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Introduction

In this thesis we study several algebraic problems related to algebras and
modules with straightening laws, the Lefschetz property and parametriza-
tions of ideals in polynomial rings with two and three variables. Throughout
this thesis we will also present interactions of algebraic properties with ge-
ometrical and combinatorial ones.

As the three chapters of this thesis are independent, we will start each
of them with some definitions and known results that we will use further on.

In the first chapter we study a problem related to algebras with straight-
ening laws (ASL for short), namely: is the Veronese algebra of an ASL again
an ASL? In the first section we will see that, in the case of the polynomial
ring, a positive answer to this question was given by A. Conca in [16] . But
even in that case, the construction of the new poset and the proof are not
at all trivial. We will also recall here the notion of module with straight-
ening laws (MSL), which is a natural generalization of the algebras with
straightening laws.

In the second section we will prove that the Veronese modules of the
polynomial ring have a structure of MSL. Here, the ASL structure of the
polynomial ring given in [16] plays an important role. As a corollary we
obtain the result of A. Aramova, S. Bǎrcǎnescu, J. Herzog (see [1]) which
says that the Veronese modules have a linear resolution. Using the results
of W. Bruns from [11] on MSL’s, we are able to give an upper bound for the
rate of a finitely generated MSL.

In the third section we will look at the Veronese algebra of an ASL. The
first step towards proving that it is again an ASL is to construct a new poset.
Using the translation of algebraic properties into combinatorial ones, we can
sketch the profile of the poset that we want to construct. Unfortunately, we
were not able to find a construction that works in general. However, we will
prove that the second Veronese algebra of a Hibi ring is again an ASL. The
poset that we construct is the second zig-zag poset of the distributive lattice
of the Hibi ring.

In the last section of this chapter we construct a new poset starting from
a poset of rank three. Then we will prove that it has the combinatorial
properties to support an ASL structure of the Veronese algebra.
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The weak Lefschetz property (WLP) is an important property of Ar-
tinian algebras and it has been recently studied by several authors. The
m-times WLP is just a very natural generalization of it. For an overview
of the main results achieved so far regarding this topic see [22], [33]. One
interesting problem is the description of the Hilbert function of Artinian
algebras having the WLP. In [22] the authors give a complete characteri-
zation of these Hilbert functions. First they make the remark that if and
Artinian algebra has the WLP, then its Hilbert function must be a weak
Lefschetz O-sequence in the sense of definition 2.2 and then they construct
an Artinian algebra with the WLP for each weak Lefschetz O-sequence.

In Chapter 2 we extend this characterization to Artinian algebras with
m-times the WLP and we construct, in a more algebraic fashion, an algebra
for each m-times weak Lefschetz O-sequence. We also answer a few natural
questions regarding the Betti numbers of these algebras.

At first we will construct, using induction on m, and algebra that will
have m-times the WLP. To do this, we need to start with a strongly stable
ideal of the polynomial ring in one variable less than we actually need. For
the case m = 1 we will start from the lex-segment ideal, but the choice of the
lex-segment ideal is made only in order to obtain maximal Betti numbers
within the class.

The proof of the fact that the algebra we construct has m-times the WLP
is based on a slight generalization of the description given by A. Wiebe in
[38] of the Artinian algebras with the WLP which are the quotients of the
polynomial ring by a strongly stable ideal.

In Section 4 we show first that the algebra we construct has maximal
Betti numbers among algebras with a given Hilbert function and m-times
the WLP. For this the choice of the lex-segment ideal is needed, but again
it is not the only way to obtain such an algebra. In the second part of this
section we give a complete description of the Artinian algebras with given
Hilbert function, m-times the WLP and maximal Betti numbers within this
class. The last part of this section is dedicated to the rigidity property of
these algebras. More precisely, if the upper bound is reached by the ith
Betti number, then it is reached also by the kth Betti number, for all k > i.

In the last section of Chapter 2 we show that, by slightly modifying our
construction, we can obtain an ideal whose components of low degree define
a radical ideal. To do this we will use some particular type of distraction
matrix.

Let I0 be a monomial ideal of R = k[x, y], with dimk(R/I0) finite. We
will study in the third chapter the set of ideals V (I0) that have I0 as initial
ideal with respect to the degree reverse-lexicographic term order. This set
has a natural structure of affine variety, in the sense that an ideal I ∈ V (I0)
can be considered as a point in the affine space AN . The coordinates are
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given by the coefficients of the non-leading terms in the reduced Gröbner
basis of the ideal I. These varieties play an important role in the study of
Hilbert schemes.

