The discrete Voronoi game

Dániel Gerbner, Viola Mészáros, Dömötör Pálvölgyi, Alexey Pokrovskiy, Günter Rote

Methods for Discrete Structures,
Freie Universität Berlin, Berlin.
alja123@gmail.com

March 26th, 2015
Competitive facility location

- Facility location is the problem of a service provider choosing the best locations to build facilities (fire stations, hospitals, etc).
Competitive facility location

- Facility location is the problem of a service provider choosing the best locations to build facilities (fire stations, hospitals, etc).
- Competitive facility location is when there are several competing service providers (supermarket chains, coffee shops, etc) who want to attract the most customers.
Competitive facility location

- Facility location is the problem of a service provider choosing the best locations to build facilities (fire stations, hospitals, etc).
- Competitive facility location is when there are several competing service providers (supermarket chains, coffee shops, etc) who want to attract the most customers.
Competitive facility location

Example:
Competitive facility location

Example:
Competitive facility location

Example:
The discrete Voronoi game

The discrete t-round Voronoi game is played on the vertices of a graph G with the following rules:

1. Players alternate choosing vertices of G for a fixed number of t rounds.
2. At the end of the game, each player receives:
 - 1 point for every vertex closer to his chosen vertices than his opponent's.
 - $1/2$ point for every vertex equidistant to each player's chosen vertices.
3. The winner is the player with the most points.
The discrete Voronoi game

The discrete t-round Voronoi game is played on the vertices of a graph G with the following rules:

- **Player 1** and **Player 2** alternate choosing vertices of G for a fixed number of t rounds.
The discrete Voronoi game

The discrete t-round Voronoi game is played on the vertices of a graph G with the following rules:

- **Player 1** and **Player 2** alternate choosing vertices of G for a fixed number of t rounds.
- At the end of the game each player receives:
 - 1 point for every vertex closer to his chosen vertices than his opponents.
 - $1/2$ point for every vertex equidistant to each player’s chosen vertices.
The discrete t-round Voronoi game is played on the vertices of a graph G with the following rules:

- **Player 1** and **Player 2** alternate choosing vertices of G for a fixed number of t rounds.
- At the end of the game each player receives:
 - 1 point for every vertex closer to his chosen vertices than his opponents.
 - $1/2$ point for every vertex equidistant to each player’s chosen vertices.
- The winner is the player with the most points.
The discrete Voronoi game

Examples:
The Voronoi ratio

Definition

The t-round Voronoi ratio $VR(G, t)$ is the proportion of vertices occupied by Player 1 after t rounds of the Voronoi game on G, under optimal play.
Definition

The t-round Voronoi ratio $VR(G, t)$ is the proportion of vertices occupied by Player 1 after t rounds of the Voronoi game on G, under optimal play.

- $VR(S_n, t) = 1 - \frac{t}{n}$.

There are graphs with $VR(G, t) \leq \epsilon$ [Gerbner, Mészáros, Pálvölgyi, P., Rote].
The Voronoi ratio

Definition

The t-round Voronoi ratio $VR(G, t)$ is the proportion of vertices occupied by Player 1 after t rounds of the Voronoi game on G, under optimal play.

$VR(S_n, t) = 1 - \frac{t}{n}$.

There are graphs with $VR(G, t) \leq \epsilon$ [Gerbner, Mészáros, Pálvölgyi, P., Rote].
Bounds on the Voronoi ratio

Theorem (Gerbner, Mészáros, Pálvölgyi, P., Rote)

For every graph G we have

$$\frac{1}{2} VR(G, 1) \leq VR(G, t) \leq \frac{1}{2} (VR(G, 1) + 1).$$
Bounds on the Voronoi ratio

Theorem (Gerbner, Mészáros, Pálvölgyi, P., Rote)

For every graph G we have

$$\frac{1}{2} VR(G, 1) \leq VR(G, t) \leq \frac{1}{2} (VR(G, 1) + 1).$$

The upper bound is equivalent to

$$\frac{1}{2} (1 - VR(G, 1)) \leq (1 - VR(G, t)).$$

Thus the theorem can be summarised as “under optimal play in t rounds, either player can claim at least half of what he can in one round.”
Bounds on the Voronoi ratio

