1 − ζe−ωβ

(98)

G<AB(ω) = + iAAB(ω)
1 − ζe+ωβ

• Combine these expressions to find fluctuation-dissipation theorem:

G<AB(ω) +G>AB(ω) = −iAAB(ω)e
βω + ζ

eβω − ζ
(99)

• Remarks:

– Dissipation: On the rhs, imaginary part of the response functions A ∼ IGR determines dissipation
– Fluctuation: Correlation function G≷ on the lhs [the sum is also called Keldysh GF, GKAB(ω)]
– Recall: This only holds in equilibrium.

Lehmann representation

• Assume we have diagonalized the many-body Hamiltonian H |n⟩ = En |n⟩. We wish to express the
spectral density AAB(ω) (and thus all GFs) in terms of eigenstates.

• We start from the greater GF:

G>AB(t) = − i

Z

∑
n

e−βEn ⟨n|A(t)B|n⟩ = − i

Z

∑
n,n′

e−βEn+it(En−En′ ) 〈n|A|n′
〉 〈
n′|B|n

〉
(100)

and after a FT [using
´ +∞
−∞ dx eiax = 2π δ(a)]

G>AB(ω) =
ˆ ∞
−∞

dt eiωtG>AB(t) = −2πi
Z

∑
n,n′

e−βEnδ (En − En′ + ω)
〈
n|A|n′

〉 〈
n′|B|n

〉
(101)

• We find with Eq. (98):

AAB(ω) =
(
1 − ζe−ωβ

)
iG>A,B(ω)

=
(
1 − ζe−ωβ

) 2π
Z

∑
n,n′

e−βEnδ (En − En′ + ω)
〈
n|A|n′

〉 〈
n′|B|n

〉
= 2π

Z

∑
n,n′

δ (En − En′ + ω)
(
e−βEn − ζe−βEn′

) 〈
n|A|n′

〉 〈
n′|B|n

〉
(102)

• The Lehmann expression is useful for explicit calculations (if we know |n⟩, e.g. for small systems) or for
general proofs. For example, the relations found in the previous section could have been derived in this
way as well.
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Exercises

Exercise 4.1. Harmonic oscillator: GFs, spectral density and equation-of-motion (EoM) technique

The Hamiltonian for a 1D quantum mechanical oscillator with mass m and frequency ω0 reads

H = 1
2mp2 + 1

2mω
2
0x

2 (103)

where momentum and position operators satisfy [p, x]− = −i.

1. Introduce the bosonic creation operator a = x
√
mω0/2 + ip/

√
2mω0 and express the Hamiltonian as

H = ω0(a†a + 1/2). Assume thermal equilibrium at temperature T and find the greater and lesser GFs
G≷
aa† , the retarded and advanced GFs GR/A

aa† and the time ordered GF GT
aa† , both in time and frequency

domain. Confirm that the spectral density reads Aaa† = 2πδ(ω − ω0).

2. Use your results in 1.) to find the retarded GF for the position operator,

GRxx(t) = −θ(t) 1
mω0

sin (ω0t) . (104)

Find the same result from the EoM technique, which does not require diagonalization of H: Apply two
t-derivatives to the definition of GRxx(t) and solve the resulting differential equation.

Exercise 4.2. Spectral density A(ω) and tunneling spectroscopy
Consider the equilibrium spectral density AAB(ω) of Eq. (87) for the case A = c, B = c† with c a fermionic
operator. Here, we explore the meaning of Acc†(ω) as the energy resolution of a particle created by c† in a
many-body system and discuss how it can be measured in the solid state context.

1. Show that Acc†(ω)...

(a) is normalized 1
2π
´ +∞
−∞ dωAcc†(ω) = 1,

(b) is real and non-negative (use Lehmann representation),
(c) determines the occupation when weighted with nF (ω), i.e. show

〈
c†c
〉

= 1
2π
´ +∞
−∞ dωAcc†(ω)nF (ω),

(d) is a δ-function for a non-interacting system H = ε0c
†c and broadens if scattering with rate 1/τ

removes the particle from its state (start from GR
cc†(t) = −iθ(t)e−iε0te−t/2τ and discuss).

2. In solid state physics the spectral density can be measured by tunneling spectroscopy. Consider two
pieces of metal, sample A and probe B described by - possibly interacting - Hamiltonians HA and HB.
They are weakly coupled by a tunneling barrier HAB =

∑
νµ Tµνc

†
AµcBν + h.c. with Tµν a small complex

tunneling matrix element (T = T †) and Greek letters denote eigenstates of HA,B. The total Hamiltonian
is H = HA + HB + HAB. The tunnel current through the barrier is given by the rate of change of the
charge in metal A (or B), I = ∂tQA = i[H,QA] where QA = −e

∑
µ c
†
AµcAµ. Show that

I = ie
∑
νµ

(
Tµνc

†
AµcBν − T ⋆µνc

†
BνcAµ

)
(105)

and calculate the change of I when the tunneling barrier is added via I(t) =
´ +∞
−∞ dt′GRI,HAB (t, t′). This is

an application of the Kubo formula [→ Sec. (6)] and the retarded Green function needs to be calculated
with respect to HA + HB only (without the perturbation HAB!). Assume a voltage bias eV = µA − µB
between the two metals (i.e. use HA → HA − µA

∑
µ c
†
AµcAµ and analogous for HB). Show that

I = −e 1
2π

ˆ
dω
∑
νµ

|Tµν |2AcAµc†
Aµ

(ω)A
cBνc

†
Bν

(ω + eV ) [nF (ω + eV ) − nF (ω)] . (106)

Assume that metal B (the probe) has a spectral density that does not vary strongly with ω, this means∑
ν |Tµν |2AcBνc†

Bν
(ω) ≃ const., and also assumed that |Tµν |2 does not vary strongly with µ. Show that

at low temperature, the differential conductance dI/dV ≡ G(V ) is proportional to
∑
µAcAµc†

Aµ
(−eV ),

i.e. the spectral density of metal A that we measure. This is the theory of tunneling spectroscopy.
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Exercise 4.3. Hubbard atom: Spectral density and occupation

Consider a localized electronic orbital where an interaction U ≥ 0 occurs in the case of double occupation with
two electrons of opposite spin. The Hamiltonian is

H = Un̂↑n̂↓ − µ(n̂↑ + n̂↓) (107)

with n̂σ = c†σcσ the occupation operator, cσ fermionic annihilation operators (for spin σ =↑, ↓), and assume
thermal equilibrium at temperature T . Note: This “Hubbard atom” is the local limit of the famous Hubbard
model which in addition considers hopping −tc†jσciσ between neighboring sites

〈
i, j
〉

in a lattice of such Hubbard
atoms.
Diagonalize the Hamiltonian and use the Lehmann representation to find the spectral density A

cσc
†
σ
(ω). Does

it depend on σ? Calculate the occupation n =
〈
n̂↑ + n̂↓

〉
directly from the eigenstates and from the spectral

density (c.f. Ex. 4.2). Plot n as a function of µ/U for T/U = {0.01, 0.1, 0.5} and discuss your results. In the
special case µ = U/2, you should find n = 1 independent of T . Explain this observation in terms of a symmetry
of H.
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5 Equilibrium GF: Imaginary time and Matsubara formalism

Idea:

• Imaginary time formalism only for equilibrium, so H is always time-independent.

• In definition of GF: Compare time evolution e±itH with thermal state ρ ∼ e−βH

• Transform to imaginary time it = τ ∈ R to treat both exp on equal footing. Related concept: imag. freq. iωn

• This is just a mathematical trick without physical content!

• Pro: Resulting formalism is simple, in particular for perturbation theory (→ Feynman diagrams)

• Con: Real-time/freq. quantities [e.g. A(ω)] obtain from analytical continuation which is difficult.

5.1 Imaginary time

• We want:

– exponentials appearing in GAB(t) ∼ ⟨A(t)B⟩ ∼ Tr
[
eitHAe−itH B e−βH

]
to be real

– avoid to expand e−βH and e±itH when doing perturbation theory

• In the complex plane, we rotate t → −iτ (with τ ∈ R), see Fig. 5(a).

• For the time-evolution operator we get e−i(t−t0)H = U(t, t0) → U(τ, τ0) = e−(τ−τ0)H (“delete the i”).
The U(τ, τ0) is no longer unitary, but the group properties remain.

• Define the Heisenberg- and interaction picture in imaginary time, just copy from above.

• We use a Greek letter τ to indicate imaginary time evolved operators O(τ). A roman letter stands for
real-time Heisenberg picture, O(t) = eitHOe−itH .

• Heisenberg picture: O(τ) = eHτOe−Hτ and the EoM is ∂τO(τ) = [H,O(τ)].

• Interaction picture (H = H0 + V ):

– Operators: OI(τ) = eH0τOe−H0τ and the EoM is ∂τOI(τ) = [H0, OI(τ)].
– States |ψI(τ)⟩ = UI(τ, τ ′) |ψI(τ ′)⟩ with UI(τ, τ ′) = eH0(τ−τ ′)U(τ, τ ′) and ∂τUI(τ, τ ′) = −VI(τ)UI(τ, τ ′)
– Formal solution for UI(τ, τ ′) with imaginary time ordering operator Tτ :

UI(τ, τ ′) = Tτ exp
[
−
ˆ τ

τ ′
dτ̃VI(τ̃)

]
(108)

• Main result: Express thermal density matrix (state) in terms of evolution operator (both in Heisenberg
and interaction picture)

Zρ = e−βH = U(β, 0) = e−βH0UI(β, 0) (109)

5.2 Imaginary time ordered GF

• We use the time ordering operator for imaginary times τ1,2 and consider operators in Heisenberg picture:

GAB (τ1, τ2) ≡ − ⟨TτA(τ1)B(τ2)⟩ = − 1
Z

Tr
[
e−βHTτA(τ1)B(τ2)

]
(110)
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tinuity

Figure 5: (a) Real and imaginary time (b) Sketch of the imaginary time ordered GF Gaa†(τ) for H = ξa†a for bosons
(red), fermions (blue) and ξβ = 0.5. (c) Integration path to connect G(τ) and GR(ω). (d) G(c) with complex frequency
argument c.

Relation to perturbation theory

• Use Eq. (109) to write GAB (τ1, τ2) for H = H0 + V in a compact way that is the basis of perturbation
theory in V .

• Assume τ1 > τ2 and work with interaction picture A(τ1) = UI(0, τ1)AI(τ1)UI(τ1, 0):

⟨TτA(τ1)B(τ2)⟩ = 1
Z

Tr
[
e−βHUI(0, τ1)AI(τ1)UI(τ1, τ2)BI(τ2)UI(τ2, 0)

]
(109)= 1

Z
Tr
[
e−βH0UI(β, τ1)AI(τ1)UI(τ1, τ2)BI(τ2)UI(τ2, 0)︸ ︷︷ ︸

TτUI(β,0)AI(τ1)BI(τ2)

]

and a similar calculation holds for τ1 < τ2 so that we can conclude for all τ1,2:

⟨TτA(τ1)B(τ2)⟩ =
Tr
[
e−βH0Tτ (UI(β, 0)AI(τ1)BI(τ2))

]
Tr [e−βH0UI(β, 0)] (111)

The time-ordering puts the parts of UI(β, 0) = UI(β, τ1)UI(τ1, τ2)UI(τ2, 0) at their correct positions.

• We divide both numerator and denominator by 1/Z0 and use “simple” averages with respect to e−βH0

which are defined as ⟨...⟩0 ≡ Z−1
0 Tr

[
e−βH0 ...

]
:

⟨TτA(τ1)B(τ2)⟩ = ⟨TτUI(β, 0)AI(τ1)BI(τ2)⟩0
⟨UI(β, 0)⟩0

(112)

• Observation: The perturbation V sits only in UI(β, 0) and not in AI(τ1)BI(τ2) so that no separate
expansions of state and time-evolution needs to be performed.

• Before we embark in performing expansion in V (→ Sec. (7)), we first consider the relation of GA,B (τ1, τ2)
to real-time GF (or rather real-frequency GF).

Matsubara frequencies

• Properties of GA,B (proof → Ex. 5.1):

– translation invariance in τ :

GAB (τ1, τ2) = GAB (τ1 − τ2, 0) ≡ GAB (τ1 − τ2) (113)

– for GAB(τ) to be well-defined (not divergent), the argument needs to be restricted to τ ∈ (−β, β).
Here it is assumed that the (many-body) spectrum En is bounded from below, but not necessarily
from above.
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(2)(1) (3)

...

Figure 6: Sketches for reminders on complex analysis.

– (anti-)periodic boundary conditions: For 0 ≤ τ < β, we have

GAB (τ) = ζ · GAB (τ − β) . (114)

• The boundary condition (114) means GAB (τ) is fully determined by its behavior for τ ∈ [0, β). However,
generalizing Eq. (114), one can extend GAB (τ) to τ on the whole real axis, τ ∈ R to obtain a function
periodic in 2β.

• As an example, the Gaa†(τ) for free bosons or fermions is shown in Fig. 5(b), for details see Sec. 5.5.

• It is useful to represent the periodic function GAB (τ) as a Fourier series with discrete coefficients that
can be obtained from G(τ) on τ ∈ [0, β):

GAB (τ) ≡ T
∑
n

e−iωnτGAB (iωn) (115)

GAB (iωn) ≡
ˆ β

0
dτ eiωnτGAB (τ) (116)

where for n ∈ Z the Matsubara frequencies are:

ωn =
{

2πTn : bosons
2πT (n+ 1/2) : fermions

(117)

This ensures β-(anti)-periodicity.

• The GAB(iωn) is known as the Matsubara GF and the complex argument is a convention. Sometimes
also GAB(ωn) is used in the literature.

5.3 Reminders on complex analysis

Before we can embark on showing the relation between Matsubara GF GAB (iωn) and real-frequency GFs, we
need the following facts from complex analysis.

(1) Residue theorem: Consider f : C → C, z → f(z) a complex function which is analytic on C (locally
expandable in power series) except at the points a1,2,...,n. Then we have for the a1,2,..,k inside a
closed path γ: ‰

γ
dz f(z) = 2πi

k∑
j=1

Res (f, aj) (118)

where Res (f, aj) is the residue of f at aj . If aj is a pole of n-th order of f(z):

Res (f, aj) = 1
(n− 1)! lim

z→aj

dn−1

dzn−1 ([z − aj ]n f(z)) (119)
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(2) Cauchy’s integral formula (follows from residue theorem): If f is analytic on C, then for a path
enclosing z0:

f(z0) = 1
2πi

‰
γ

dz f(z)
z − z0

(120)

(3) Identity theorem for complex functions: Let f, g : D → C be two complex functions analytic on
the domain D ⊆ C and consider an ∈ D, n ∈ N a series of complex numbers with lim

n→∞
an = a ∈ D.

Theorem: If f(an) = g(an) for all n = 1, 2, ..., then f(z) = g(z) for all z ∈ D.
Consequence: If we know a function f(z) for a series of points, we can continue it analytically to a
larger region of the complex plane in a unique way.

5.4 Connection between Matsubara and retarded GF

• Consider the integrand in Eq. (116) but replace τ → z (complex argument) eiωnzGAB (z) and integrate
along closed path C = C→ + C↑ + C← + C↓ in Fig. 5(c). Assume ωn > 0 and use residue theorem (1).

• The integrand has no singularities in C, thus

0 =
‰
C

dz eiωnzGAB (z) = I→ + I↑ + I← + I↓ (121)

We calculate the different line integrals on the rhs separately:

– C→: z = τ ∈ R, dz = dτ : The integral is just the definition of the Matsubara GF, I→ = GAB (iωn)
– C↑: z = β + it, t ∈ [0,∞), dz = idt: The convergence of this integral requires ωn > 0. We use the

important identity eiωnβ = ζ.