It is known by results of J. Briançon [9] and A. Iarrobino [29] that V (I0)
is actually an affine space, for I0 ⊂ R. This fact is also a consequence of
general results of A. Bialynicki-Birula [4, 5] on smooth varieties with k∗-
actions. In the main result of this chapter we give a parametrization of the
ideals in V (I0) when I0 is a lex-segment. This explicit description of the
affine space structure is obtained by associating to each ideal a canonical
Hilbert-Burch matrix. We will see that the coordinates of the affine space
AN will correspond to coefficients of polynomials in k[y]. This way we will
be able to find also an explicit formula for the dimension of V (I0).

In Section 3 we will consider ideals of the polynomial ring in three vari-
ables, S = k[x, y, z]. Let J0 ⊂ S be a monomial ideal. It is known that
the affine variety V (J0) is in general not an affine space (see [8], [17]). We
will assume that J0 = I0S, with I0 a monomial lex-segment ideal of k[x, y],
and parametrize the variety V (J0). This will be an affine space of the same
dimension as V (I0).

In the last section we come to study the Betti strata of V (J0), with
J0 ⊂ S as above. We obtain, as predicted by A. Iarrobino in [30], a gener-
alization to codimension two punctual schemes in P2 of [30, Theorem 2.18].
We will see that V (J0) is dense in G(H), where H is the Hilbert series of
S/J0 and G(H) is the variety that parametrizes graded homogeneous ideals
of S for which the Hilbert series of S/I is H.

In the appendix we present a program written in the Computer Algebra
system CoCoA [15] which computes parametrizations in the case of poly-
nomial rings in two variables. Many of the results and examples in this
thesis were discovered, suggested and double-checked by computer algebra
experiments performed with CoCoA.
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Chapter 1

Straightening Laws

The notion of algebra with straightening laws (ASL) was introduced by C.
De Concini, D. Eisenbud and C. Procesi in [21]. These algebras give an
unified treatment of both algebraic and geometric objects that have a com-
binatorial nature. The coordinate rings of some classical algebraic varieties
(such as determinantal rings and Pfaffian rings) are an example of ASL’s.
For more details on ASL’s consult the book of W. Bruns and U. Vetter
[14]. In [10], W. Bruns introduces the concept of module with straightening
laws (MSL) over such algebras. One interesting question regarding ASLs
is whether their Veronese algebras still have a structure of algebra with
straightening laws. In this chapter we will show that the Veronese modules
of the polynomial ring R = K[x1, . . . , xn] are MSLs over the Veronese alge-
bra R(d). For small values of n and d, in [26], [27], [28] and [37] T.Hibi and
K. Watanabe have some partial results regarding the ASL structure of the
Veronese algebra of the polynomial ring. The fact that this algebra is still an
ASL was proved for any n and d by A. Conca in [16]. In the second section
we will also give an upper bound for the rate of a finitely generated MSL. In
the third part we prove in some particular case that the Veronese Algebra of
an ASL is still an ASL and we discus the combinatorial problem behind this
question. The last section of this chapter is dedicated to a combinatorial
construction for posets of rank ≤ 3 that could support an ASL structure of
the Veronese algebra.

1.1 Preliminaries

Let us summarize the basic definitions and terminology that we will use
later on.
Throughout this chapter we will consider only finite partially ordered sets
(posets). Let P be a poset and let C : α1 < . . . < αt be a chain in P , (i.e. a
totally ordered subset of P ). The length of C, will be the cardinality of the
set C. A poset is called pure if all its maximal chains have the same length.
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The rank of a poset P , denoted by rank(P ) is the supremum of the lengths
of all chains contained in P . The height of an element α ∈ P , denoted ht(α)
is

ht(α) = sup{length of chains descending from α} − 1.

Given a natural number m ≥ 1, a m-multichain in P is a weakly increasing
sequence of m elements of P : α1 ≤ . . . ≤ αm.
A poset ideal of P is a subset I such that if α ∈ I, β ∈ P and β ≤ α then
β ∈ I.