Theorem (Gerbner, Mészáros, Pálvölgyi, P., Rote)

For every graph G we have

$$\frac{1}{2} VR(G, 1) \leq VR(G, t) \leq \frac{1}{2} (VR(G, 1) + 1).$$

- The upper bound is equivalent to
 $$\frac{1}{2} (1 - VR(G, 1)) \leq (1 - VR(G, t)).$$
 Thus the theorem can be summarised as “under optimal play in t rounds, either player can claim at least half of what he can in one round.”

- In general neither bound can be significantly improved.
Bounds on the Voronoi ratio

Theorem (Gerbner, Mészáros, Pálvölgyi, P., Rote)

For every graph G we have

\[\frac{1}{2} VR(G, 1) \leq VR(G, t) \leq \frac{1}{2} (VR(G, 1) + 1). \]

The upper bound is equivalent to

\[\frac{1}{2} (1 − VR(G, 1)) \leq (1 − VR(G, t)). \]

Thus the theorem can be summarised as “under optimal play in t rounds, either player can claim at least half of what he can in one round.”

In general neither bound can be significantly improved.

For some classes of graphs the above gives good bounds on the t-round Voronoi ratio.
Theorem (Gerbner, Mészáros, Pálvölgyi, P., Rote)

For every graph G we have

\[
\frac{1}{2} VR(G, 1) \leq VR(G, t) \leq \frac{1}{2}(VR(G, 1) + 1).
\]

- The upper bound is equivalent to
 \[
 \frac{1}{2}(1 - VR(G, 1)) \leq (1 - VR(G, t)).
 \]
 Thus the theorem can be summarised as “under optimal play in t rounds, either player can claim at least half of what he can in one round.”

- In general neither bound can be significantly improved.

- For some classes of graphs the above gives good bounds on the t-round Voronoi ratio.

- Both bounds are proved by strategy stealing
Proof sketch

Theorem (Gerbner, Mészáros, Pálvölgyi, P., Rote)

For every graph G we have

$$\frac{1}{2} VR(G, 1) \leq VR(G, t).$$
Proof sketch

Theorem (Gerbner, Mészáros, Pálvölgyi, P., Rote)

For every graph G we have

$$\frac{1}{2} \text{VR}(G, 1) \leq \text{VR}(G, t).$$

- Suppose that theorem is false and Player 2 has a strategy to claim more than $1 - \frac{1}{2} \text{VR}(G, 1)$ of the vertices in t rounds.
Proof sketch

Theorem (Gerbner, Mészáros, Pálvölgyi, P., Rote)

For every graph G we have

$$\frac{1}{2} VR(G, 1) \leq VR(G, t).$$

- Suppose that theorem is false and Player 2 has a strategy to claim more than $1 - \frac{1}{2} VR(G, 1)$ of the vertices in t rounds.
- Then Player 1’s strategy is:
Proof sketch

Theorem (Gerbner, Mészáros, Pálvölgyi, P., Rote)

For every graph G we have

$$\frac{1}{2} VR(G, 1) \leq VR(G, t).$$

- Suppose that theorem is false and Player 2 has a strategy to claim more than $1 - \frac{1}{2} VR(G, 1)$ of the vertices in t rounds.
- Then Player 1’s strategy is:
 - Make the optimal first move in the one round game (which claims $VR(G, 1)$ of the vertices.)
Proof sketch

Theorem (Gerbner, Mészáros, Pálvölgyi, P., Rote)

For every graph G we have

$$\frac{1}{2} VR(G, 1) \leq VR(G, t).$$

Suppose that theorem is false and Player 2 has a strategy to claim more than $1 - \frac{1}{2} VR(G, 1)$ of the vertices in t rounds.