I↑ = − 1
Z

ˆ ∞
0

idt eiωn(β+it) Tr
(
e−βHe(β+it)HAe−(β+it)HB

)

= − 1
Z

ˆ ∞
0

idt e−ωnt ζ Tr

e−βHBeitHAe−itH︸ ︷︷ ︸
A(t)


= −ζ

ˆ ∞
0

dt e−ωnti ⟨BA(t)⟩

– C←: We have I← = 0 to due to eiωnz → 0 if ωn > 0 and Imz → ∞.
– C↓: Similar to C↑, we find with z = it, t ∈ (∞, 0], dz = idt,

I↓ = − 1
Z

ˆ 0

∞
idteiωnitTr

(
e−βHeitHAe−itHB

)
= +

ˆ ∞
0

dte−ωnti ⟨A(t)B⟩

• We insert in Eq. (121) and convert
´∞

0 dt =
´∞
−∞ dt θ(t):

GAB (iωn) =
ˆ ∞
−∞

dte−ωntθ(t) (−i ⟨A(t)B⟩ + ζi ⟨BA(t)⟩)︸ ︷︷ ︸
GRAB(t)

(ωm > 0) (122)

Note: On the rhs, this is not the usual FT of Eq. (86) because of the missing imaginary unit in the
exponent.

• What about ωm < 0? We need flip the path C to negative side of the complex plane. Similar steps lead
to:

GAB (iωn) =
ˆ ∞
−∞

dt eωntGAAB(t) (ωm < 0) (123)
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• To complete the argument, we need to extend defintion of FT, GR/A(ω) =
´∞
−∞ dt e

iωtGR/A(t) [Eq. (86)]
to complex frequency variable c = ω + iν with ω, ν ∈ R.

GR/A(c = ω + iν) ≡
ˆ ∞
−∞

dt eiωt e−tν GR/A(t) (124)

• What values can ν take for convergence? Due to the θ(±t) in GR/A(t), we restrict to ν > 0 for GR(ω+ iν)
and ν < 0 for GA(ω + iν).

• It follows:

– GR(c) is an analytic function on the upper half plane Imc = ν > 0
– GA(c) is an analytic function on the lower half plane Imc = ν < 0

• Relation between Matsubara GF and response functions: With the definition Eq. (124) and Eqns. (122),
(123) from contour integration of GAB (τ → z), we have

GAB (iωn) =
{
GRAB (iωn) : ωn > 0
GAAB (iωn) : ωn < 0

(125)

• Remark: The special case ωn = 0 (only for bosonic Matsubara frequencies!) will be considered in Ex. 5.2
and interpreted in Sec. 6.

Analytic continuation

• Usually GAB (iωn) is easier to calculate than other GF → assume we know GAB (c = iωn) where c is
complex frequency argument. See Fig. 5(d).

• Use identity theorem (3) from complex analysis and the fact that Eq. (125) holds for infinite number of
(either positive or negative) Matsubara frequencies. We conclude that there is a function GAB(c) which
is analytic for c /∈ R which coincides with the Matsubara GF at c = iωn and is identical to GR/AAB (ω) for
c = ω ± iη just above or below the real axis.

• Analytic continuation:
G
R/A
AB (ω) = lim

η→0
GAB (iωn → ω ± iη) (126)

• Remarks:

– For straightforward analytic continuation by simply replacing iωn → ω ± iη, need GAB (iωn) in the
form of a rational function analytic in the upper/lower half plane.
E.g.: One cannot replace iωn → ω± iη in the defining FT integral (116), the τ -integration must be
performed first because we need discrete Fourier coefficients.

– GAB (c) has a discontinuity on the real axis, c ∈ R, this is evident as GRAB (ω) ̸= GAAB (ω). See also
Ex. 5.2 where GAB (c) is expressed using the Lehmann representation.

– For numerical data, only a finite number of Matsubara frequencies is known and there might be
error bars. Then analytic continuation is not well defined.

5.5 Example: Matsubara GF for non-interacting particles

• Consider non-interacting particles described by H0 =
∑
µ ξµa

†
µaµ where for bosons ξµ > 0 for finite

occupation. We want to find the Matsubara GF G
aνa

†
ν
(τ) ≡ Gν(τ) and Gν(iωn).

• We have similar to the real-time case Eq. (81), aν(τ) = eτH0aνe
−τH0 = e−ξντaν and a†ν(τ) = e+ξντa†ν .
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(Matsubara freq.)
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Figure 7: (a) Matsubara sum S(τ) = T
∑

ωn
g(iωn)eiωnτ in two cases for function g(z), (a) with known simple poles and

(b) with a non-analyticity along the real axis.

• Insert into the definition of G
aνa

†
ν
(τ) ≡ Gν(τ) in Eq. (110),

Gν(τ) = −
[
θ(τ)

〈
aνa
†
ν

〉
+ ζθ(−τ)

〈
a†νaν

〉]
e−ξντ

= − [θ(τ) (1 + ζ ⟨n̂ν⟩) + ζθ(−τ) ⟨n̂ν⟩] e−ξντ

with ⟨n̂ν⟩ = nν = 1/(eβξν − ζ) the occupation function for bosons (ζ = +1) or fermions (ζ = −1). See
Fig. (5)(b) for a sketch of Gν(τ) for ξνβ = 0.5.

• We perform the FT (116) to find Gν (iωn) =
´ β

0 dτ eiωnτGν (τ). It is crucial that ξµ > 0 for the bosonic
case and iωn ̸= 0 for the fermionic case so that

´ β
0 dτ e(iωn−ξν)τ = e(iωn−ξν )β−1

iωn−ξν . We then use eiωnβ = ζ
and obtain after a cancellation with 1 + ζ ⟨n̂ν⟩.

Gν (iωn) = 1
iωn − ξν

(127)

• Analytic continuation:
GR/Aν (ω) = lim

η→0
Gν (iωn → ω ± iη) = 1

ω ± iη − ξν
(128)

For the bosonic case, the GR/A(ω) has already been found in the Ex. (4.1) on the real-time GF of the
harmonic oscillator.

5.6 Evaluation of Matsubara sums

• When working with Matsubara GFs, we will often encounter generic sums [for τ ∈ (0, β)]

S(τ) ≡ T
∑
ωn

g(iωn)eiωnτ (129)

and ωn are either bosonic or fermionic Matsubara frequencies and g(iωn) is a Matsubara GF or products
thereof. Goal: Calculate S(τ).

• Trick: Use Cauchy’s integral formula (120) backwards, f(iωn) = 1
2πi
‌
γ dz f(z)/(z − iωn). Write the rhs

of S(τ) as an integral of the complex variable z.

• Start with rewriting a single term in the sum, g(iωn)eiωnτ . See the red contour in Fig. 7(a).

• We need a function that has simple poles at iωn, but for all n. Since eiβωn = ζ this function is the
fermionic or bosonic distribution function:

nζ(z) ≡ 1
eβz − ζ

→ Res (nζ(z), iωn) = lim
z→iωn

(
[z − iωn]︸ ︷︷ ︸

δ

1
eβz − ζ

)
= lim

δ→0

δ

eβδζ − ζ
= ζ

1
β

(130)
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• For a contour integral that encloses the point iωn but no singularity of g(z), we have according to Cauchy’s
formula ‰

γiωn

dz g(z)nζ(z) = 2πiζ 1
β
g(iωn) (131)

• Generalize to contour γ which encloses all iωn but no singularities of g(z), then

S(τ) = ζ

2πi

‰
γ

dz nζ(z)g(z)ezτ (132)

• Special case (a) (perturbation theory): Function g(z) with simple poles that are known, g(z) = Πj
1

z−zj .
Use contour γ : z = Reiθ, θ ∈ [0, 2π] and R → ∞, see Fig. 7(a). The integrand contains nζ(z)ezτ = ezτ

eβz−ζ
which vanishes in the R → ∞ limit and hence

0 = 1
2πi

‰
γ

dz nζ(z)g(z)ezτ (133)

The poles of nζ(z) give rise to ζS(τ), the (few and known) poles of g(z) which are also enclosed provide
the rhs:

S(τ) = −ζ
∑
j

Res (g(z), zj)nζ(zj)ezjτ (134)

• Special case (b) (full GF, fermionic ζ = −1): Assume the poles of g(z) = Gcc†(z) are not known, but we
know that it is analytic for z not on the real axis [follows for Gcc†(iωn → z) from Lehmann representation].
Enclose all z = iωn by contours γ1,2 shown in Fig. 7(b). Again, the part |z| → ∞ does not contribute to
the integral. We have from Eq. (132)

S(τ) = − 1
2πi

ˆ +∞

−∞
dε nF (ε) [Gcc†(ε+ iη) − Gcc†(ε− iη)] eετ

(anal. cont.) = − 1
2πi

ˆ +∞

−∞
dε nF (ε)

[
GRcc†(ε) −GAcc†(ε)

]
︸ ︷︷ ︸

−iA
cc† (ε)

eετ

= 1
2π

ˆ +∞

−∞
dε nF (ε)Acc†(ε)eετ

Application: Occupation number

〈
c†c
〉

= −
〈
Tτ c(−η)c†(0)

〉 def.= Gcc†(τ = −η) = T
∑
n

eiωnηGcc† (iωn) = S(η) (b)= 1
2π

ˆ +∞

−∞
dε nF (ε)Acc†(ε)

(135)
This relation between occupation and spectral density was already derived by other means in Ex. 4.2.

5.7 Wick’s theorem

• n-particle imaginary time ordered GF: We specialize to creation and operators A,B = aνj , a
†
νj but gen-

eralize from the single-particle imaginary time ordered GF to n-particle (=2n-point)

G(n) (ν1τ1, ..., νnτn; ν ′1τ ′1, ..., ν ′nτ ′n
)

≡ (−1)n
〈
Tτaν1(τ1)...aνn(τn)a†ν′

n
(τ ′n)...a†ν′

1
(τ ′1)

〉
(136)

Note the order of the creation operators and the leading sign which might differ from author to author.

• Wick’s theorem applies to G(n) only if the average ⟨...⟩ is with respect to a HamiltonianH0 =
∑
ν′,ν h

(0)
ν′,νa

†
ν′aν

which is quadratic in a, a†. We denote this case by subscript 0: G(n) = G(n)
0 .
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• We abbreviate j = (νj , τj). The theorem states that G(n)
0 factorizes into a sum of n products of single-

particle (n = 1) imaginary time ordered non-interacting GFs

G0(j, j′) ≡ −
〈
Tτaνj (τj)a

†
ν′
j
(τ ′j)

〉
0

(137)

in the following way;

G(n)
0
(
1, 2, ..., n; 1′, 2′, ..., n′

)
=
∑
p∈Sn

ζP (p)G0
(
1, p(1′)

)
G0
(
2, p(2′)

)
· · · G0

(
n, p(n′)

)
(138)

• Remarks:

– P (p) ≡ [1 − sgn(p)]/2 where sgn(p) = ±1 is the sign of permutation p → ζP (p) = 1 except for an
odd permutation of fermions where it is −1

– essential: (i) fermionic or bosonic operator algebra and (ii) non-interacting H0

– if we consider the matrix M with elements Mjj′ = G0 (j, j′), the rhs of Eq. (138) is the determinant
of M (for fermions, ζ = −1) or the permanent of M (for bosons, ζ = +1)

– Wick’s theorem and the interaction picture representation of the full G in Eq. (112) are the basis of
perturbation theory and Feynman diagrams

Preparation for proof: EoM for G0 = G(1)
0

• Apply ∂τ to (compare to Ex. 4.1 for real-time GF):

G0,νν′(τ) = −θ(τ)
〈
aν(τ)a†ν′

〉
0

− ζθ(−τ)
〈
a†ν′aν(τ)

〉
0

(139)

• Preparation for EoM in imaginary time Heisenberg picture: ∂τaν(τ) = [H0, aν ](τ):

[H0, aν ] =
∑
µ′,µ

h
(0)
µ′µa

†
µ′aµaν −

∑
µ′,µ

h
(0)
µ′µ aνa

†
µ′aµ︸ ︷︷ ︸

δµ′νaµ+ζa†
µ′aνaµ=δµ′νaµ+a†

µ′aµaν

= −
∑
µ

h(0)
νµaµ (140)

so that:
∂τaν(τ) = [H0, aν ](τ) = −

∑
ν

h(0)
νµaµ(τ) (141)

• Combine this with the derivatives of the θ(τ)-functions

∂τG0,νν′(τ) = −δ(τ)
〈
aνa
†
ν′

〉
0

+ ζδ(τ)
〈
a†ν′aν

〉
0

−
∑
µ

h(0)
νµG0,µν′(τ)

∑
µ

(
−δµν∂τ − h(0)

νµ

)
G0,µν′(τ) = δ(τ)

〈[
aν , a

†
ν′

]
ζ

〉
0

(142)

∑
µ

[
G−1

0 (τ)
]
νµ

G0,µν′(τ) = δ(τ)δν,ν′

• After a Fourier transform,
[
G−1

0 (τ)
]
νµ

= −δµν∂τ − h
(0)
νµ is consistent with our finding for the non-

interacting GF in Eq. (127), 1/Gν (iωn) = iωn − ξν (here, h(0)
ν′ν was diagonalized before).

• Generalize to two time arguments τ → τ − τ ′:∑
µ

(
−δµν∂τ − h(0)

ν,µ

)
︸ ︷︷ ︸
G−1

0 (τν,τ ′µ)

G0(µτ, ν ′τ ′) = δ(τ − τ ′)δν,ν′ ≡ 1 (143)
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Proof via EoM

• Define operator

dj(σj) =

aνj (τj) : j = 1, 2, ..., n
a†ν′

2n+1−j
(τ ′2n+1−j) : j = n+ 1, n+ 2, ..., 2n (144)

so that σj = τj for j = 1, 2, ..., n and σj = τ ′2n+1−j for j = n+ 1, ..., 2n. We then have

G(n)
0
(
1, 2, ..., n; 1′, 2′, ..., n′

)
= (−1)n ⟨Tτd1d2...dndn+1...d2n⟩0 . (145)

• Idea: Rewrite τ -ordering Tτ by summing over all possible orders of dj (→ permutations p) and pick the
correct one (determined by the actual values of τj) by product of θ-functions:

G(n)
0
(
1, 2, ..., n; 1′, 2′, ..., n′

)
= (−1)n

∑
p∈S2n

ζP (p)θ
(
σp(1) − σp(2)

)
θ
(
σp(2) − σp(3)

)
...θ

(
σp(2n−1) − σp(2n)

)
×
〈
dp(1)(σp(1))...dp(2n)(σp(2n))

〉
0

• Take ∂σi-derivative with i ∈ {2, ..., n} (if n = 1 there is nothing to prove): The derivative acts on σi which
occurs at two positions: (I) Act on di(σi) which produces the G−1

0,i as in the preparation. (II) Act on the
two θ(...) with σi in their arguments.

G−1
0,i · G(n)

0 = −∂(θ)
σi G(n)

0 (146)

• For the rhs, consider the two permutations which put σi = τi together with τ ′j in a θ-function (neighboring
in permutation, either τi > τ ′j or τi < τ ′j). These contributions are

G(n)
0 =

[
...θ(τi − τ ′j)...

]〈
...aνi(τi)a

†
ν′
j
(τ ′j)...

〉
0

+ ζ
[
...θ(τ ′j − τi)...

]〈
...a†ν′

j
(τ ′j)aνi(τi)...

〉
0

+ ... (147)

And the ... are the same strings of θ-functions and operators in both cases. Acting with −∂(θ)
σi we have

analogous to Eq. (142) for the single-particle case from the a-operator algebra:

−∂(θ)
τi G(n)

0 = −
[
...δ(τi − τ ′j)...

] 〈
...δνi,ν′

j
...
〉

0
+ ... (148)

• For the other cases where τi is together with τj (corresponding to two annihilation operators placed
together), we have [aνi , aνj ]ζ = 0 and the contribution vanishes.

• By taking −∂(θ)
σi G(n)

0 we have deleted one annihilation and one creation operator are thus left with a a
sum over G(n−1)

0 .