Let k be field, A be a ring and P ⊂ A be a poset. We call a monomial a
product of the form α1α2 . . . αt where αi ∈ P, ∀ i. A monomial α1α2 . . . αt

is called standard if α1 ≤ α2 ≤ . . . ≤ αt. We will use the definition of an
ASL which is also used by the author in [10]. This definition is given for
graded k-algebras, but one can define an ASL also in the non-graded case
(see, for instance, [25]).

Definition 1.1. Let A be a k-algebra, and P ⊂ A a finite poset. We
say that A is a (graded) algebra with straightening laws on P over k if the
following conditions are satisfied:

(ASL 0) A =
⊕

i≥0 Ai is a graded k-algebra such that A0 = k, P consists
of homogeneous elements of positive degree and generates A as a k-
algebra.

(ASL 1) The set of standard monomials is a basis of A as a k-vector space.

(ASL 2) (Straightening Laws) If α and β are incomparable (written α '∼ β) and
if

αβ =
∑

riγi1γi2 . . . γiti , (1.1)

where 0 '= ri ∈ k and γi1 ≤ γi2 ≤ . . . is the unique linear combination
of standard monomials given by (ASL 1), then γi1 < α and γi1 < β
for every i.

When P ⊂ A1 we say that A is a homogeneous ASL over P .

Note that in (1.1) the right-hand side can be equal to 0, but that, even
though 1 is a standard monomial, no γi1γi2 . . . γiti can be 1. These relations
are called the straightening laws (or straightening relations)of A.

An ASL A on P , can be presented as k[P ]/I, where k[P ] is the polyno-
mial ring whose variables are the elements of P and I is the homogeneous
ideal generated by the straightening laws. Denote by IP the monomial ideal
of k[P ] generated by the incomparable pairs of variables. A linear extension
of (P,<) is a total order <1 on P such that α < β implies α <1 β, for any
α, β ∈ P . When A is a homogeneous ASL on P and τ is the reverse lexico-
graphic term order with respect to a linear extension of <, the polynomials
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given in (ASL 2) form a Gröbner basis of I and inτ (I) = IP . The algebra
k[P ]/IP is an ASL on P and it is called the discrete ASL.

The discrete ASL over a poset P can be seen also as the Stanley-Reisner
ring of the simplicial complex ∆P , where ∆P is the simplicial complex whose
vertices are the elements of P and whose facets are the maximal chains of P .
This is a useful remark, as it allows one to compute the Hilbert function of
any ASL on P by looking at the f -vector of ∆P .

The following proposition is easy to check, but nevertheless very useful:

Proposition 1.2. Let A be an ASL on P over k, and H ⊂ P a poset ideal
of P . Then the ideal HA is generated as a k-vector space by the standard
monomials containing a factor α ∈ H, and A/HA is an ASL on P \ H
(where P \ H is embedded in A/HA in a natural way).

This proposition allows one to prove results on ASLs using induction on
the cardinality of P . Also the ASL structure in many examples is estab-
lished this way.

The notion of ASL has a natural generalization to modules in the fol-
lowing sense: For M , a module over an ASL A, we want the generators
of M to be partially ordered, a distinguished set of ”standard elements”
should form a k-basis of M and the multiplication A × M −→ M should
satisfy a straightening law similar to the straightening law of A. We have
the following definition, due to W. Bruns:

Definition 1.3. Let A be an ASL on P over k. And A-module M is called
module with straightening laws on a finite poset Q ⊂ M if the following
conditions are satisfied:

(MSL 1) For every x ∈ Q there exists a poset ideal I(x) ⊂ P such that the
elements

α1α2 . . . αix, with α1 /∈ I(x), α1 ≤ α2 ≤ . . . ≤ αi, i ≥ 0,

form a basis of M as a k-vector space. These elements are called
standard elements.

(MSL 2) For every x ∈ Q and α ∈ I(x) one has

αx ∈
∑

y<x

Ay. (1.2)

An MSL on a poset Q over a homogeneous ASL A is called homogeneous
if it is a graded A-module in which Q consists of elements of degree 0.

From (MSL 1) and (MSL 2) it follows immediately, by induction on the
rank of x, that each element αx with α ∈ I(x) has a standard representation

αx =
∑

y<x

( ∑
rαxµyµ

)
y, with 0 '= rαxµy ∈ k,
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in which every µy is a standard element.

