Zahlentheorie II – Homework 3

Submission: individually or in pairs, on Whiteboard as Names_ZT2_H3.pdf by 12:00 on Thursday, the 9th. of May 2024.

Full written proofs are required in support of your answers.

Problem 1.

Let $\varphi : A \longrightarrow B$ be a ring homomorphism. Define the **integral closure** of A in B as:

 $\overline{A} = \{ b \in B : b \text{ is integral over } A \}.$

1. Show that \overline{A} is a ring.

2. Show that φ restricts to an integral ring homomorphism $A \longrightarrow \overline{A}$.

Problem 2.

Let A be a unique factorization domain. Show that $A = \overline{A}$, where \overline{A} is the integral closure of A in its field of fractions Q(A).

Problem 3.

Show that every algebraically closed field is infinite.

Problem 4.

Let K be a field and K(X) be the field of fractions of the polynomial ring K[X]. Prove that K(X) is not algebraically closed.

Total: 8 points

Extra Problem 5.

Let p > 2 be prime and ζ be a primitive *p*-root of unity. Show that the ideal $(1 - \zeta) \subseteq \mathbb{Z}[\zeta]$ is maximal. Which field is $\mathbb{Z}[\zeta]/(1-\zeta)$?

2 points

2 points

2 points

2 points

- Points

Extra Problem 6.

Let $A \subset B$ be a ring extension such that $B \setminus A$ is closed under multiplication. Show that A is integrally closed in B.

Extra Problem 7.

Let \mathbb{K} be a field. Does the category of (finitely generated) \mathbb{K} -algebras have the epimorphism surjectivity property^{**}?

^{**} i.e. is every epimorphism surjective. A homomorphism $f : A \longrightarrow B$ is an *epimorphism* if it is right cancellative: if for $g, h: C \longrightarrow C$ we have $g \circ f = h \circ f$, then g = h.