G−1
0,σi · G(n)

0 =
n∑
j=1

ζj+iδνi,ν′
j
δ(τi − τ ′j)G

(n−1)
0

(
ν1τ1, ...,��νiτi, ..., νnτn; ν ′1τ ′1, ....,���ν ′jτ

′
j , ..., ν

′
nτ
′
n

)
(149)

• The sign in Eq. (148) cancels with the relative sign between G(n) and G(n−1) due to the deliberately chosen
prefactor (−1)n in the definition of G(n), see Eq. (136).

• The sign ζj+i comes from moving a†ν′
j
(τ ′j) from position 2n + 1 − j to position i + 1 so that it sits right

of aνi(τi). This causes a sign of ζ2n−i−j = ζi+j .

• In Eq. (149), we now insert the EoM of the single-particle GF, G0 in Eq. 143 and replace:
δ(τi − τ ′j)δνi,ν′

j
=
∑
µ

G−1
0 (τiνi, τ ′jµ)G0(µτi, ν ′jτ ′j) (150)

Multiplying with G0,σi from the left yields:

G(n)
0
(
ν1τ1, ..., νnτn; ν ′1τ ′1, ..., ν ′nτ ′n

)
=

n∑
j=1

ζj+iG0(νiτi, ν ′jτ ′j)G
(n−1)
0

(
ν1τ1, ...,��νiτi, ..., νnτn; ν ′1τ ′1, ....,���ν ′jτ

′
j , ..., ν

′
nτ
′
n

)
(151)

• This is exactly the iteration formula for the determinant (ζ = −1) or the permanent (ζ = +1). Thus, via
the remark below Eq. (138), this proves the theorem.
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Exercises

Exercise 5.1. Properties of imaginary time GF GAB(τ)

Consider the imaginary time GF of Eq. (110) and prove the properties (i) of time translation invariance in
Eq. (113), (ii) the restriction τ ∈ (−β, β) for the argument [Hint: Use Lehmann representation] and (iii) the
boundary condition in Eq. (114).

Exercise 5.2. Lehmann representation of Matsubara GF and anomalous contribution

Starting from the definition in Eq. (116), follow similar steps as in Sec. 4.2 and introduce the Lehmann
representation for the Matsubara Green function (for general ζ = ±1),

GAB (iωn) ≡ − 1
Z

∑
m,m′

e−βEm′
〈
m′|A|m

〉 〈
m|B|m′

〉β : iωn + Em′ − Em = 0,
ζe(Em′ −Em)β−1
iωn+Em′−Em : otherwise.

(152)

The upper line is called the “anomalous” contribution (often missing in textbooks!), it can only occur for the
bosonic case (why?) and we will discuss its physical meaning later in Sec. 6. For iωn → z /∈ R, Eq. (152)
confirms that GAB(iωn → z) is analytic. Derive also the Lehmann representation of the (real-frequency)
retarded GF, compare to Eq. (152) and confirm that GAB(iωn → ω+ iη) = GRAB(ω) as shown in the lecture by
other means.

Exercise 5.3. Polarizability of non-interacting electrons (I): Lindhard function

The polarizability describes how the charge distribution ρ is modified by a perturbing external electric field.
Let the field be characterized by frequency ω and momentum q ̸= 0. In Sec. 6 we will see that under
suitable experimental conditions this response is given by the retarded (real frequency) correlation function
with A = B = ρ. We consider a spatial Fourier transform to ρq and work in a translation invariant electron
system H0 =

∑
k
∑
σ=↑,↓ ξkc

†
kσckσ (a metal, say) and wish to confirm

GRρq,ρ−q(ω) ≡ χR0 (q, ω) = 1
V

∑
k,σ

nF (ξk) − nF (ξk+q)
ξk − ξk+q + ω + iη

(153)

where V is the volume and the subscript zero reminds us on the non-interacting nature. This is known as
the Lindhard function. Confirm the expression for χ0(q, ω). Hint: Define a suitable imaginary time ordered
GF (with n = 2 creation an annihilation operators, respectively). Simplify this GF by using Wick’s theorem,
then change to Matsubara frequency. Perform the resulting Matsubara sum with the techniques developed in
Sec. 5.6 and finally do the necessary analytic continuation.

Exercise 5.4. Polarizability of non-interacting electrons (II): Particle-hole excitations in a metal

In the setting of Ex. 5.3, the perturbing field can cause dissipation in the metal. In general, the dissipation
is proportional to −ImχR0 (q, ω) with χR0 (q, ω) given in Eq. 153. Assume zero temperature and a parabolic
dispersion ξk = k2/(2m) −EF filled up to the Fermi energy EF . In a the parameter plane spanned by the axes
q and ω ≥ 0, indicate the region where the dissipation is nonzero. Interpret this result in terms of particle-hole
pair creation processes which take up the energy.
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Figure 8: (a) Schematic of linear response of a system to an external perturbation (“field”) F . (b) The situation depends
on the presence of equilibration during the measurement.

6 Measurement: Linear response theory

Idea:

• Define measurement setup with weak probe field.

• Define susceptibility as outcome of measurement, connect to correlation function.

• Different measurement protocols relate to different correlation functions.

6.1 Measurement situations

• A system in equilibrium is exposed to a weak external perturbation F (electric field, magnetic field,
temperature gradient, ...)

• Measure average of operator O that depends on F , ⟨O⟩ (F ),

• The ⟨O⟩ (F ) can be expanded in F , we are interested in the linear contribution.

⟨O⟩ (F ) = ⟨O⟩ + ∂ ⟨O⟩ (F )
∂F

|F=0 · F + O(F 2) (154)

• The linear response term is also called the susceptibility

∂ ⟨O⟩ (F )
∂F

|F=0 ≡ χ (155)

• Goal: Calculate χ theoretically. For this, it is crucial to distinguish between two experimental situations.
(there are other more exotic situations)

• Isothermal response: The system remains coupled to the bath when F is applied (or: system that is
always coupled to bath has time to equlibrate), the state is always ρ ∼ e−βH(F ) with β unchanged →
isothermal susceptibility χI .

• Isolated (Kubo) response: The system is isolated from the bath when F is applied (or system coupled
to bath has no time to equilibrate), the state is changed ρ��∼e−βH(F ) → Kubo susceptibility χK .

• Hamiltonian in the presence of perturbation F :

H → H(F ) = H + ∂H(F )
∂F

|F=0︸ ︷︷ ︸
≡H1

· F + O(F 2) (156)

For linear response it is sufficient to focus on linear part.
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Example: Electrons in B-field

• Consider an electron coupled to a magnetic field B, so that we have a vector F = B. The Hamiltonian
reads H(B) = H − m · B with magnetic moment

m = mS + mL = −H1 (157)

which splits into spin (mS) and “orbital” part (mL, due to movement of electron).

• Orbital part: mL = −µBL/ℏ with L the angular momentum operator. Here, µB = eℏ/(2me) is the Bohr
magneton. The orbital part can be understood classically as a ring-current.

• Spin part: mS = −geµBS/ℏ with S the spin operator and Landé-factor ge ≃ 2.0023 (with QED correction,
we approximate ge ≡ 2). The spin part is of purely quantum nature. The spin part will be considered
further in Ex. 6.1.

6.2 Theory of isothermal response

• We assumed that the perturbation is slow enough so that the system equilibrates ρ ∼ e−βH(F ), the
observable is

⟨O⟩ (F ) = 1
Z(β, F )Tr

[
e−βH(F )O

]
(158)

with Z(β, F ) = Tr e−βH(F ).

• Naive attempt to susceptibility:

∂F e
−βH(F ) ?=

{
−βe−βH(F )∂FH(F )
−β [∂FH(F )] e−βH(F ) (159)

The right hand sides are not the same unless [H(F ), ∂FH(F )] = 0. Correct way: Series expansion of
e−βH(F ), but this is complicated.

• Alternative approach: Use differential equation for auxiliary operator

A (β, F ) ≡ ∂F e
−βH(F ) (160)

• Find β-derivative of A, set ∂FH(F ) ≡ H ′(F ): ∂βA (β, F ) = −∂F
[
H(F )e−βH(F )

]
. Express this via

A (β, F ):
∂βA (β, F ) = −H(F )A (β, F ) −H ′(F )e−βH(F ), A (β = 0, F ) = 0 (161)

We thus obtained a homogeneous linear first order differential equation.

• Solution of homogeneous equation (only first term on rhs): A0 (β, F ) = e−βH(F )

• Ansatz for inhomogeneous equation:

A (β, F ) = A0 (β, F ) ·G (β, F ) = e−βH(F )G (β, F ) (162)

Insert in Eq. (161),

∂βG (β, F ) = −eβH(F )H ′(F )e−βH(F ) → G (β, F ) = G (0, F ) −
ˆ β

0
dτ eτH(F )H ′(F )e−τH(F ) (163)

• Insert in A (β, F ) and use initial condition:

A (β, F ) = −e−βH(F )
ˆ β

0
dτ eτH(F )H ′(F )e−τH(F ) (164)
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• Use this result to compute the F -derivative of ⟨O⟩ (F ) to linear order:

∂F ⟨O⟩ (F ) = ∂F

( 1
Z(β, F )Tr

[
e−βH(F )O

])
= − 1

Z2(β, F ) {∂FZ(β, F )} Tr
[
e−βH(F )O

]
+ 1
Z(β, F )Tr

[
∂F e

−βH(F )O
]

(165)

– For the curly brackets in the first term, we use:

∂FZ(β, F ) = TrA (β, F )

= −
ˆ β

0
dτ Tr

[
e−βH(F )eτH(F )H ′(F )e−τH(F )

]
(cycl.) = −

ˆ β

0
dτ Tr

[
e−βH(F )H ′(F )

]
= −β

〈
H ′(F )

〉
Z(β, F )

– For the second term, we use:

1
Z(β, F )Tr

[
∂F e

−βH(F )︸ ︷︷ ︸
A(β,F )

O
]

= − 1
Z(β, F )

ˆ β

0
dτ Tr

[
e−βH(F )eτH(F )H ′(F )e−τH(F )O

]

= − 1
Z(β, F )

ˆ β

0
dτ Tr

[
e−βH(F )H ′(F )(τ)O

]
= −

ˆ β

0
dτ
〈
H ′(F )(τ)O

〉
F

where ⟨...⟩F = Tr
[
e−βH(F )...

]
/Z(β, F ).

• Insert in Eq. (165),

∂F ⟨O⟩ (F ) = −
ˆ β

0
dτ
[〈
H ′(F, τ)O

〉
F −

〈
H ′(F )

〉
F ⟨O⟩F

]
(166)

and set F = 0, use ⟨...⟩ = Tr
[
e−βH ...

]
/Z and recall H ′(F )|F=0 ≡ H1:

χIH1O ≡ ∂F ⟨O⟩ (F )|F=0

= −
ˆ β

0
dτ [⟨H1(τ)O⟩ − ⟨H1⟩ ⟨O⟩]

• The final result for the isothermal susceptibility is

χIH1O = GH1O (iωn = 0) + β ⟨H1⟩ ⟨O⟩ (167)

• Remarks and interpretation:

– since we set F = 0, the averages ⟨...⟩ are to be computed with respect to the unperturbed system
(H1 = 0)

– the last term on the rhs of Eq. (167) is not substantial: We can redefine O → O − ⟨O⟩ to make it
vanish. This means we only measure the change in the observable

– imaginary time occurs naturally in this context (via differential equation):
The isothermal response of observable O under perturbation H1 is given by imaginary time (ordered)
GF of H1 and O averaged over imaginary times τ

– this relates the Matsubara GF at zero Matsubara frequency iωn = 0 to a measurable quantity
– since H1 and O are bosonic, we have χIH1O

= χIOH1
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Figure 9: The instantaneous eigenenergies of H(t) = H + F (t) · H1, the F (t) is switched on slowly starting from
t = −∞. The assumption for the dynamic-isolated (Kubo) response is that only the states change, not the occupations
(line thickness). The occupations are taken to be the initial ones e−βH for the duration of the measurement. The pink
arrows indicate the smallest gap which controls the adiabatic time scale.

6.3 Theory of isolated (Kubo) response

• As the system does not equilibrate (on the timescales considered) we treat the perturbation as dynamic
F → F (t).

• Perturbation is absent at t = −∞ [F (t → −∞) = 0] and sufficiently slow (see below). Hamiltonian:

H(F ) = H + F (t) ·H1 ≡ H(t) (168)

• To find O(t), we need to know the density matrix which can be always diagonalized,

ρ(t) =
∑
n

λn(t) |ψn(t)⟩ ⟨ψn(t)| ,
∑
n

λn(t) = 1. (169)

• Equation of motion: Apply Schrödinger equation, i∂t |ψn(t)⟩ = H(t) |ψn(t)⟩, find

∂tρ(t) = −i [H(t), ρ(t)] +
∑
n

(∂tλn(t)) |ψn(t)⟩ ⟨ψn(t)| (170)

The first term is due to the change of the eigenstates due to the perturbation F (t), the second is due to
the change in occupation numbers.

• As discussed in Sec. 6.1, we start (at t = −∞) in a thermal state

ρ = 1
Z
e−βH =

∑
n

e−βEn

Z
|n⟩ ⟨n| (171)

where H = H(t = −∞) and H |n⟩ = En |n⟩ are eigenstates.

Assumption:

• The occupation numbers λn(t) in Eq. (169) do not change with t when the perturbation is switched on:

λn(t) != e−βEn

Z
→ ∂tλn(t) = 0 (172)

• Justification I: Absence of scattering (Fig. 9)

– If the perturbation is slow, F (t) ∼ eηt with η → 0, then the adiabatic theorem tells us that eigenstate
|n⟩ of H evolve into the continuously deformed eigenstate |n(t)⟩ of H(t) and does not scatter into
other states |m(t)⟩.

– For finite time-scale of the perturbation TF , the adiabatic theorem still holds for TF ≫ Tad =
ℏ/(Em − En).
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• Justification II: Absence of thermalization

– If the system is strongly coupled to an external bath, then λn(t) = e−βEn(t)/Z(t). To avoid this, we
assumed that the system is isolated.

– If the system is not perfectly isolated, then thermalization only happens after a timescale Tth

• In practice, require the perturbatino time scale TF to fulfill:

Tad ≪ TF ≪ Tth (173)

Then we have
∂tρ(t) = −i [H(t), ρ(t)] , ρ(t = −∞) = ρ0 = e−βH/Z (174)

Kubo formula

• We now use the above assumption to find the “Kubo” susceptibility which tells us about the linear
response of the observable at time t to the perturbation at time t′:

∂ ⟨O⟩ (t)(F )
∂F (t′) |F=0 ≡ χKOH1(t, t′) (175)

• Expand density matrix ρ(t) = ρ0 + ρ1(t) + O(F 2) with ρ1 of order F and ρ1(t = −∞) = 0. Insert in
evolution equation

∂tρ(t) = ∂tρ1(t) + O(F 2)
= −i [H + F (t)H1, ρ0 + ρ1(t)] + O(F 2)
= −i [H, ρ1(t)] − iF (t) [H1, ρ0] + O(F 2)

• We solve the differential equation for ρ1(t) by the ansatz ρ1(t) ≡ e−iHtG(t)e+iHt (like interaction picture),
find with [H, ρ0] = 0:

e−iHt (∂tG(t)) e+iHt = −iF (t) [H1, ρ0] → ∂tG(t) = −iF (t)
[
eitHH1e

−itH , ρ0
]

= −iF (t) [H1(t), ρ0]
(176)

where H1(t) is the Heisenberg time evolution of H1 with respect to H.