Remark 1.4. (a) If M is an MSL on a poset Q and if Q′ ⊂ Q is a poset
ideal, then the submodule of M generated by Q′ is an MSL, too. This allows
one to prove theorems on MSLs by noetherian induction on the set of ideals
of Q.
(b) In the definition of MSL it would have been enough to require that
the standard elements are linearly independent, because (MSL 2) and the
induction principle above guarantee that M is generated as a k-vector space
by the standard elements.

Given a graded k-algebra A =
⊕

i≥0 Ai, and d ≥ 2 a natural num-
ber, the d-Veronese algebra of A will be: A(d) =

⊕
i≥0 Adi. For every

d ≥ 2 one can consider for every 0 ≤ j ≤ d − 1 the jth Veronese module:
M (d)

j =
⊕

i≥0 Adi+j . The module M (d)
j is obviously a A(d) module.

The polynomial ring in n variables R = K[x1, . . . , xn] has an ASL struc-
ture by taking x1, . . . , xn as generators and the order: x1 ≤ . . . ≤ xn. In
[16], A. Conca proves that the Veronese algebra of the polynomial ring is
still an ASL. The monomials in n variables of degree d are a natural choice
for the generators of R(d). Unfortunately, already when n = 2 and d = 3,
one cannot give a partial order on {x3

1, x
2
1x2, x1x2

2, x
3
2} in order to obtain an

ASL structure for k[x1, x2](3). The main theorem in [28] of T. Hibi shows
that neither k[x1, x2, x3](3) can be given an ASL structure with respect to
its semigroup presentation.

In order to find an ASL structure for R(d) one has to proceed as follows:
For i = 1, . . . , n and j = 1, . . . , d, take %i,j to be generic linear forms such
that for any j1, . . . , jn ∈ {1, . . . , d} the linear forms %1,j1 , . . . , %n,jn are lin-
early independent.
Take as generators of R(d) all products %s11 . . . %sdd with the property that∑i=d

i=1 si ≤ n− d + 1.
Order these generators as follows: %s11 . . . %sdd ≤ %t11 . . . %tdd if and only if
si ≤ ti for every i.

Denote by H(d) = {1, . . . , n}d and order its elements component-wise,
i.e. (α1, . . . , αd) ≤ (β1, . . . , βd) ⇐⇒ αi ≤ βi, ∀ i. Denote by Hn(d) the
subposet of H(d) of elements of height ≤ n, that is

Hn(d) = {(α1, . . . , αd) ∈ H(d)|
∑

i

αi ≤ n + d− 1}.

The ASL structure of R(d) described above is an ASL structure on Hn(d).
For more details see [16].
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Here is the Hasse diagram of this poset for d = 2 and d = 3, when n = 3.

! 1

! 2

! 3

P

!
!

!
!

!
!

"
"
"
"
"
"

"
"
"

!
!

!

! 11

! 12!21

! 31 ! 22 ! 13

P (2) = H3(2)

! 111

! 112 ! 121 ! 211

! 113 ! 122 ! 212 ! 131 ! 221 ! 311

P (3) = H3(3)

#
#

#

$
$

$

%
%

%
%%

&
&

&
&&

%
%

%
%%

"
"
"

&
&

&
&&

''''''

$
$

$

A useful remark is that the 2nd Veronese algebra of the polynomial ring
R has a ASL structure also with the usual monomials as generators. If
we start with x1 < x2 < . . . < xn, we order the degree two monomials as
follows:

xixj ≤ xkxl ⇐⇒ xi ≤ xk and xj ≥ xl.

The straightening laws will be:
If xixj '∼ xkxl, rearrange the indexes i, j, k, l in increasing order, say i1 ≤
j1 ≤ k1 ≤ l1. ({i, j, k, l} = {i1, j1, k1, l1} as multi-sets) and define:

(xixj)(xkxl) = (xi1xl1)(xj1xk1).

It is easy to see that (xi1xl1)(xj1xk1) is a standard monomial. Also one
can easily check that these relations are exactly the relations of the second
Veronese algebra. In this case the new poset is Z2(P ) (see Section 3 for
definition), but it is also isomorphic to Hn(2).
For example if n = 3 the poset will look like this:

#
#

#
#

#
#

$
$

$
$

$
$

$
$

$

#
#

#

! x1x3

! x1x2
! x2x3

! x2
1

! x2
2

! x2
3

and the straightening laws are:

(x1x2)(x2x3) = (x1x3)(x2
2),

(x1x2)(x2
3) = (x1x3)(x2x3),

(x2x3)(x2
1) = (x1x3)(x1x2),

(x2
i )(x

2
j ) = (xixj)2,

where i '= j, with i, j ∈ {1, 2, 3}.
In [26, Example c)], the authors give an explicit ASL structure over

H3(3) of k[x, y, z](3).
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1.2 The Veronese Module has a MSL Structure
over R(d)

In this section we will prove that the Veronese modules have a structure of
MSLs as R(d)-modules.