Then Player 1’s strategy is:

- Make the optimal first move in the one round game (which claims $VR(G, 1)$ of the vertices.)
- Follow Player 2’s optimal strategy (for $t - 1$ moves).
Proof sketch

Theorem (Gerbner, Mészáros, Pálvölgyi, P., Rote)

For every graph G we have

$$\frac{1}{2} \ VR(G, 1) \leq \ VR(G, t).$$

- Suppose that theorem is false and **Player 2** has a strategy to claim more than $1 - \frac{1}{2} VR(G, 1)$ of the vertices in t rounds.

- Then **Player 1**’s strategy is:
 1. Make the optimal first move in the one round game (which claims $VR(G, 1)$ of the vertices.)
 2. Follow **Player 2**’s optimal strategy (for $t - 1$ moves).

- It is possible to show that playing the last move could not gain more that $VR(G, 1)$ of the vertices.
Proof sketch

Theorem (Gerbner, Mészáros, Pálvölgyi, P., Rote)

For every graph \(G \) we have

\[
\frac{1}{2}(1 - VR(G, 1)) \leq (1 - VR(G, t))
\]
Proof sketch

Theorem (Gerbner, Mészáros, Pálvölgyi, P., Rote)

For every graph G we have

$$\frac{1}{2} (1 - VR(G, 1)) \leq (1 - VR(G, t))$$

Player 2’s strategy:

Player 1 plays the first move, v. Player 2 identifies the best response u, but does not play it. Instead, he considers the set S of vertices which would be won by playing u. Clearly $|S| \geq 1 - VR(G, 1)$. For the rest of the game Player 2 just tries to win the subgame on S.
Proof sketch

Theorem (Gerbner, Mészáros, Pálvölgyi, P., Rote)

For every graph G we have

$$\frac{1}{2}(1 - VR(G, 1)) \leq (1 - VR(G, t))$$

Player 2’s strategy:

- **Player 1** plays the first move, v.
Proof sketch

Theorem (Gerbner, Mészáros, Pálvölgyi, P., Rote)

For every graph G we have

$$\frac{1}{2} (1 - VR(G, 1)) \leq (1 - VR(G, t))$$

Player 2’s strategy:

- **Player 1** plays the first move, v.
- **Player 2** identifies the best response u, but does not play it. Instead, he considers the set S of vertices which would be won by playing u. Clearly $|S| \geq 1 - VR(G, 1)$
Proof sketch

Theorem (Gerbner, Mészáros, Pálvölgyi, P., Rote)

For every graph G we have

$$\frac{1}{2} (1 - VR(G, 1)) \leq (1 - VR(G, t))$$

Player 2’s strategy:

- **Player 1** plays the first move, v.
- **Player 2** identifies the best response u, but does not play it. Instead, he considers the set S of vertices which would be won by playing u. Clearly $|S| \geq 1 - VR(G, 1)$
- For the rest of the game **Player 2** just tries to win the subgame on S.
Conjecture (P.)

There is an $\alpha > 0$ such that for every planar G we have

$$VR(G, t) \geq \alpha.$$
Conjecture (P.)

There is an $\alpha > 0$ such that for every planar G we have

$$VR(G, t) \geq \alpha.$$

Problem

Can bounds on $VR(G, t)$ in terms of $VR(G, 1)$ be improved if $|G| \gg t$.

Alexey Pokrovskiy (FU Berlin)
Open problems

Conjecture (P.)

There is an $\alpha > 0$ such that for every planar G we have

$$VR(G, t) \geq \alpha.$$

Problem

Can bounds on $VR(G, t)$ in terms of $VR(G, 1)$ be improved if $|G| \gg t$.

Problem

If Player 1 starts by making k simultaneous moves, and then Player 2 makes just one move, then can Player 2 still win 99% of the graph?
Open problems

Conjecture (P.)

There is an $\alpha > 0$ such that for every planar G we have $V_R(G, t) \geq \alpha$.

Problem

Can bounds on $V_R(G, t)$ in terms of $V_R(G, 1)$ be improved if $|G| \gg t$?

Problem

If Player 1 starts by making k simultaneous moves, and then Player 2 makes just one move, then can Player 2 still win 99% of the graph?