• Integrate to find G(t), use G(t = −∞) = 0, G(t) = −i
´ t
−∞ dt̃ F (t̃)

[
H1(t̃), ρ0

]
and insert in ρ1(t):

ρ1(t) = −i
ˆ t

−∞
dt̃ F (t̃)

[
H1(t̃− t), ρ0

]
(177)

• Compute average of observable

∂F (t′) ⟨O⟩t (F )|F=0 = ∂F (t′)Tr [O {ρ0 + ρ1(t)}] |F=0 (178)
= ∂F (t′)Tr [Oρ1(t)] |F=0

Prepare with ∂F (t̃)/∂F (t′) = δ(t̃− t′),

∂F (t′)ρ1(t) = −iθ(t− t′)F (t′)
[
H1(t′ − t), ρ0

]
(179)

and find:

χKOH1(t, t′) = ∂ ⟨O⟩ (t)(F )
∂F (t′) |F=0

= −iθ(t− t′)Tr
{
O
[
H1(t′ − t), ρ0

]}
= χKOH1(t− t′)
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• We use H1(t) = eitHH1e
−itH and [H, ρ0] = 0 along with the cyclic property of the trace to obtain the

Kubo formula in its usual form:

χKOH1(t− t′) = −iθ(t− t′)
〈[
O(t), H1(t′)

]〉
= GROH1(t− t′) (180)

• Remarks and interpretation:

– averages and Heisenberg time-evolutions are to be computed with respect to the unperturbed system
(H1 = 0)

– Kubo response corresponds to the retarded (real-time) GF for operators O and H1

– retardation is encoded in θ(t− t′): No response signal before the perturbation
– the response from the full time-trace F (t) can be found via a time-integral of Eq. (180):

⟨O⟩ (t) =
ˆ +∞

−∞
dt′ χKOH1(t− t′) · F (t′) (181)

– Fourier transform of χK(t) (perturbation with frequency ω, c.f. Eq. 86):

χKOH1(ω) = lim
η→0

ˆ ∞
−∞

dt eiωt−ηtχKOH1(t) = GROH1(ω) (182)

Conclusion

• The Matsubara GF contains both the static-isothermal (assume ⟨O⟩ = 0) and dynamic-isolated (Kubo)
response

GOH1(iωn) →
{
χIOH1

: iωn = 0
χKOH1

(ω) : iωn → ω + iη
(183)

• Question: What happens to the Kubo response χKOH1
(ω) in the limit ω → 0? Does it agree to the

static-isothermal response χIOH1
?

lim
ω→0

χKOH1(ω) ?= χIOH1 (184)

• It seems that this should be the case since both sides seem to correspond to GOH1(iωn = z = 0). However,
since GOH1(z) is not necessarily analytic for z ∈ R, the two expressions might differ:

lim
ω→0

χKOH1(ω) = lim
η→0

GOH1(iη) ̸= GOH1(0) = χIOH1 (185)

This interesting question is further analyzed in Ex. 6.3.

Exercises

Exercise 6.1. Isothermal response of single quantum spin of length S

Consider a single localized quantum spin of length S in a magnetic field B in z-direction. The Hamiltonian
reads H = hSz where we abbreviate h = 2µBB (c.f. Sec. 6.1, no orbital contribution). Assume that the spin is
in equilibrium with a thermal bath at temperature T = 1/β. From elementary QM recall the spin algebra for
spin operators Sx, Sy, Sz and that S can be integer or half-integer. Obtain the partition function

Z = sinh [βh(S + 1/2)] / sinh [βh/2] . (186)

Use the free energy F = −T lnZ and the appropriate derivative to find the magnetization ⟨Sz⟩,

⟨Sz⟩ = −∂hF = 1
2

{
coth

(
y

2

)
− (1 + 2S) coth ([S + 1/2] y)

}
(187)
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where y ≡ βh. This function is known as the Brillouin function.
Now set h = 0 (such that H = 0) and compute the imaginary time ordered GF G(h=0)

SzSz (τ) and its Fourier
transform G(h=0)

SzSz (iωn). Apply linear response theory for the perturbation hSz. Find the isothermal static
susceptibility from χ

T (h=0)
SzSz = G(h=0)

SzSz (iωn = 0) and compare to the linear-in-h term of the series expansion of
the exact result 187 (which holds for any h). What is the physical reason for its divergence as T → 0? Bonus:
Find the Kubo susceptibility GR(h=0)

SzSz (ω) and obtain its ω → 0 limit. Is it the same as χT (h=0)
SzSz ?

Exercise 6.2. Kubo formula for electrical conductivity

One of the most important applications of the Kubo formula is the calculation of the electrical conductivity,
σαβ(rt, r′t′) where α, β = x, y, z are directions in real space. In the spirit of Eq. (181), the current density in
direction α at space-time point rt is the summed response to fields at space-time points r′t′ and in directions
β as follows:

jα(rt) =
ˆ

dt′
ˆ

dr′
∑
β

σαβ(rt, r′t′)Eβ(r′t′) (188)

We consider free electrons H0 = 1
2m
∑
σ

´
dr Ψ†σ(r) (−iℏ∇r)2 Ψσ(r) that are perturbed by the probe electric

field E(rt). We want to find an expression for the temporal Fourier transformed conductivity

σαβ(r, r′;ω) ≡
ˆ ∞

0
dt eiωt σαβ(rt, r′0) (189)

using the Kubo formula. The electric field is expressed via a vector potential as E = −∂tA (we chose a gauge
in which the electric potential vanishes, ϕ = 0). The Hamiltonian including the perturbation is then given by
(electronic charge e < 0, speed of light c = 1)

H = 1
2m

∑
σ

ˆ
dr Ψ†σ(r) (−iℏ∇r − eA)2 Ψσ(r). (190)

From elementary quantum mechanics recall the current density operator ĵ = ĵp + ĵd with paramagnetic and
diamagnetic part

ĵp =
∑
σ

eℏ
2mi

(
Ψ†σ(r) [∇rΨσ(r)] −

[
∇rΨ†σ(r)

]
Ψσ(r)

)
, ĵd = −e2

m
A
∑
σ

Ψ†σ(r)Ψσ(r). (191)

1. Expand H to first order in A to define H1 as in the lecture and use A(r, ω) =
´∞
−∞ dt eiωt A(r, t). You

should find
F (ω) ·H1 = − 1

iω

ˆ
dr ĵp(r) · E(r, ω). (192)

2. Compute the observable current jα(rω) =
〈
ĵα(rω)

〉
in first order of Eβ(ω) and read off σαβ(r, r′, ω). You

should find

σαβ(r, r′;ω) = i

ω
GR
ĵαp (r),ĵβp (r′)(ω) − eρe(r)

iωm
δ(r − r′)δαβ . (193)

The last term with the charge density ρe(r) = e
〈∑

σ Ψ†σ(r)Ψσ(r)
〉

does not come from the Kubo formula
180 as discussed in the lecture. How does it emerge? We will further evaluate σαβ(r, r′;ω) in Sec. 7.

Exercise 6.3. Long-term memory, ergodicity and the difference between χT and χK(ω → 0)

TODO

45



7 Perturbation theory and Feynman diagrams

Idea:

• Evaluate Matsubara GF in perturbation theory making use of a small parameter

• Works best with fermions or bosons because we can make use of Wick’s theorem

• Introduce diagrammatic language to organize the calculation

• Apply to interacting systems and to disordered systems

• Explore schemes for infinite-order resummations of subsets of diagrams

7.1 General setup for perturbation theory of the imaginary time ordered GF

• Assume thermal equilibrium at temperature T . Split Hamiltonian H = H0 + W where H0 is “simple”
and W is a perturbation.

• From Sec. 5 we recall the definition of the imaginary time ordered GF

GAB (τ) = − ⟨TτA(τ)B⟩ = 1
Z

Tr
(
e−(β−τ)HAe−τHB

)
(194)

• In Eq. (112) we already found an expression for GAB (τ) involving UI(β, 0), the imaginary time evolution
operator in the interaction picture:

GAB (τ) = −⟨TτUI(β, 0)AI(τ)B⟩0
⟨UI(β, 0)⟩0

(195)

Recall the ingredients in this expression (from Sec. 5):

– imaginary time ordering operator Tτ
– operator A imaginary time evolved in the interaction picture: AI(τ) = eH0τAe−H0τ

– thermal average with respect to the unperturbed Hamiltonian ⟨...⟩0 ≡ Z−1
0 Tr

[
e−βH0 ...

]
– denominator, see Eq. (109):

⟨UI(β, 0)⟩0 = Z−1
0 Tr

[
e−βH0UI(β, 0)

]
= Z−1

0 Tr
[
e−βH

]
= Z−1

0 Z (196)

– imaginary-time evolution operator in the interaction picture

UI(β, 0) = Tτ exp
[
−
ˆ β

0
dτWI(τ)

]
=
∞∑
n=0

(−1)n

n!

ˆ β

0
dτ1...

ˆ β

0
dτn TτWI(τ1)...WI(τn) (197)

• Perturbation theory: Insert this expansion of UI(β, 0) in GAB (τ) and evaluate the sum for n = 0, 1, ...N
up to some tractable order N .

• It looks as if we had to expand numerator and denominator separately, but this is not the case if we use
the concept of connected GF, see Ex. 7.1.

• So far, this is completely general and not specific to A,B being fermionic or bosonic Fock-space operators.
Exercise 7.2 will explore perturbation theory for quantum Heisenberg spins which is somewhat cumber-
some.

• The easiest case for perturbation theory is for A,B = a, a† fermionic or bosonic (or composites of a, a†)
and a H0 that is quadratic in the Fock space operators a, a†. Assume that W ∼ a†a†aa is quartic.

– Wick’s theorem can be applied for
〈
TτWI(τ1)...WI(τn)ai,I(τ)a†j

〉
0

∼ G · G · · · G (2n+1 times G)
– Diagrams with simple rules help organize the calculation. Rules depend on the type of the theory.
– Start with pair interactions for fermions.
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7.2 Fermionic pair interactions

• Consider fermionic field annihilation operators Ψ(σ, r) where σ ∈ {↑, ↓} is spin. The Hamiltonian splits
in quadratic and interaction terms as H = H0 +W , with

H0 =
∑
σ

ˆ
dr Ψ†(σ, r)h0(r)Ψ(σ, r),

W = 1
2
∑
σ1,σ2

ˆ
dr1,2 Ψ†(σ1, r1)Ψ†(σ2, r2)W (σ2, r2;σ1, r1) Ψ(σ2, r2)Ψ(σ1, r1) (198)

• We have assumed that the single-particle Hamiltonian is not spin dependent. Further, we chose the
interaction to be of density-density type so that no spin-flips occur.

• Consider interaction-picture time evolution for operators (eH0τ ...e−H0τ ) and abbreviate ΨI(σj , rj)(τj) ≡
Ψj along with

´
j ≡

∑
σj

´
drj
´ β

0 dτj . We dropped the subscript I since no confusion is possible.

• The Matsubara GF of Eq. (195) reads for A = Ψ(σb, rb) and B = Ψ†(σa, ra):

G (b, a) ≡ GΨ(σb,rb),Ψ†(σa,ra) (τb, τa) =
−
〈
TτU(β, 0)ΨbΨ†a

〉
0

⟨U(β, 0)⟩0

= −
∑∞
n=0

(−1)n
n!
´ β

0 dτ1...
´ β

0 dτn
〈
TτW (τ1)...W (τn)ΨbΨ†a

〉
0∑∞

n=0
(−1)n
n!
´ β

0 dτ1...
´ β

0 dτn ⟨TτW (τ1)...W (τn)⟩0
(199)

• The order of the operators in W (τj) is not arbitrary but must be kept as in Eq. (198). For this, use
infinitesimal imaginary-time shifts for the creation operators τj → τj + η. This shift is indicated by
subscript j+ ≡ (σj , rj , τj + η):

ˆ β

0
dτjW (τj) = 1

2

ˆ
j

ˆ
j′

Ψ†j+Ψ†j′
+
W (σ2, r2;σ1, r2) δ(τj − τj′)︸ ︷︷ ︸

Wj,j′

Ψj′Ψj (200)

• We insert this in Eq. (199):

G (b, a) =
−
∑∞
n=0

(−1/2)n
n!

´
1,1′...n,n′ W11′ ...Wnn′

〈
Tτ
(
Ψ†1Ψ†1′Ψ1′Ψ1

)
· · ·
(
Ψ†nΨ†n′Ψn′Ψn

)
ΨbΨ†a

〉
0∑∞

n=0
(−1/2)n

n!
´

1,1′...n,n′ W11′ ...Wnn′

〈
Tτ
(
Ψ†1Ψ†1′Ψ1′Ψ1

)
· · ·
(
Ψ†nΨ†n′Ψn′Ψn

)〉
0

=
∑∞
n=0

(−1/2)n
n!

´
1,1′...n,n′ W11′ ...Wnn′G(2n+1)

0 (b11′...nn′; a11′...nn′)∑∞
n=0

(−1/2)n
n!

´
1,1′...n,n′ W11′ ...Wnn′G(2n)

0 (11′...nn′; 11′...nn′)

and the sign is canceled by the definition of the factor (−1)m in G(m)
0 .

• Apply Wick’s theorem (since all time-evolution and averages are with respect to the non-interacting H0):

G (b, a) =

∑∞
n=0

(−1/2)n
n!

´
1,1′...n,n′ W11′ ...Wnn′

∣∣∣∣∣∣∣∣∣∣∣∣

G0 (b; a) G0 (b; 1) G0 (b; 1′) · · · G0 (b;n′)
G0 (1; a) G0 (1; 1) G0 (1; 1′) · · · G0 (1;n′)
G0 (1′; a) G0 (1′; 1) G0 (1′; 1′) · · · G0 (1′;n′)

...
...

... . . . ...
G0 (n′; a) G0 (n′; 1) G0 (n′; 1′) · · · G0 (n′;n′)

∣∣∣∣∣∣∣∣∣∣∣∣
∑∞
n=0

(−1/2)n
n!

´
1,1′...n,n′ W11′ ...Wnn′

∣∣∣∣∣∣∣∣∣∣
G0 (1; 1) G0 (1; 1′) · · · G0 (1;n′)
G0 (1′; 1) G0 (1′; 1′) · · · G0 (1′;n′)

...
... . . . ...

G0 (n′; 1) G0 (n′; 1′) · · · G0 (n′;n′)

∣∣∣∣∣∣∣∣∣∣

(201)
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• To help with the calculation of the expressions in the numerator and denominator, we represent terms of
each order by a diagram.

• Diagrammatic building blocks (Fig. 10a):

– interaction Wjj′ (wiggly lines)
– fermion propagator G0 (j2; j1+) (directed lines).

The arrow on the fermion line points towards the first entry, ψj2 .
– vertices j (dots, •j) where interaction lines and fermion lines connect

• First we treat the diagrammatic expansion in the denominator of Eq. (201).

Feynman rules for the denominator: n-th order “vacuum” diagram See Fig. 10(b) for the diagrams.

1) Draw a set of n wiggly interaction lines Wjj′ terminating in 2n vertices •j

2) Connect the 2n vertices with 2n (directed) fermion lines = G0 (j2; j1+) so that one line is entering
and one leaving each vertex.
There are (2n)! ways of drawing the fermion lines corresponding to different diagrams for the same
order n. (This corresponds to the (2n)! terms in the determinant of a 2n× 2n matrix.)

3) For each of the diagrams perform the sum over internal variables, at each vertex
´
j δσinj ,σ

out
j

=∑
σj δσinj ,σ

out
j

´
drj
´ β

0 dτj .

4) Weigh each diagram by (−1/2)n
n! (−1)F and sum all diagrams.

Here, F is the number of fermion loops ( = uninterrupted sequence of fermion lines starting and
ending at the same vertex).

• The sign factor (−1)F comes from the signs in the determinant.

– The product of the diagonals is the diagram with a separate fermion loop at every vertex (F = 2n),
it has a positive sign which agrees to (−1)F = (−1)2n = +1.

– All other diagrams can be constructed one by one by exchanging the endpoints of two fermion lines.
– Each exchange gives a factor −1 and at the same time changes the number of fermion loops F , see

Fig. 10.

• The diagrammatic expansion for the denominator yields the partition function (up to a factor Z0) since
⟨UI(β, 0)⟩0 = Z−1

0 Z.
Diagrams contributing to these expansion are also called “vacuum diagrams” (no external lines).

Feynman rules for the numerator: n-th order

• The numerator −
〈
TτU(β, 0)ΨbΨ†a

〉
0

differs from the denominator by the presence of two additional
“external” operators ΨbΨ†a.

• These are treated as external vertices •a and •b. The space-time-spin points a, b are not summed over in
the diagram evaluation!