Let j ∈ {0 . . . d−1} and consider the same generic linear forms that give
the ASL structure of R(d). Choose as generators of M (d)

j the products of the
form:

%i11 · · · %ijj , with i1 + . . . + ij ≤ n + j − 1.

Order them component-wise, just as in the case of the Veronese algebra of
R. So the poset will be in this case Hn(j).

To simplify notation, we will denote the generators of R(d), respectively
the generators of M (d) by:

fα1...αd := %α11 . . . %αdd , ∀ (α1, . . . , αd) with
∑

i αi ≤ n + d− 1,

gi1...ij := %i11 . . . %ijj , ∀ (i1, . . . , ij) with
∑

k ik ≤ n + d− 1.

The fact that the gi1...ij ’s generate M (d)
j follows from the fact that R(d) is

generated as an algebra by the fα1...αd-s for every d.
To every such generator we associate a poset ideal of Hn(d) as follows:

I(gi1...ij ) = {fα1...αd | (α1, . . . , αj , . . . , αd) '≥ (i1, . . . , ij , 1, . . . , 1)}.

It is very easy to see that I(gi1...ij ) is a poset ideal for any gi1...ij . We will
prove the following:

Theorem 1.5. Let R = K[x1, . . . , xn] be the polynomial ring in n variables.
For every d ≥ 2 and for every j ∈ {0, . . . , d − 1}, the jth Veronese module
M (d)

j is a homogenous MSL on Hn(j) over R(d) with the structure defined
above.

Proof. If j = 0 then M (d)
0 = R(d) as R(d)-modules. In this case, we have a

trivial MSL structure over the poset Q = {1}, with I(1) = φ (see [11]). So
we will suppose from now on that j ≥ 1.

In order to prove that we have an MSL structure for M (d)
j we have to

check the following:

1. ∀ gi1...ij and ∀ fα1...αd ∈ I(gi1...ij ) we have:

fα1...αd · gi1...ij ∈
∑

gk1...kj
<gi1...ij

R(d) · gk1...kj .

2. The standard elements are linearly independent over k.
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To prove 1. let us take gi1...ij for some (i1, . . . , ij) ∈ Hn(j) and some
fα1...αd ∈ I(gi1...ij ). This means that (α1, . . . , αd) '≥ (i1, . . . , ij , 1, . . . , 1). So
there exists an index s ∈ 1, . . . , j such that αs < is. We have:

fα1...αd · gi1...ij = %α11 . . . %αdd · (%i11 . . . %ijj)

= %α11 . . . %iss . . . %αdd · (%i11 . . . %αss . . . %ijj)

= %α11 . . . %iss . . . %αdd · gi1...,αs,...ij .

As αs < is we also have that gi1...,αs,...ij < gi1...ij . So 1. is true.

As all standard elements are homogeneous polynomials, in order to prove
the second part, we only have to look at linear combinations of standard
elements of the same degree.
Let F be a linear combination of standard elements of degree md + j:

F =
∑

λµgi1...ij ,

where not all λ ∈ k are zero and every µ = fα11...α1d · . . . · fαm1...αmd

is a standard monomial in R(d) with fα11...α1d /∈ I(gi1...ij ). In particular
(α11, . . . , α1j , . . . , α1d) ≥ (i1, . . . , ij , 1, . . . , 1) for all gi1...ij .

If F = 0 then also F · %1j+1 . . . %1d = 0. But for all gi1...ij we have

gi1...ij · %1j+1 . . . %1d = fi1...ij1...1.

As fi1...ij1...1 ≤ fα11...α1d ≤ · · · ≤ fαm1...αmd we have that

F · %1j+1 . . . %1d =
∑

λfi1...ij1...1fα11...α1d . . . fαm1...αmd = 0

is a linear combination of standard monomials in R(d). So, as the standard
monomials form a k-basis, all the coefficients λ must be zero.

As R(d) is a homogenous ASL, M (d)
j is a graded R(d)-module, and we

chose generators of degree 0 for M (d)
j , by definition we obtain a homogenous

MSL.

