Zahlentheorie II - Homework 3

Submission: individually or in pairs,
on Whiteboard as Names_ZT2_H3.pdf by 12:00 on Thursday, the 9th. of May 2024.
Full written proofs are required in support of your answers.

Problem 1.

2 points
Let $\varphi: A \longrightarrow B$ be a ring homomorphism. Define the integral closure of A in B as:

$$
\bar{A}=\{b \in B \quad: \quad b \text { is integral over } A\} .
$$

1. Show that \bar{A} is a ring.
2. Show that φ restricts to an integral ring homomorphism $A \longrightarrow \bar{A}$.

Problem 2.

2 points
Let A be a unique factorization domain. Show that $A=\bar{A}$, where \bar{A} is the integral closure of A in its field of fractions $Q(A)$.

Problem 3.

2 points
Show that every algebraically closed field is infinite.

Problem 4.

2 points
Let K be a field and $K(X)$ be the field of fractions of the polynomial ring $K[X]$. Prove that $K(X)$ is not algebraically closed.

Total: 8 points

Extra Problem 5.

Let $p>2$ be prime and ζ be a primitive p-root of unity. Show that the ideal $(1-\zeta) \subseteq \mathbb{Z}[\zeta]$ is maximal. Which field is $\mathbb{Z}[\zeta] /(1-\zeta)$?

Extra Problem 6.

Let $A \subset B$ be a ring extension such that $B \backslash A$ is closed under multiplication. Show that A is integrally closed in B.

Extra Problem 7.

Let \mathbb{K} be a field. Does the category of (finitely generated) \mathbb{K}-algebras have the epimorphism surjectivity property**?

[^0]
[^0]: ** i.e. is every epimorphism surjective. A homomorphism $f: A \longrightarrow B$ is an epimorphism if it is right cancellative: if for $g, h: C \longrightarrow C$ we have $g \circ f=h \circ f$, then $g=h$.