• We need to adapt Feynman rules 1 and 2.

1’) Draw a set of n wiggly interaction lines Wjj′ terminating in 2n vertices j •j
and add the two external vertices •a and •b. This makes in total 2n+ 2 vertices.
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Interaction line: Fermion line: =

Order n=1:  (2n)!=2Order n=0: 

Order n=2:  (2n)!=24

F=2 F=1
+

+ + + +...

(a)

(b)

Figure 10: (a) Building blocks of Feynman diagrams and (b) vacuum diagrams for the expansion of ⟨U(β, 0)⟩0 to first
order and second order (partial).

2’) Connect all vertices with 2n+ 1 Fermion lines:
One leaving a, one entering b, and one entering and one leaving each internal vertex j. There are
(2n+ 1)! diagrams.

• Feynman rules 3) and 4) are unchanged.

• Figure 11 shows the expansion for orders n = 0, 1, 2.

Cancellation of disconnected diagram parts

• Connected diagrams: Diagrams, where all internal vertices are connected to external vertices.

• Disconnected diagram: Diagrams that are not connected. They have a connected and one ore more
disconnected parts.

• From the sum of all diagrams for the numerator, factor out the connected diagrams and connected parts,
obtain product of two sums (...) × (...), see Fig. 11(bottom).

– First sum: Connected diagrams.
– Second sum: These are exactly the vacuum diagrams that appear in the expansion of ⟨U(β, 0)⟩0.

• The second sum thus cancels with the denominator.

• A formal proof is given in Ex. 7.1.

Simplified Feynman rules for G (b, a): Diagram topology

• It turns out that only the topology of the connected diagrams that sum up to form G (b, a) matters.

• Two diagrams are topological equivalent if they show the same connectivity structure when going through
the diagram from the external vertices a → b.
Example: Topological equivalent pairs of n = 1 diagrams in second line of Fig. 11.

• At order n, out of all the connected diagrams, how many diagrams are topological equivalent at order n?
Answer: 2nn!
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Order n=1:  (2n+1)!=6 diagramsOrder n=0: 

Order n=2:  (2n+1)!=120 diagrams

++

+ +

+ + + +...

=

+

+

connected

connectedconnectedconnectedconnected

connected

+ +...

+...

= ( (( (1 +
x

cancels
denominator 
in 

(all connected)

+

topologically equivalent

11 1'1'

Figure 11: Building blocks of Feynman diagrams and vacuum diagrams for the expansion of the numerator in G (b, a) to
first and second order (partially).
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– For n interaction lines W11′W22′ ...Wnn′ , we can associate the label-pairs 11′, 22′, ..., nn′ in n! ways.
– Since Wjj′ = Wj′j , we can re-name j ↔ j′ (flip interaction line) → factor of 2n for all interaction

lines.

• The factor 2nn! partially cancels the prefactor in Feynman rule 4). The remaining (−1)n can be absorbed
into interaction line, now −W .

• Final Feynman rules for the expansion of G (b, a):

a) Draw a set of n wiggly interaction lines −Wjj′ terminating in 2n vertices j and add the two external
vertices •a and •b. This makes in total 2n+ 2 vertices.

b) Draw all topologically different and fully connected diagrams with 2n+1 Fermion lines: One leaving
a, one entering b and one entering and one leaving each internal vertex j.

c) For each diagram topology perform the sum over internal variables, at each vertex
´
j δσinj ,σ

out
j

=∑
σj δσinj ,σ

out
j

´
drj
´ β

0 dτj .

d) Weigh each diagram by (−1)F and sum all diagrams.

7.3 Self-energy and Dyson’s equation

• Idea: Save work by re-using lower-order diagrams as building blocks for higher order diagrams with
certain properties.

Self-energy

• Definition: A diagram for G (b, a) is (1-line) reducible if the external vertices •a and •b can be separated
by cutting a single internal fermion line.
Diagrams that are not reducible are called irreducible. See Fig. 12(a) for some examples.

• Definition: The self energy Σ (l, j) is the sum of all irreducible diagrams in G (b, a) with the external
fermion lines G0 (j; a) and G0 (b; l) amputated (divided out).
See Fig. 12(b) for the lowest order contribution to Σ (l, j).

• The self-energy is drawn as a shaded circle. We will motivate the name below.

Dyson’s equation

• We can use the self-energy to find the full GF G (b, a) (from now on denoted by double fermion line). All
reducible diagrams are made by two or more (in the ...) self-energies connected by fermion lines G0 →
Fig. 12(c)

• On the right hand side of this equation, we can identify again the full GF. This leads to Dyson’s
equation which relates Σ,G,G0:

G(b, a) = G0(b, a) +
ˆ
l,j

G0(b, l)Σ (l, j) G(j, a) (202)

• In practice, G0 is known and Σ is calculated up to some order n or approximated otherwise. Then Dyson’s
equation is used to find G which contains diagrams of infinite order!
Unless Σ is exact, G from Dyson’s equation is only approximate and will miss diagrams.
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(a)

(b)

(c)

irreducible irreducible

irreducible

irreduciblereducible

reducible

reducible

external fermion line

+

+

+ + +...

+...

+...

=

=

+

+

((+=(d)

Figure 12: (a) Examples for reducible and irreducible diagrams appearing in the expansion of G (b, a). (b) Definition of
self-energy. (c) Dyson’s equation. (d) Momentum conventions for the FT at a single internal vertex.
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7.4 Feynman rules in momentum and (Matsubara-) frequency representation

• Assume system is translation invariant → Wjj′ and G(0)(j, j′) only depend on coordinate distances rj−rj′ .

• These quantities will also only depend on imaginary time differences τj − τj′ in any case, this is due to
Wjj′ ∝ δ

(
τj − τj′

)
, see the definition Eq. (200) and for G(0) it was shown in Eq. (113).

• We recall the FT convention from Eq. (115) and also add the spatial FT (note the sign-convention!):

G(0)
(
rτ, r′τ ′

)
≡ 1
βV

∑
ωn,k

G(0) (k, iωn) eik·(r−r′)−iωn(τ−τ ′) (203)

Note: One could also start from the FT of the field operators Ψ(r, τ).

• It is then convenient to also introduce the FT of the interaction line (Ωn = bosonic Matsubara frequency,
since W creates/annihilates pairs of fermions):

W
(
rτ, r′τ ′

)
≡ 1
βV

∑
Ωn,q

W (q)eiq·(r−r′)−iΩn(τ−τ ′) (204)

We assume that W (q) = W (q), i.e. it only depends on magnitude q of spatial momentum q.

• Four-momentum notation: k̃ ≡ (k, iωn), r̃ ≡ (r, τ) with ik̃ · r̃ ≡ ik · r − iωnτ .

• The arrows on the fermion lines and the newly added one on the interaction line indicate four-momentum.

• FT of scattering vertex, see Fig. 12(d):
ˆ

dr̃G0(r̃2, r̃)G0(r̃, r̃1)W (r̃3, r̃) =
´

dr̃
(βV )3

∑
k̃,p̃,q̃

G0(p̃)G0(k̃)W (q̃)ei[p̃·(r̃2−r̃)+k̃·(r̃−r̃1)+q̃·(r̃3−r̃)]

= 1
(βV )2

∑
k̃,p̃,q̃

G0(p̃)G0(k̃)W (q̃)ei[p̃·r̃2−k̃·r̃1+q̃·r̃3]
´

dr̃
βV

ei[−p̃·r̃+k̃·r̃−q̃·r̃]︸ ︷︷ ︸
δp̃+q̃,k̃

= 1
(βV )2

∑
k̃,p̃

G0(k̃ − q̃)G0(k̃)W (q̃)ei[p̃·r̃2−k̃·r̃1+q̃·r̃3]

Observations:

– The remaining exponential is taken care of by the integrals
´

dr̃1,2,3 of the neighboring vertices.
– Four momentum is conserved at each vertex: k̃ = p̃+ q̃ (c.f. Kirchhoff rule).
– The interaction line transfers four-momentum, but does not depend on the transferred (bosonic)

Matsubara frequency.

• Modification of Feynman rules in momentum-frequency space:

– Fermi lines are G0 (k, iωn), wiggly interaction lines are −W (q̃) = −W (q)
– At vertex: Four momentum (and spin) is conserved.
– Sum over remaining internal four-momenta and spin 1

βV

∑
p̃

∑
σ

– In “same-time” diagrams like the first two at rhs of 12(b): Recall time τ at creation operator was
shifted by +η, thus G0 (k, iωn) → G0 (k, iωn) eiωnη.
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Dyson’s equation in four-momentum

• Recall form of the non-interacting (“bare”) Matsubara GF from Eq. (127): G0(k̃) = G0 (k, iωn) = 1
iωn−ξk

.

• FT of Dyson’s equation (202) (convolution theorem of FT):

G(k̃) = G0(k̃) + G0(k̃)Σ(k̃)G(k̃) (205)

This is now an algebraic equation which can be solved for the fully interacting GF G(k̃):

G(k̃) = G0(k̃)
1 − G0(k̃)Σ(k̃)

= 1
iωn − ξk − Σ (k, iωn) (206)

• Why the name “self-energy”?

– The difference between non-interacting G0 (k, iωn) and full G (k, iωn) is the replacement of the “en-
ergy” ξk = H0,k → H0,k + Σ (k, iωn).

– Thus the (hermitian part of) the self-energy acts like an effective single-particle Hamiltonian (“en-
ergy”) induced by interactions.

– The anti-hermitian part and the iωn-dependence go beyond this picture [→ decay time c.f. Ex. 5.6.1(d),
quasiparticle weight,...]

Exercises

Exercise 7.1. Cancellation of disconnected diagrams (general case)

Consider the Hamiltonian H = H0 − V with −V a perturbation and operators A and B which are not
necessarily fermionic or bosonic. The expansion of the imaginary-time ordered GF in −V reads [factors of
(−1)n are avoided by using −V as the perturbation, c.f. Eq.(199)]

〈
TτA(τ)B(τ ′)

〉
=
∑∞
n=0

1
n!
´ β

0 dτ1...
´ β

0 dτn ⟨TτV (τ1)...V (τn)A(τ)B(τ ′)⟩0∑∞
n=0

1
n!
´ β

0 dτ1...
´ β

0 dτn ⟨TτV (τ1)...V (τn)⟩0
. (207)

Show that this expression can be simplified to

〈
TτA(τ)B(τ ′)

〉
=
∞∑
n=0

1
n!

ˆ β

0
dτ1...

ˆ β

0
dτn

〈
TτV (τ1)...V (τn)A(τ)B(τ ′)

〉
0,c (208)

with the subscript “c” denoting the connected GF. Here, connectedness of the GF (diagram) is understood
with with respect to external operators A(τ), B(τ ′) and the formal definition is as follows:〈
TτV (τ1)...V (τn)A(τ)B(τ ′)

〉
0,c ≡

〈
TτV (τ1)...V (τn)A(τ)B(τ ′)

〉
0 (209)

−
∑
p∈Sn

n−1∑
j=0

〈
TτV (τp(1))...V (τp(j))A(τ)B(τ ′)

〉
0,c

〈
TτV (τp(j+1))...V (τp(n))

〉
0
.

Hint: Start from the numerator in Eq. (207) and collect all terms of order n > m that contain a connected GF
of order m.

Exercise 7.2. Perturbation theory for Heisenberg spins
Perturbation theory is usually employed for fermions or bosons since the Wick theorem simplifies matters
enormously. Nevertheless, one can also do perturbation theory when Wick’s theorem is not available, like for
quantum spin operators, c.f. Ex. 6.1. This exercise considers the perturbative expansion of the spin Matsubara
GF defined as the temporal Fourier transform [c.f. Eq. (116)] of

Gj1j2(τ) = −
〈
TτS

z
j1(τ)Szj2

〉
. (210)
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Recall that the time-ordering for spin operators works like in the bosonic case. We assume the Heisenberg spin
Hamiltonian on an arbitrary lattice (with lattice sites labeled by j = 1, 2, ..., N),

H = 1
2
∑
j1 ̸=j2

Jj1j2

(
Sxj1S

x
j2 + Syj1S

y
j2

+ Szj1S
z
j2

)
(211)

and the N × N matrix J is real and symmetric. The spin operators fulfill the spin algebra
[
Sαj1 , S

β
j2

]
=

iδj1j2
∑
γ ϵ

αβγSγj1 where α, β, γ ∈ {x, y, z} and S2
j = S(S + 1) where S is the (integer or half-integer) spin

length. We chose H = H0 −V with H0 = 0 such that the interaction V is the full Heisenberg interaction. This
type of perturbation theory is controlled by the smallness of the parameter βJ , i.e. it should work at large
temperatures.

1. Use Eq. (208) to find the first order (in J) contribution to Gj1j2(iωn) in terms of the free spin GF
G0(iωn) = −

´ β
0 dτ eiωnτ

〈
TτS

z
j (τ)Szj

〉
0

= −δ0,ωn
β
3S(S + 1), c.f. Ex. 6.1. Show that

G(1)
j1j2

(iωn) = β2δ0,ωnJj1j2

(
S

3 (S + 1)
)2
. (212)

Hint: Make use of spin-rotation symmetry which forces many expectation values to vanish, e.g.
〈
Sαj

〉
(0)

=

0 and
〈
Sαj1S

β
j2

〉
(0)

= 0 for α ̸= β (What is the precise argument?). Can you define a set of diagrammatic
rules?

2. For the second order contribution G(2)
j1j2

(iωn) specialize to the non-local case j1 ̸= j2 only (the local case
j1 = j2 is too difficult). You should find

G(1)
j1j2

(iωn)|j1 ̸=j2 = β3
(
S

3 (S + 1)
)2 {

−δn,0 [J · J ]j1j2
(
S

3 (S + 1)
)

+ [Jj1j2 ]2
(

21 − δn,0
(2πn)2 + δn,0

1
12

)}
.

(213)
You will have to use the three-point free spin correlators which are non-trivial,

Gxyz0 (ωn1, ωn2) ≡
ˆ β

0
dτ1,2e

iωn1τ1eiωn2τ2 ⟨TτSx(τ1)Sy(τ2)Sz⟩0

= β

(
S

3 (S + 1)
)

(−δωn1,0∆ωn2 + δωn2,0∆ωn1 − δωn2+ωn1,0∆ωn1) ,

where ∆ωn = 1/ωn if ωn ̸= 0 and zero otherwise.

Exercise 7.3. Self-energy diagrams for pair interaction

For the situation of fermionic pair interactions W (q) as in Sec. 7.2, compute the first two self-energy diagrams
Σσ(k, iωn) on the rhs of Fig. 12(b), assuming external four momentum (k, iωn). You should find W (0)n (where
n = [N↑ + N↓]/V is the total particle density) and − 1

(2π)3

´
dpW (|k − p|)nF (ξp). For the Matsubara sums,

use Sec. 5.6. Why is the first diagram called “Hartree-diagram”, the second “Fock-diagram”? (Hint: Compare
to the expression for the Hartree-Fock single particle energy in Eq. (63).)
Also compute the pair-bubble diagram which is the third term on the rhs of Fig. 12(b). Show that it can be
expressed as

ΣP
σ (k, iωn) = T

∑
Ωn

1
(2π)3

ˆ
dqW (|q|)2Π0 (q, iΩn) G0,σ (k − q, iωn − iΩn) (214)

where Π0 (q, iΩn) = −2T
∑
ωn

1
(2π)3

´
dp 1

iωn+iΩm−ξp+q
· 1
iωn−ξp

. No further simplifications required here.