As a consequence of the homogeneous MSL structure, by [13, Theorem
1.1], we have as a corollary the following result, which was proved by A.
Aramova, S. Bǎrcǎnescu, J. Herzog in [1, (Theorem 2.1)]:

Corollary 1.6. The R(d)-module M (d)
j has a linear resolution for every

j ∈ {0, . . . , d− 1}.

From [11, (2.6)] we have in general, for any ASL A (not necessarily
homogeneous) on a poset P and a MSL M on a poset Q over A, we know
there exists a filtration of M :

0 = M0 ⊂ M1 ⊂ . . . ⊂ Mr = M,
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with Ml+1/Ml
∼= A/AI(q), for some q ∈ Q. The modules Ml are actually

the A-modules generated by q1, . . . , ql, where q1 ≤ q2 ≤ . . . ≤ qr are all the
elements of Q ordered by a linear extension of the partial order on Q. Using
this filtration and the fact that AI(q) is a MSL over A (see [11, Example
3.1]), we are able to prove the following:

Proposition 1.7. Let A be an ASL on P over k and M be a MSL on Q over
A. Denote by d = max{deg(p) | p ∈ P} and by m = max{deg(q) | q ∈ Q}.
We have:

βi,j(M) = 0, for all i, j with j − i ≥ i(d− 1) + m + 1.

Where βi,j(M) denote the graded Betti numbers of M as an A-module.

Proof. We will prove this using induction on i and on the cardinality of the
poset Q. If i = 0 everything is clear. We will see in the proof that the case
when the cardinality of Q is 1 follows only from induction on i.

Let i > 0 and 0 < l < r. Suppose the assumption holds for i − 1 for
any poset and for i if the poset has cardinality less than l. In order to make
the following exact sequence homogenous, we have to twist A/AI(ql) by the
degree of ql:

0 −→ Ml−1 −→ Ml −→ Ml/Ml−1
∼= A/AI(ql)(−deg(ql)) −→ 0.

So we obtain the exact sequence:

TorA
i (Ml−1, k)j −→ TorA

i (Ml, k)j −→ TorA
i (A/AI(ql)(−deg(ql)), k)j .

From the short exact sequence

0 −→ AI(ql) −→ A −→ A/AI(ql)(−deg(ql)) −→ 0

we obtain that:

TorA
i (A/AI(ql)(−deg(ql)), k)j = TorA

i−1(AI(ql)(−deg(ql)), k)j ,

(this is why the case (Q = 1 follows only from induction on i). From
[11, Example 3.1] we know that AI(ql) is an ASL on the subposet I(ql) ⊂
P . So by induction on i we get that TorA

i (A/AI(ql)(−deg(ql)), k)j = 0,
if j − deg(ql) − (i − 1) ≥ (i − 1)(d − 1) + d + 1, which is equivalent to
j − i ≥ i(d− 1) + deg(ql) + 1, so as deg(ql) ≤ m we obtain:

TorA
i (A/AI(ql)(−deg(ql)), k)j = 0, if j − i ≥ i(d− 1) + m + 1.

To the left of TorA
i (Ml, k)j , by induction on the cardinality of the poset,

we have that:

TorA
i (Ml−1, k)j = 0, if j − i ≥ i(d− 1) + m + 1

and this concludes the proof.
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In [3], J. Backelin introduced, for any homogenous k-algebra A, a nu-
merical invariant called the rate of A. This invariant measures how much A
deviates from being Koszul. In [1], the authors define a new notion of rate
for any finitely generated A-module. As TorA

i (M,k) is a finitely generated
k-vector space, one can set:

ti(M) := sup{j | TorA
i (M,k)j '= 0}.

Then they define the rate of M as:

rateA(M) := sup
i≥1

{ti(M)/i}.

Note that ti(M) is the highest shift in the ith position of the minimal free
homogenous resolution of M . With this definition, Proposition 1.7 has the
following corollary:

Corollary 1.8. If M is a MSL over the ASL A, with the above notations
we have:

rateA(M) ≤ d + m.

1.3 The Veronese algebra of an ASL

An interesting question about ASLs is whether the Veronese algebra of an
ASL is still an ASL. We have seen that so far the only known case is that of
the polynomial ring and the complicated structure of its Veronese algebra
as an ASL indicates that this question does not have an easy answer.

Let us first see what we should be looking for. Given A an ASL on P
over k, we want to find poset P (d) such that A(d) has an ASL structure on
P (d) over k. Using the algebraic properties of A(d) and translating them into
combinatorial properties of a poset that would support its ASL structure (if
there is one), we can outline the properties that a possible P (d) should have.
Here are some known facts about ASLs:

1. If A is an ASL on a poset P over k and A is integral then P has an
unique minimal element.

2. The Krull dimension of A is equal to the rank of P .

3. The Hilbert function of a homogeneous ASL A on P can be computed
directly from the poset P in the following way:

dimk(Ai) = ({multichains of length i in P}.
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The first property is true because if P would have two different minimal
elements, say α and β, then (ASL 2) forces αβ = 0. For a proof of the
second property see the book of W. Bruns and U. Vetter [14, (5.10)]. The
third remark is the immediate consequence of the fact that the standard
monomials (which correspond to the multichains of P ) generate A as a k-
vector space.

As the Veronese algebra of an integral algebra is again integral, as we
know that dimKrull(A) = dimKrull(A(d)) and as A(d)

i = Adi by definition, a
possible candidate for P (d) should have the following properties:

1. If P has a unique minimal element, so should P (d).

2. rank(P ) = rank(P (d)).

3. # {md-multichains in P} = #{m-multichains in P (d) } for all m ≥ 1.

A poset construction with the above properties that works for every poset
is not known to us.

A construction that has properties 2. and 3. is the Zig-Zag poset. Let
P = {α1, . . . , αn} be a poset. Given d ≥ 2 a natural number, one can define:

Zd(P ) := {(αi1 , . . . , αid) | αj ∈ P, ∀ j and αi1 ≤ . . . ≤ αid}

and say that:

(αi1 , . . . , αid) ≤ (βi1 , . . . , βid) ⇐⇒ αi1 ≤ βi1 ,
and αi2 ≥ βi2 ,
and αi3 ≤ βi3 ,
and αi4 ≥ βi4 ,

. . . etc.

The correspondence between the sets of md-multichains of P and the set
of m-multichains in P (d) can be seen easily in the following picture. Suppose
m = 3 and d = 4:

α1 ≤ β1 ≤ γ1∧
\

∧
\

∧
\

α2 ≥ β2 ≥ γ2∧
\

∧
\

∧
\

α3 ≤ β3 ≤ γ3∧
\

∧
\

∧
\

α4 ≥ β4 ≥ γ4

The md-multichain of P that can be associated to the d-multichain of Zd(P ),
α ≤ β ≤ γ is: α1 ≤ β1 ≤ γ1 ≤ γ2 ≤ β2 . . . ≤ γ3 ≤ γ4 ≤ β4 ≤ α4. The other
way around should also be clear now. So Zd(P ) satisfies 3. It is very easy
to see also that it satisfies 2. Unfortunately 1. is almost never satisfied, in
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the sense that if d ≥ 3 then we always have at least two minimal elements.
The only case in which Zd(P ) satisfies also 1. is when d = 2 and P has also
a unique maximal element.

Let us first fix some more poset terminology. Let P be a poset and α, β ∈
P . Whenever the right-hand side exists, we use the following notation:

α ∧ β := sup{m ∈ P |m ≤ α and m ≤ β},

α ∨ β := inf{M ∈ P |M ≥ α and M ≤ β}.

When these elements exist, they are called greatest lower bound or infi-
mum, respectively lowest upper bound or supremum.
A poset P in which for any two α, β ∈ P , the elements α∧β and α∨β exist
is called a lattice.
A lattice P is called distributive if the operations defined by ∧ and ∨ are
distributive to each other. In other words, if for any α, β, γ ∈ P we have:

α ∧ (β ∨ γ) = (α ∧ β) ∨ (α ∧ γ) and
α ∨ (β ∧ γ) = (α ∨ β) ∧ (α ∨ γ).

Another interesting problem related to ASL is to give a description of
integral posets. We say that a poset P is integral if there exists an ASL on
P that is a integral algebra. We have seen that a necessary condition for
P is to have a unique minimal element. In [25], T. Hibi shows that every
distributive lattice is integral. He constructs for any distributive lattice P
an ASL that is integral as an algebra, which is now called the Hibi ring.
The generators of this k-algebra are the vertices of the lattice P and the
straightening laws are the so called Hibi relations:

αβ = (α ∧ β)(α ∨ β), ∀ α '∼ β ∈ P.