Exercise 7.4. General structure of perturbation theory
In this exercise we explore the convergence properties of perturbative expansions. To simplify matters to the
essentials, we disregard quantum mechanics and consider some caricature of a classical toy-model field theory
with an action S(x ∈ R) = x2/2 + gx4 so that the integral

I(g) =
ˆ +∞

−∞

dx√
2π
e−S(x) (215)
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represents the partition function. For g = 0 the integral is Gaussian and exactly solvable, I(g = 0) = 1. This is
the non-interacting case. We consider g > 0 a small interaction parameter that is treated perturbatively. This
means we are interested in the expansion

I(g) =
∑

n=0,1,2,...
gnIn. (216)

1) Use Stirling’s formula (n! ∼ nne−n) for large n to show gnIn ∼
(
−16g

e n
)n

. Explain why this means that the
perturbative series diverges for any finite g if summed to sufficiently large order n (the convergence radius is
zero). What is the underlying mathematical reason for this behavior? What is the reason from the viewpoint
of Feynman diagrams? Hint: Use the Gaussian integral-version of the Wick theorem where

´ +∞
−∞

dx√
2πe
−x2/2x4n

is the number of all possible pairings of 4n objects.
2) A partial summation of the series up to order N yields an error ∆N = |I(g) −

∑N
n=0 g

nIn|. Show that for
large N ≫ 1, the error has the upper bound ∼ (16gN/e)N . Given g ≪ 1 what is the optimal N = Nopt for the
smallest error? [Hint: Start from the error bound on the Taylor series in x for the integrand exp

(
−gx4), that

is
∣∣∣exp

(
−gx4)−

∑N
n=0(−gx4)n/n

∣∣∣ ≤
(
gx4)N+1

/(N + 1)!] .
The moral of this exercise is that general perturbative expansions should not be confused with with rigorous
Taylor expansions. The former are instead asymptotic expansions in the sense that for weaker and weaker
“interaction”, a partial summation of the perturbation series to order N leads to results that improve with
increasing N .
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8 Interacting electron gas: Random-phase approximation and screening

Idea:

• Apply Feynman diagrams for electrons in metals with Coulomb interactions

• Learn strategy to select subclass of diagrams and perform their re-summation

• Application: Ground-state energy up to second-order in perturbation, polarization function, plasmon
excitations

8.1 Setup

• Use framework of fermionic pair interactions from Sec. 7.2.

• Model electrons in a 3d metal (spinful fermions with Fermi energy εF ), with Coulomb interactions where
e2

0 ≡ e2/(4πε0):

W (r) = e2
0
r

↔ W (q) = 4πe2
0

q2 = e2

ε0q2 (217)

so that the Hamiltonian H = H0 +W reads:

H0 =
∑
σ,k

Ψ†(σ,k)ξkΨ(σ,k),

W = 1
2V

∑
σ1,σ2

∑
k1,k2,q ̸=0

W (q) Ψ†(σ1,k1 + q)Ψ†(σ2,k2 − q)Ψ(σ2,k2)Ψ(σ1,k1)

• Introduce:

– Bohr radius a0 = ℏ2/(me2
0) = 0.053nm as our unit of length

– Rydberg 1Ry = e2
0/(2a0) = 13.6eV as the unit of energy

– Radius of a sphere rs containing exactly one electron (in units of a0): 4
3π(rsa0)3 = 1/ρ = 3π2/k3

F :

rs =
(9π

4

)1/3 1
a0kF

∝ k−1
F (218)

• Electron density ρ = N/V as a control parameter:

– Non-interacting electrons: E0/N ∼ εF ∼ ρ2/3

– Typical interaction energy: Mean electron-electron distance a = ρ−1/3 → Epot/N ∼ e2
0/a ∼ ρ1/3

– it follows Epot/E0 ∼ ρ−1/3 → interaction effects are weaker at higher density
– use high density rs → 0 as control limit for perturbation theory

• Recall Ex. 1.5: Found ground-state energy in first order (non-diagrammatic) perturbation theory:

E
(0)
0
N

≃ 2.21
r2
S

Ry, E
(1)
0
N

≃ −0.916
rs

Ry (219)

• Fact: E(2)
0 obtained naively would diverge! Problem: Singularity of W (q) for q → 0.

• Trick:

1. Introduce screening parameter α by hand (deforms Coulomb- to Yukawa-potential)

W (r) = e2
0
r
e−αr ↔ W (q) = 4πe2

0
q2+α2 (220)

2. Diagrammatic calculation with finite α yields “self-screening” that survives for α → 0.
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8.2 Self-energy in random-phase approximation (RPA)

• Self-energy diagrams up to order n = 3 (partially) are shown in Fig. 13(a).

• The first Hartree (also “tadpole”) diagram has been calculated in Ex. 7.3 and it was found

ΣH
σ (k, iωn) = W (q = 0)ρ = ρ

ˆ
dr3W (r) (221)

This constant cancels the positive smeared-out background charge +|e0|ρ of the ions → drop the Hartree
diagram and higher order diagrams where it appears as a building block.

• Above we estimated that interactions are less important for high density rs ∝ k−1
F → 0. Check if

self-energy diagrams of lower order dominate in this case.

• Consider value of generic n-th order self-energy diagram:

Σ(n)
σ (k, iωn) ∝

ˆ
dk̃1...

ˆ
dk̃n︸ ︷︷ ︸

n internal momenta

W (...) · ... ·W (...)︸ ︷︷ ︸
n interaction lines

× G0(...) · ... · G0(...)︸ ︷︷ ︸
2n−1 propagators

(222)

Make integrals dimensionless:

– measure momenta in units of kF (i.e. replace k = xkF with x a number) and temperature T in units
of εF ∝ k2

F : ˆ
dk̃1 = T

∑
iωn

ˆ dk3

(2π)3 ∝ k2
Fk

3
F = k5

F (223)

– for interaction lines W (q) ∝ 1/(q2 +α2) ∝ k−2
F and for propagators G0(iωn,k) = 1/(iωn − εk) ∝ k−2

F

• It follows
Σ(n)
σ (k, iωn) ∝

(
k5
F

)n
×
(
k−2
F

)n
×
(
k−2
F

)2n−1
= k−n+2

F ∝ rn−2
s (224)

which indeed means that higher-order diagrams are suppressed for high-density rs → 0.

• At a given order n, which diagrams are dominant?

– Consider interactions line W (|q|) α→0→ 1/q2 where q is a momentum that is summed over.

– In general the interaction lines have different momenta, e.g. W (|q|)W (|q + p|) α→0→ 1
q2|q+p|2 .

– The contribution from interaction lines is maximized for the single diagram where all n interaction
lines are forced to the same loop momentum, W (|q|) · ... ·W (|q|).

• RPA self-energy ΣRPA
σ (k, iωn): The infinite sum of all diagrams containing W (|q|)n at order n, see

Fig. 13(b).

Renormalized interaction in RPA

• The RPA self-energy can be formally written as a Fock diagram with a single renormalized interaction
line −WRPA(q, iΩn) defined in Fig. 13(c).
Note: We now expect also a non-trivial frequency dependence!

• Ingredient for −WRPA(q, iΩn): Fermion pair bubble already calculated in Ex. 7.3.

χ0 (q, iΩn) = T
∑
ωn

1
V

∑
p,σ

1
iωn + iΩn − ξp+q

· 1
iωn − ξp

= 1
V

∑
p,σ

nF (ξq+p) − nF (ξp)
ξq+p − ξp − iΩn

(225)

The Matsubara sum was performed in Ex. 5.3.
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Figure 13: (a) Self-energy diagrams for Coulomb interaction up to order n = 3. (b) RPA diagrams with effective
interaction line −WRP A. (c) Self-consistency equation for −WRP A.
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• Find −WRPA(q, iΩn) from a Dyson-like equation, see rightmost expression in Fig. 13(c):

−WRPA (q, iΩn) = −W (q) + [−W (q)]
[
−χ0 (q, iΩn)

] [
−WRPA (q, iΩn)

]
(226)

• We solve for WRPA and insert the explicit Yukawa form of W (q) = 4πe2
0/(q2+α2) from Eq. (220):

WRPA (q, iΩn) = W (q)
1 −W (q)χ0 (q, iΩn) = 4πe2

0
q2+α2 − 4πe2

0χ
0 (q, iΩn)

α→0→ 4πe2
0

q2 − 4πe2
0χ

0 (q, iΩn)
(227)

In the last step we have taken the limit α → 0, we don’t need it any longer from here on.

• Observation: From the form of WRPA (q, iΩn), we see that the system has created “its own” screening
+α2 → −4πe2

0χ
0 (q, iΩn).

• The screening in the static (iΩn → 0) and long-wavelength limit (q → 0) is known as Thomas-Fermi
screening, it is parameterized by the wavevector ks (~ inverse screening length):

k2
s = lim

q→0
− 4πe2

0χ
0 (q, iΩn = 0)

= −4πe2
0

1
V

∑
p,σ

(ξq+p − ξp)∂ξpnF (ξp)
ξq+p − ξp

= 4πe2
0

ˆ
dξ D(ξ) [−∂ξnF (ξ)]︸ ︷︷ ︸

→δ(ξ)

If T ≪ εF , the −∂ξnF (ξ) is sharply peaked and the integral is just the density of states at the Fermi
surface ξk = εk − µ = 0 which we denote by D(εF ) = mkF /(π2ℏ2). We obtain with a0 = ℏ2/(me2

0):

k2
s = 4πe2

0D(εF ) = 4
π

kF
a0

(228)

• In ordinary metals, we have k−1
s ≃ 0.1nm.

Recap: Density of states D(E) (DOS)

• For a general non-interacting dispersion ξk = εk −µ, the density of states D(E) at energy E is defined as

D(E) = 1
V

∑
k,σ

δ(ξk − E) = 1
(2π)d

∑
σ

ˆ
dk δ(ξk − E) (229)

• The DOS is helpful for momentum sums over functions f(ξk) that depend on momentum only through
the dispersion

1
V

∑
k,σ

f(ξk) =
ˆ

dE δ(ξk − E) 1
V

∑
k,σ

f(E) =
ˆ

dED(E)f(E) (230)

• Example: For a parabolic dispersion, εk = k2/(2m) one finds in d = 3 dimensions

D(E) = 2
(2π)3

ˆ
dk δ

(
ℏ2k2

2m − E

)
= mk

π2ℏ2 (231)
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8.3 Dielectric function and screening of external potentials

• We found that the effective (RPA-) interaction between two electrons is a screened Coulomb interaction,
WRPA (q, iΩn) = 4πe2

0
q2−4πe2

0χ
0(q,iΩn) . In the static and long-wavelength limit WRPA (q → 0, iΩn = 0) =

4πe2
0

q2+k2
s

(Thomas-Fermi screening.)

• Q: Is there a similar screening of external potentials ϕext, induced e.g. by an external point-charge as in
Fig. 14(a)? Will electrons gather around this external charge to screen its bare Coulomb potential?

• To adapt to a general experimental situation, generalize from the static point charge to a generic weak
external potential ϕext(r, t) with arbitrary dependence on r and t.

• Use linear response theory in the Kubo formalism, Eq. (180), for the susceptibility. Setup:

– Perturbation in Hamiltonian: F · H1 =
´

dr [−en(r)]ϕext(r, t) where n is the electron density. The
“·” now stands for an integral → coupling operator H1 = −en(r).

– Observable: Induced charge O(r, t) = ρind(r, t) = −e[n(r, t) − n0] = −eδn(r, t) where we subtracted
the charge of the background ion density n0 =

〈
n
〉
.

– Kubo formula: χROH1
(q, ω) = GROH1

(q, ω) → χR−eδn,−en(q, ω) = GR−eδn,−en(q, ω) so that after a FT:

−eρind(q, ω) = e2χRnn.c(q, ω)ϕext(q, ω) (232)

– The subscript c stands for connected, χRnn,c = χRδnn −
〈
n
〉〈
n
〉
.

• Experiment: Instead of the induced charge, it is easier to measure the total potential

ϕtot(q, ω) = ϕext(q, ω) + ϕind(q, ω) (233)

that differs from the external potential by the induced potential ϕind(q, ω), see Fig. 14(a).

• The induced potential is caused by the induced charge −eρind(q, ω). Since the effect of the electrons have
been already taken into account above via linear response, this happens via the bare (and instantenous)
Coulomb interaction W (r) = −eρind/(4πε0r)

ϕind(r, t) =
ˆ

dr′−eρind(r′, t)
4πε0|r − r′| → ϕind(q, ω) = −1

e
W (q)ρind(q, ω) (234)

• Combine Eqns. (232) and (234) to find relation induced and external potential:

ϕind(q, ω) = W (q)χRnn,c(q, ω)ϕext(q, ω) (235)

or between total and external potential

ϕtot(q, ω) =
[
1 +W (q)χRnn,c(q, ω)

]
︸ ︷︷ ︸

ε−1(q,ω)

ϕext(q, ω) (236)

• Recall from EM in materials the distinction between electric and electric displacement fields E,D. They
obey the two Maxwell relations that state that E has total charge as source whereas D only changes with
external (or “free”) charges:

∂r · E = ε0ρtot

∂r · D = ε0ρext

• Relation D(q, ω) = ε(q, ω)E(q, ω) defines the dielectric function ε(q, ω). From Eq. (236), we have

1
ε(q, ω) = 1 +W (q)χRnn(q, ω) (237)
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Figure 14: (a) External charge in an interacting electron gas. (b) The external vertices for the density-density correlation
function. (c) Feynman diagrams for this function. (d) Irreducible part with respect to cutting interaction lines.
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Calculation of χRnn,c(q, ω)

• We calculate the retarded density-density correlator (with respect to the interacting but unperturbed
electron gas).

• Use analytical continuation from the imaginary time correlator

χRnn,c(q, τ) = − 1
V

⟨Tτn(q, τ)n(−q, 0)⟩c = − 1
V

∑
p,k,σ,σ′

〈
Tτ c
†
pσ′(τ + η)cp+qσ′(τ)︸ ︷︷ ︸

A(τ)

c†k+qσ(η)ckσ︸ ︷︷ ︸
B

〉
c

(238)

where we used n(q) =
∑

p,σ c
†
pσcp+qσ . We drop the subscripts nn, c from now on.

• We draw Feynman diagrams for χ(q, iΩm) = χ(q̃), the external vertices corresponding to operators A,B
now have two Fermion lines to connect to, see Fig. 14(b).

• A low order expansion is shown in Fig. 14(c).

• In analogy to the Dyson’s equation, we collect all diagrams that are irreducible with respect to cutting
a single interaction line −W (not Fermion line) and call this χirr(q̃), see Fig. 14(d). We abbreviate this
as a diagram with a hatched box.

• We express χ(q̃) by χirr(q̃) in analogy to Dyson’s equation:

−χ(q̃) = −χirr(q̃) +
[
−χirr(q̃)

]
[−W (q)]

[
−χirr(q̃)

]
+
[
−χirr(q̃)

]
[−W (q)]

[
−χirr(q̃)

]
[−W (q)]

[
−χirr(q̃)

]
+ ...

= −χirr(q̃) − χirr(q̃)W (q)χ(q̃)

or
−χ(q̃) = −χirr(q̃)

1 −W (q)χirr(q̃) (239)

• We use this in the dielectric function (in Matsubara frequency!):

ε(q̃) = 1
1 +W (q)χ(q̃) = 1 −W (q)χirr(q̃) = 1 − e2

ε0q2χ
irr(q̃) (240)

• In RPA (valid at high electron densities!), approximate χirr(q̃) by the empty fermion pair-bubble, i.e. the
first diagram in Fig. 14(d): χirr

RPA(q̃) = χ0(q̃).

• Dielectric function in RPA (now back to real frequency)

εRPA(q, ω) = 1 − e2

ε0q2χ
R
0 (q, ω) (241)

• Conclusion: External potentials treated in linear response are screened in the same way as the internal
Coulomb interactions between the electrons:

ϕtot(q, ω) = 1
1 − e2

ε0q2χ
R
0 (q, ω)

ϕext(q, ω) (242)

Application: Collective plasma oscillations

• Consider external potential with frequency ω, focus on high-frequency and long-wavelength perturbations
vF q ≪ ω and q ≪ kF .

• Recall the analysis of the imaginary part of χR0 (q, ω) in Ex. 5.4, see shaded region in Fig. 15. For the
high-frequency limit in the lower left corner above the orange line, we have ImχR0 (q, ω) = 0.
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• Work at low temperature, T ≪ εF , and use results for Reχ0 (q, ω) from Ex. 8.1 [where x ≡ q/(2kF ),
x0 ≡ ω/(4εF ) and f(x, x0) ≡

[
1 −

(
x− x0

x

)2] · ln
∣∣∣x+x2−x0
x−x2+x0

∣∣∣]:
Reχ0 (q, ω) = −D(εF )

(1
2 + f(x, x0) + f(x,−x0)

8x

)
x≪x0→ D(εF )

[
x2

3x2
0

+ x4

5x4
0

]
(243)

• Re-insert q, ω and use D(εF ) = mkF
π2 and 3π2n = k3

F and vF = kF /m. We obtain

εRPA(q, ω) ≃ 1 −
ω2
p

ω2

[
1 + 3

5

(
qvF
ω

)2
]
, ω2

p ≡ e2n

ε0m
(244)

where ωp is the characteristic “electronic plasma frequency”. It is typically in the UV part of the spectrum
ωp ∼ 1016Hz corresponding to energy ∼ 10eV, so ωp is on the same order as εF .

• Recall relation between external “drive” potential and the induced potential:

ϕtot(q, ω) = ε−1
RPA(q, ω)ϕext(q, ω). (245)

If εRPA(q, ω) → 0 for a certain (q, ω), we obtain a response even if ϕext(q, ω) → 0. In other words, the
relation

εRPA(q, ω) != 0 ↔ ω2 = ω2
p

[
1 + 3

5

(
qvF
ω

)2
]

(246)

defines self-oscillations (an eigenmode) of the interacting electron gas. Note that there is no damping
in the q − ω - regime considered (ImχR0 (q, ω) = 0 = ImεRPA(q, ω)).

• The dispersion ω(q) of these plasma oscillations (“plasmons”) is found as (recall vF q ≪ ω!)

ω(q) ≃ ωp

√√√√1 + 3
5

(
qvF
ωp

)2

≃ ωp + 3
10

(
qvF
ωp

)2

(247)

In Fig. 15(a) we show ω(q).

• Remarks:

– For larger q when the ω(q) enter the shaded region with finite ImχR0 (q, ω), plasmons are damped by
formation of particle-hole pairs (“Landau damping”).

– Experimentally, one or more plasmons can be excited when shooting high-energy electrons through
a metal foil (spectroscopy of energy of transmitted electrons). See Fig. 15(b) for experimental data.

– The existence of plasmons (but not the damping) can also be understood classically, see Ex. 8.3.

Exercises

Exercise 8.1. Evaluation of fermionic pair bubble: Real part

The pair-bubble in Eq. (225) describes the polarizability of a non-interacting electron gas ξk = ℏ2k2/(2m) −
εF (→ see Ex. 5.3 and Ex. 5.4) but also plays an important role in the RPA for the interacting electron
gas. Consider its analytically continued (retarded) version χ0 (q, iΩn → ω + iη) = χ0 (q, ω) and work at zero
temperature:

χ0 (q, ω) = − 2
V

∑
k

Θ(ξq+k) − Θ(ξk)
ω − ξq+k + ξk + iη

(248)

For the real part, perform the summation over p and show that

Reχ0 (q, ω) = −D(εF )
(1

2 + f(x, x0) + f(x,−x0)
8x

)
(249)

with x ≡ q/(2kF ), x0 ≡ ω/(4εF ) and f(x, x0) ≡
[
1 −

(
x− x0

x

)2] · ln
∣∣∣x+x2−x0
x−x2+x0

∣∣∣ . The imaginary part is more
complicated and you don’t need to compute it here. However, recall that the region in the q−ω - plane where
it is non-zero has been already identified in Ex. 5.4.
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(a)

plasmons

(b)

Figure 15: (a) Typical plasmon dispersion (thick line) and the region of damped charge susceptibility from Ex. 5.4. (b)
Experimental observation of plasmon excitations in high-energy electron transmission through a thin aluminum foil. The
peaks correspond to one or multiple plasmon excitations, ∆E = 14.8eV [from Marton et al., Phys. Rev. 126, 182 (1962)].

Exercise 8.2. Ground state energy of interacting electron gas from self-energy

Here we show that the RPA self-energy is sufficient to (approximately) calculate the ground-state energy E0 of
the interacting electron gas with Hamiltonian H = H0 +W beyond the first-order approximation of Eq. (219).
This is nontrivial in sofar that naively calculating E0 = lim

T→0
⟨H0 +W ⟩ would involve the (perturbative) evalu-

ation of the four-fermion average of the interaction W .
1) Show that by defining a deformed system H(λ) ≡ H0 + λW (λ ∈ [0, 1]) the following relation holds between
the free energy F = U−TS = −T lnZ of the fully interacting system and the free energy of the non-interacting
system F (0) = −T lnZ(0):

F − F (0) =
ˆ 1

0

dλ
λ

⟨λW ⟩λ . (250)

Taking the limit T → 0, in which F = E0 is the ground-state energy it then follows E0 = E
(0)
0 + lim

T→0

´ 1
0

dλ
λ ⟨λW ⟩λ.

Here, ⟨...⟩λ is a thermal average with respect to the state ρλ ∼ exp[−βH(λ)].
2) Use the equation of motion −∂τGλσ (k, τ) = ... to show that the expression for E0 from 1) can be evaluated
based only on the self-energy,

⟨λW ⟩λ = T

2
∑
iωn

∑
k,σ

Σλ
σ (k, iωn) Gλσ (k, iωn) eiωnη, (251)

and draw the (vacuum-)diagrams corresponding to this expression up to second order in W . Use renormalized
interaction lines when necessary for diagram convergence. You don’t need to evaluate these diagrams, but the
answer for E0 (after performing the λ-integral and adding E(0)

0 ) is E0/N =
(

2.211
r2
s

− 0.916
rs

+ 0.0622 ln rs − 0.094
)

Ry.

Exercise 8.3. Plasma oscillation - classical picture

It is possible to find the plasma frequency ωp from classical considerations. Consider an electron gas (metal)
of length L (in x-direction) and cross-section A. The electron “liquid” can move as a whole but the ions are
spatially fixed. Set the electrons in motion by moving it a distance δx in the x-direction so that they feel a
restoring force from the ions. Show that the frequency of the ensuing spatial oscillation is exactly ωp.

Exercise 8.4. Coulomb interaction for electrons confined in two dimensions
Consider a translation invariant interacting electron gas confined two effectively two dimensions with parabolic
dispersion ξk = ℏ2k2/(2m) − εF . This happens for example in a semiconductor hetero-structure. The non-
interacting plane-wave eigenstates for k = (kx, ky) and r = (x, y) are

ψk,σ(r, z) = 1√
LxLy

eir·kζ0(z) (252)
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where ζ0(z) is the lowest eigenstate in the z-direction (e.g. 1D potential-well eigenstates). In the following,
assume the extreme 2D limit |ζ0(z)|2 ≃ δ(z).
1) Show that the Coulomb interaction matrix element is W2D(q) = e2/(2ϵrϵ0q) where ϵr ≃ 10 is the relative
dielectric constant of the semiconductor material.
2) Find the static RPA interaction at small wavevectors and show WRPA

2D (q, iΩn = 0) = e2

2ϵrϵ0[q+ks,2D] . What is
the screening wavevector ks,2D?
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9 Disordered metals and their conductivity

Idea:

• Apply perturbation theory (Feynman diagrams) for electrons in metals with impurities (potential scat-
tering)

• Start with single impurity (foreign atom etc.) for warm-up, then consider many impurities = disorder

• Breaking of translation invariance breaks (crystal-) momentum conservation (̸= Coulomb interactions)

• Disordered systems: Non-interacting but still rich and difficult

• Statistical analysis: Disorder average

• Applications: Friedel oscillations of density n(r) close to impurity, conductivity in the presence of disorder

9.1 Single impurity and Friedel oscillations

• Problem setup [Fig. 16(a)]: Local impurity potential in 3d metal, H = p̂2/(2m) + U(r). Could also be
treated with scattering theory (diagrams etc. not strictly required).

• Work with spin-less fermions for simplicity in this chapter.

• Rewrite with field operators, regard impurity potential as perturbation

H = − 1
2m

ˆ
r

Ψ†(r)
(
∇2

rΨ(r)
)

+
ˆ

r
Ψ†(r)U(r)Ψ(r) = H0 +H1 (253)

Plane-wave basis [ψk = 1√
V

´
r e
−ik·rΨ(r)] in which H0 is diagonal. We use Uq = 1

V

´
r e
−iq·rU(r).

H0 =
∑

k
(εk − µ)︸ ︷︷ ︸

ξk

ψ†kψk, H1 =
∑
p,q

ψ†p+qUqψp (254)

Note:

– U(r) ∈ R → Uq = U⋆−q.
– Clean or “bare” GF for H0 (without the impurity)

G0
k,k′(iωn) = δk,k′

1
iωn − ξk

≡ δk,k′G0
k(iωn) (255)

– H1 is non-diagonal in (crystal-)momentum k. This is due to the breaking of the (discrete-) transla-
tional invariance.

• Observables of interest: Electronic Matsubara GF, Gk,k′(τ) = −
〈
T ψk(τ)ψ†k′

〉
and r-dependent density:

n(r) = 1
V

∑
k,k′

ei(k−k′)·rGk,k′(τ = −η) (256)
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(a) (b)

+ + +...=
=

+=
=

r

Figure 16: Single impurity in metal: (a) Impurity potential U(r) and sketch of Friedel oscillations of density. (b)
Diagrammatic perturbation theory for the electronic Matsubara GF.

Perturbation theory

• Use Eq. (208) for the perturbative evaluation of Gk,k′(τ):

Gk,k′(τ) = −
〈
Tτψk(τ)ψ†k′

〉
= −

∞∑
n=0

(−1)n

n!

ˆ β

0
dτ1...

ˆ β

0
dτn

〈
TτH1(τ1)...H1(τn)ψk(τ)ψ†k′

〉
0,c

(257)

• Insert H1(τ) =
∑

p,q ψ
†
p+q(τ + η)Uqψp(τ)

Gk,k′(τ) = G0
k,k′(τ) +

∑
p1,q1

Uq1

ˆ β

0
dτ1

〈
Tτψ

†
p1+q1(τ1 + η)ψp1(τ1)ψk(τ)ψ†k′

〉
0,c

− 1
2

∑
p1,2,q1,2

Uq1Uq2

ˆ β

0
dτ1,2

〈
Tτψ

†
p1+q1(τ1 + η)ψp1(τ1)ψ†p2+q2(τ2 + η)ψp2(τ2)ψk(τ)ψ†k′

〉
0,c

+ ...

• Evaluate the higher-order non-interacting correlators using Wick’s theorem (138). Recall that no diagrams
with vacuum parts are allowed (subscript c for connected).

Gk,k′(τ) = G0
k,k′(τ) +

∑
p1,q1

Uq1

ˆ β

0
dτ1G0

k,p1+q1(τ − τ1)G0
p1,k′(τ1)

+
∑

p1,2,q1,2

Uq1Uq2

ˆ β

0
dτ1,2G0

k,p1+q1(τ − τ1)G0
p1,p2+q2(τ1 − τ2)G0

p2,k′(τ2) + ...

The prefactor 1/2 (and more generally the 1/n!) is canceled by the n! possibilities to do the connected
contraction.

• Expose the δk,k′ in the clean GF (255) and use the convolution theorem in the FT to iωn:

Gk,k′(iωn) = δk,k′G0
k(iωn) + G0

k(iωn)Uk−k′G0
k′(iωn) +

∑
q

G0
k(iωn)UqG0

k−q(iωn)Uk−k′−qG0
k′(iωn) + ... (258)

• The corresponding Feynman diagrams are shown in Fig. 16(b). Interpretation:

– Single string of clean propagator lines G0
q(iωn) changing momentum q with impurity (star).

– Frequency iωn is conserved ↔ elastic scattering

• Express series as a self-consistency equation for Gk,k′(iωn) [Dyson’s equation, Fig. 16(b)]:

Gk,k′(iωn) = δk,k′G0
k(iωn) + G0

k(iωn)
∑

q
Uk−qGq,k′(iωn) (259)

For general U(r), this would have to be solved numerically.
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Point scatterer at origin and Friedel oscillations of density

• We now consider a point-scatterer, U(r) = uδ(r) so that Uq = u/V does not depend on q. After a sum
over k, Eq. (259) simplifies to ∑

k
Gk,k′(iωn) = G0

k′(iωn)
1 − u

V

∑
k G0

k(iωn)
(260)

and we re-insert his on the rhs of Eq. (259)

Gk,k′(iωn) = δk,k′G0
k(iωn) + u

V
G0

k(iωn) 1
1 − uG0(iωn)

G0
k′(iωn) (261)

G0(iωn) ≡ 1
V

∑
k

G0
k(iωn)

• We are interested in the impurity-induced modifications of the electron density n(r), see Eq. (256). The
first step is to compute the temporal FT using the recipes of Sec. 5.6 [→ Ex. 9.2]

Gk,k′(τ = −η) = T
∑
n

eiωnηGk,k′(iωn)

= δk,k′G0
k(τ=−η)− u

V

∑
±

(±1
2πi

)ˆ +∞

−∞
dω eωη

1 + eωβ
· 1
ω ± iη − ξk

· 1
1−uG0(ω ± iη)

· 1
ω ± iη − ξk′

(262)

• In a second step, perform the spatial FT to find n(r) from Gk,k′(τ = −η) and find in the limit of T → 0
and for large distances from the impurity r ≫ kF ,

δn(r) = n(r) − n0 ≃ −sin [δ0]
4π2r3 cos [2kF r + δ0] (263)

where δ0 = δ0(ω = 0) and δ0(ω) ∈ R is the scattering-phase shift of electron waves at the energy ω

determined by exp (2iδ0(ω)) =
[
1 − uG0(ω − iη)

]
/
[
1 − uG0(ω + iη)

]
. The calculation is done in Ex. 9.2.

• Discussion:

– Impurity potential (at r = 0) perturbs the homogeneous electronic ground state of clean system
– Impurity causes “Friedel” oscillations in the electronic density with half the Fermi wavelength and

a 1/r3 decay, see Fig. 16(a)
– Oscillations can be measured with scanning tunneling microscopy and are a characteristic feature of

a Fermi surface. They also happen close to sharp edges.
– Our calculation is non-perturbative in u!
– One could also find the linear response ∝ u from the knowledge of the polarizability (real part of
χ0 (q, ω) → Ex. 8.1)

9.2 Many impurities (disorder)

• Above the GF in the presence of a single impurity was found exactly.

• Many impurities → extended potential:

U(r) =
Nimp∑
j=1

u(r − rj) (264)

Finding the GF is not possible analytically (though numerically it is).

• However: Full disorder potential in a realistic sample is unknown (i.e. impurity positions rj and impurity
types unknown)
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• Idea of disorder average: Work with statistical model for U(r) and average over different realizations
of disorder (e.g. many samples)

– notation: ⟨...⟩dis

– disorder average recovers translational invariance
〈
GRr,r′

〉
dis

depends only on r − r′

• Disorder average in experiment:

– measure many samples (a single large sample is enough if the observable is “self-averaging”)
– thermal cycle of one sample (measure, warm up, impurities move, cool down, repeat)

Statistical disorder model: Gaussian white noise (GWN)

• Consider U(r) a random function with the properties

– ⟨U(r)⟩dis = 0 (this is not really a restriction, any non-zero ⟨U(r)⟩dis could be added to µ)
– Disorder correlator: 〈

U(r)U(r′)
〉

dis = 1
2πD0τ

δ(r − r′) (265)

where D0 = mkF /(2π2) the (spin-less) density of states at the Fermi level and τ is a parameter with
units of a time, its meaning will become clear soon.

– All higher-order disorder correlators follow from the application of (bosonic) Wick’s theorem valid
for a Gaussian probability distribution (hence the name “Gaussian” white noise):〈

U(r)U(r′)U(r′′)
〉

dis = 0〈
U(r)U(r′)U(r′′)U(r′′′)

〉
dis =

〈
U(r)U(r′)

〉
dis
〈
U(r′′)U(r′′′)

〉
dis +

〈
U(r)U(r′′)

〉
dis
〈
U(r′)U(r′′′)

〉
dis

+
〈
U(r)U(r′′′)

〉
dis
〈
U(r′)U(r′′)

〉
dis (266)

• For the FT of the disorder potential Uq = 1
V

´
r e
−iq·rU(r), one has

⟨Uq⟩dis = 0,
〈
UqUq′

〉
dis = 1

2πD0τV
δq+q′.0 (267)

• GWN is an oversimplified model that facilitates calculations. However, if the right parameter τ is inserted
(from more elaborate microscopic calculation), it can give meaningful results.

Disorder self-energy in Born approximation

• We perform the perturbative diagrammatic treatment of Gk,k′(iωn) and copy from Sec. 9.1, see Fig. 17(a).
Formally, it makes no difference if U(r) corresponds to a single impurity or one realization of a GWN
potential. Each star corresponds to Uq.

• We take the disorder average using the GWN, see Fig. 17(b) to find ⟨Gk(iωn)⟩dis. All diagrams with an
odd number of Uq vanish.

• In diagrams with more than two Uq the disorder potentials can be paired in multiple ways for the average,
c.f. Eq. (266).

• Like in the case of interactions, we introduce the disorder self-energy Σk(iωn). It is defined as the sum
over all one-fermion irreducible diagrams with external fermion lines amputated. The Dyson equation
connects the disorder averaged GF, self-energy and clean GF:

⟨Gk(iωn)⟩dis = G0
k(iωn)

1 − G0
k(iωn)Σk(iωn)

= 1
iωn − ξk − Σk(iωn) (268)
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Figure 17: (a) Perturbative expansion of electronic Matsubara GF in the presence of disorder potential Uq. (b) Disorder
averaged GF ⟨Gk(iωn)⟩dis assuming Gaussian white noise disorder. (c) Disorder self-energy up to fourth order in Uq.

• Calculation of Σk(iωn) in lowest order in U [“Born approximation”, first diagram on rhs of Fig. 17(c)].

Σk(iωn) = 1
V

∑
q

G0
k−q(iωn) 1

2πD0τ
= 1

2πD0τ

1
(2π)3

ˆ
dp 1

iωn − ξp
(269)

We perform the analytic continuation iωn → ω ± iη. We disregard the real part as this can be absorbed
into the Fermi energy and obtain for the imaginary part of the retarded or advanced self energy

ImΣk(ω ± iη) = 1
2πD0τ

Im 1
(2π)3

ˆ
dp 1

ω ± iη − ξp
= ∓πD(ω)

2πD0τ
≃ ∓ 1

2τ (270)

where we assumed ω ≃ 0. The corresponding expression for the Matsubara self-energy is Σk(iωn) ≃
− i

2τ sgn(ωn) which is not analytic at the real axis of the imaginary plane.

• We insert the above ImΣk(ω + iη) in the Dyson Eq. (268) and find the disorder averaged retarded
propagator

〈
GRk (ω)

〉
dis

= 1
ω + iη − ξk + i/(2τ) →

〈
GRk (t)

〉
dis

=
ˆ dω

2π
e−i(ω+iη)

ω − ξk + i/(2τ) (271)

where we can drop the infinitesimal iη in the denominator due to the presence of the finite i/(2τ).

• The pole of GR,0k (ω) is shifted from infinitesimally close to the imaginary axis to a finite value in the
lower half-plane by the disorder. Using contour integration, we obtain〈

GRk (t)
〉

dis
= −iθ(t) e−iξkte−t/(2τ) = GR,0k (t) · e−t/(2τ) (272)

and the spectral density is a Lorentzian of width 2τ

⟨Ak(ω)⟩dis = −2Im
〈
GRk (ω)

〉
dis

= 1/τ
(ω − ξk)2 + 1/(4τ2) (273)

• Interpretation → Fig. 18(a,b):

– plane-wave states |k⟩ are no longer eigenstates of the system with disorder
– microscopically, an electron injected with wavevector |k⟩ is scattered into a different momentum

state |k′⟩ after a typical time τ and thus leaves the state |k⟩
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Figure 18: (a) Interpretation of the disorder averaged propagator (b) Disorder broadening of the spectral density. (c)
Self-consistent Born approximation. (d) Ratio of missing and contained diagram in the self-consistent Born approximation.

– in the disorder averaged propagator
〈
GRk,k′(t)

〉
dis

∝ δk,k′ only the latter information is encoded →
exponential decay in time (with rate 1/2τ)

– for momenta around the Fermi surface, the distance an electron travels before scattering is the mean
free path, l = τvF .

– due to the Heisenberg uncertainty relation, the finite lifetime of an electron in state |k⟩ corresponds
to the broadening of the energy resolution of this state in the spectral density ⟨Ak(ω)⟩dis

Self-consistent Born approximation and its validity in weakly disordered metals

• In the last paragraph, we approximated the full disorder self energy Σk(iωn) in Fig. 17(c) by the first
diagram (Born approximation).

• The self-consistent Born approximation (SCBA) in Fig. 18(c) contains the diagram of the Born approxi-
mation and all other diagrams with non-crossing impurity lines, such as the third diagram in Fig. 17(c).

• For weakly disordered metals (defined as EF τ ≫ 1) the SCBA and the Born approximation yield similar
results.
Reason: We use Eq. (273) to write

ImΣSCBA
k (ω ± iη) = −1/2

2πD0τ

1
(2π)3

ˆ
dp

〈
ARp (ω)

〉
dis

(274)

and we find that the integral does not vary when iη in the Born approximation is replaced with i/2τ in
the SCBA, as long as 1/τ is small compared to the scale on which the density of states D(ω) varies.

• Q: Do the crossing diagrams missing in SCBA change this picture?

• We show by a phase space argument that the crossing diagrams are suppressed relative to the non-crossing
diagrams of the same order by a factor 1/(kF l), see Fig. 17(d).
We do this explicitly for the diagrams with two disorder lines exposed:

– Non-crossing diagram (left): The 3d momentum integrals
´

q,p roam freely over the Fermi surface
which is broadened by disorder by an amount 1/l,

ˆ
q,p

∼
[
4πk2

F /l
]2

∼ k4
F /l

2 (275)

72



– Crossing diagram (right):
∗ There is an additional restriction because the leftmost propagator comes with momentum k −

q + p which must also lie on the (disorder broadened) Fermi surface.
∗ If k is at the Fermi surface (left grey ring), and −q roams freely over the Fermi surface (right

ring), we have only restricted configurations of p with length kF that places k − q + p on the
Fermi surface, i.e. back on the left ring.

∗ This means the phase-space volume for the p-integration is just the darker shaded regions which
in 3d form a ring with cross-section volume 1/l and radius kF , in total

[4πk2
F /l] × 2πkF /l2 ∼ k3

F /l
3 (276)

– The ratio between the phase space volumes of the two diagrams is

vnon−cross
vcross

= k4
F /l

2

k3
F /l

3 = kF l = kF vF τ = 2EF τ (277)

which in weakly disordered metals is a number much larger than one.

Electrical conductivity of disordered metal (via Kubo formula)

• We compute the electrical conductivity using the Kubo formula. Recall from Ex. 6.2 where we prepared:

σαβ(r, r′;ω) = i

ω
GRjα(r),jβ(r′)(ω) − eρe(r)

iωm
δ(r − r′)δαβ (278)

where j(r) =
∑
σ

e
2mi

(
Ψ†σ(r) [∇rΨσ(r)] −

[
∇rΨ†σ(r)

]
Ψσ(r)

)
is the (paramagnetic) current density vector.

• Recall: The non-local conductivity tensor σαβ(r, r′;ω) (α, β = x, y, z) gives the linear relation between
perturbing electric field Eβ(r′, ω) and resulting electronic current density jα(r, ω):

jα(r, ω) =
ˆ

dr′
∑
β

σαβ(r, r′;ω)Eβ(r′, ω) (279)

• In a translation invariant system (after disorder average) one has σαβ(r, r′;ω) = σαβ(r − r′;ω) and we
use momentum: jα(q, ω) =

´
dr e−iq·rjα(r, ω) and

σαβ(q;ω) =
ˆ

dr e−iq·rσαβ(r;ω) = i

ω
GRjα(q),jβ(−q)(ω) − eρe

iωm
δαβ (280)

with the current operator
j(q) = e

2m
∑
k,σ

(2k + q)ψ†k,σψk+q,σ (281)

• Order of limits for the arguments of σαβ(q;ω):

– We are interested in the DC conductivity, i.e. ω → 0.
– The conductivity should be defined with respect to the internal electric field in the conductor (c.f. 4-

point measurement)
– The internal field might differ from the external field Eβ(r′, ω) that the calculation is done for by

induced fields generated by (i) screening charges and (ii) fields generated by time-dependent currents
(for ω ̸= 0, these currents generate magnetic fields which generate their own electric fields).

– Claim: Induced fields are negligible for the precise order of limits lim
ω→0

lim
q→0

.

– Why? (i) No screening charges build up because the there is no time to redistribute charge in ∼ 1/ω
over diverging distance ∼ 1/q. (ii) No magnetic fields are generated because frequency is too low.
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(a) (b)

(c) (d)

= =+ ++ +...

Figure 19: Electrical (Kubo-)conductivity for a disordered metal (GWN disorder). (a) Example for a term in the
diagrammatic expansion on the rhs of Eq. 19

• We now do a calculation using a disorder average withing the GWN model and analytic continuation.
We start from

GRjα(q),jβ(−q)(ω) = Gjα(q),jβ(−q)(iΩn → ω + iη) (282)

• Fig. 19(a) shows a typical diagram for perturbation theory in U(r) after the disorder average has been
taken.

– The fermionic backbone would also contain two disconnected diagrams, but they would only give
rise to a contribution δiΩn which is not relevant for analytical continuation.

– The empty circles are the (bare) current vertices Γ0
α(k, iωm; k + q, iωm + iΩn) = e(2kα+qα)

2m .

– The disorder average is already taken, all types of connections (within one of the two legs and
intra-leg) are allowed.

• We neglect any crossed impurity lines due to a phase space argument similar to the one above.

• Thus obtain the approximate “ladder” diagram in Fig. 19(b) with full fermionic propagator lines.

• Fig. 19(c): All the ladder rungs can be associated to the left current vertex which then becomes a full
dot Γα (“vertex correction”).

• The definition of the full vertex is shown in Fig. 19(d). We also find a self-consistency equation for Γα :

Γα (k, iωm; k + q, iωm + iΩn) = Γ0
α (k, iωm; k + q, iωm + iΩn)

+ 1
2πD0τV

∑
k′ ⟨Gk′(iωm)⟩dis

〈
Gk′+q(iωm + iΩn)

〉
dis Γα(k′, iωm; k′ + q, iωm + iΩn)

• We multiply with ⟨Gk(iωm)⟩dis
〈
Gk+q(iωm + iΩn)

〉
dis and sum over k. Then we re-insert the last equation.

This yields a self-consistency condition:

Γα (k, iωm; k + q, iωm + iΩn) = e

2m

[
2kα + qα +

∑
k′ (2k′α + qα) ⟨Gk′(iωm)⟩dis

〈
Gk′+q(iωm + iΩn)

〉
dis

2πD0τV −
∑

k′ ⟨Gk′(iωm)⟩dis
〈
Gk′+q(iωm + iΩn)

〉
dis

]

• Anticipate the limit q → 0, then the numerator of the large fraction goes to zero by symmetry since the
terms ∝ ±k′α cancel. This means lim

q→0
Γα = Γ0

α, there is no vertex correction.

• Remarks:

– The absence of vertex correction is only true for the simple dispersion that we considered and for
GWN disorder. It is not expected on general grounds.
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– A finite vertex correction leads to a difference between impurity scattering lifetime τ (time to scat-
tering even) and the transport mean-free time τtr (time to change direction appreciably).

• We return to the evaluation of the Matsubara current-current correlator from diagram Fig. 19(c). We
already take the limit q → 0 and get a factor of two from the spin-sum:

Gαβ(iΩn) ≡ lim
q→0

Gjα(q),jβ(−q)(iΩn)

= 2T
V

∑
k,ωm

⟨Gk(iωm)⟩dis ⟨Gk(iωm + iΩn)⟩dis

• The Matsubara sum is done in the standard way, but now there is a branch-cut in the complex plane
both at z ∈ R and at z + iΩn ∈ R. This yields in total four real-frequency integrals. After analytical
continuation iΩn → ω + iη (and dropping the infinitesimal iη against the i/2τ in the disorder-averaged
propagators) we find

GRαβ(ω) = Gαβ(iΩn → ω + iη)

= e2/m2

2πiV
∑

k
kαkβ

ˆ
dξ tanh ξ − µ

2T ×

× [ 1
ξ − εk + i/2τ · 1

ξ + ω − εk + i/2τ − 1
ξ − εk − i/2τ · 1

ξ + ω − εk + i/2τ

+ 1
ξ − ω − εk − i/2τ · 1

ξ − εk + i/2τ − 1
ξ − ω − εk − i/2τ · 1

ξ − εk − i/2τ ]

• We perform a partial integration to obtain a sharp spike as T → 0,

GRαβ(ω) = e2/m2

4πiT

ˆ
dξ cosh−2

(
ξ − µ

2T

)( 1
ω

− 1
ω + i/τ

) 1
V

∑
k
kαkβ ln (ξ − εk)2 − (ω + i/2τ)2

(ξ − εk)2 + 1/4τ2

• The k-integral brings a factor δαβ by symmetry and we can use isotropy k2
α → 1

3k
2 = 1

3 × 2mεk. Then
we can change to a an energy integral and obtain

GRαβ(ω) = − ρeeδαβ
(1 − iωτ)m (283)

• We substitute this into the final expression for the conductivity (280) and obtain

σαβ(q → 0, ω) = − i

ω

ρeeδαβ
(1 − iωτ)m − eρe

iωm
δαβ = ρeeτ

m (1 − iωτ)δαβ (284)

In the limit ω → 0 this yields the well-known Drude formula σD = ρeeτ
m from elementary solid-state

physics. Recall that the Drude formula is a purely classical result which does not even take into account
the concept of Fermi surface.

• This course has to end here, but the virtue of the formalism developed is that quantum corrections to
the Drude conductivity can be treated. A famous example is the weak localization correction which is
rooted in quantum interference and reduces the conductivity. It can be seen as the precursor for Anderson
localization (σT=0 = 0) which in 3d only happens for very strong disorder.

Exercises

Exercise 9.1. Clean retarded and advanced propagators in real space
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Consider a metal with clean dispersion ξq = q2/(2m) − µ. In the presence of impurities where translational
invariance is broken it is often required to use the real-space representation of the clean retarded propagator.
Show via explicit momentum space integration that

G0,R(ω, r ̸= 0) = 1
V

∑
q
eiq·r

1
ω + iη − q2/(2m) + µ

= −m

2π
e+ikr

r
(285)

where k is the solution of ω + iη − k2/(2m) + µ = 0 with Im k > 0. In the advanced case (η → −η), one has
G0,A(ω) = [G0,R(ω)]⋆. Hint: Replace the momentum sum by an integration and use spherical coordinates and
the residue theorem for the final radial integral.

Exercise 9.2. Friedel oscillations

1) Derive Eq. (262) from Eq. (261) using the techniques for Matsubara summation of Sec. 5.6.
2) Derive Eq. (263) from a spatial FT of Eq. (262), n(r) = Gr,r(τ = −η). Use a linearized spectrum around
kF , ξk = vF (k − kF ) with vF = kF /m. Perform the following steps:

• Recall that ImG0(ω + iη) = −πD(ω) with D(ω) the (spin-less) density of states at energy ω and also
show

u

1 − uG0(ω ± iη)
= −sin δ0(ω)

πD(ω) e±iδ0(ω) (286)

• Insert this and the propagators of Ex. 9.1 into Eq. (262) and perform the sum.

• Use partial integration to expose −∂ωnF (ω) and assume δ0(ω) and D(ω) vary slowly with ω compared
to ωr/vF .

• Take the limit T → 0.
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