We will show the following:

Proposition 1.9. Let P be a distributive lattice and A be the ASL on P
given by the Hibi relations. Then A(2) is an ASL over Z2(P ) with the fol-
lowing structure: the vertices of Z2(P ) are the standard monomials of degree
2 in A and the straightening laws are:

(αβ)(γδ) = [(α ∧ γ)(β ∨ δ)][((α ∧ δ) ∨ (β ∧ γ))((α ∨ δ) ∧ (β ∨ γ))], (1.3)

∀ α, β, γ, δ ∈ P, with α ≤ β, γ ≤ δ and αβ '∼ γδ.

In many cases the right hand side can be presented in a shorter form,
but this presentation has the advantage to include all cases. For example,
if the set {α, β, γ, δ} is totally ordered, but (αβ) '∼ (γδ), then it is easy to
check that (1.3) gives us:

(αβ)(γδ) = (α0δ0)(β0γ0),
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where α0 ≤ β0 ≤ c0 ≤ δ0 and {α, β, γ, δ} = {α0, β0, γ0, δ0} as multi-sets.
Also if α ∨ γ and β ∧ δ are comparable, then (1.3) is actually:

(αβ)(γδ) = [(α ∧ γ)(β ∨ δ)][(α ∨ γ)(β ∧ δ)].

Proof. We have to check first that the structure described above is an ASL
structure and second that this ASL is A(2).

The fact that the standard monomials in Z2(P ) are the standard mono-
mials in P of even degree is clear from the correspondence between m-
multichains in Z2(P ) and 2m-multichains in P . So (ASL 1) is satisfied.

To check (ASL 2) we have to check that:

1. (α ∧ γ)(β ∨ δ) and ((α ∧ δ) ∨ (β ∧ γ))((α ∨ δ) ∧ (β ∨ γ)) are actually
vertices in Z2(P ), (that is multichains of length 2 in P ),

2. that the right-hand side is a standard monomial in Z2(P ), that is:
(α ∧ γ)(β ∨ δ) ≤ ((α ∧ δ) ∨ (β ∧ γ))((α ∨ δ) ∧ (β ∨ γ)),

3. (α ∧ γ)(β ∨ δ) ≤ (αβ) and (α ∧ γ)(β ∨ δ) ≤ (γδ).

Here is a picture of the elements of P that we are interested in and the
relations between them:

(
(

(
(

(
(

&
&&

%
%%

(
(

(
(

(
(

)
)

)
)

)
)

)
)

)
)

)
)

%
%%

&
&&

%
%%

&
&&

&
&&

%
%%

!α ∧ δ

!α

!β

!β ∨ γ

!
α ∧ γ

!
A

!B
!β ∨ δ

!β ∧ γ

!γ
!δ
!α ∨ δ

A = (α ∧ δ) ∨ (β ∧ γ)

B = (β ∨ γ) ∧ (α ∨ δ)

To check the first point, we will show how this straightening law came
up. Suppose that, like in the above picture, α '∼ γ and β '∼ δ. Notice that
this is not a restriction, as αγ = (α ∧ γ)(α ∨ γ) also when α and γ are
comparable. We use the Hibi relations in A to ”straighten” αγ and βδ. It is
easy to see that α ∧ γ ≤ β ∨ δ. The problem is that α ∨ γ and β ∧ δ are not
always comparable, which means (α∨ γ)(β ∧ δ) is not an element of Z2(P ).
Suppose they are not comparable. We ”straighten” also this product using
the Hibi relations. So we get the following:

(α ∨ γ)(β ∧ δ) = [(α ∨ γ) ∧ (β ∧ δ)][(α ∨ γ) ∨ (β ∧ δ)].

Now we just have to show that the first element on the right hand side is
A and the second one B. Just by using the distributivity and the fact that
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α ≤ β and γ ≤ δ we get:

(α ∨ γ) ∧ (β ∧ δ) = [(β ∧ δ) ∧ α] ∨ [(β ∧ δ) ∧ γ]
= [δ ∧ α] ∨ [β ∧ γ]
= A.

(α ∨ γ) ∨ (β ∧ δ) = [(α ∨ γ) ∨ β] ∧ [(α ∨ γ) ∨ δ]
= [γ ∨ β] ∧ [α ∨ δ]
= B.

So AB is also a standard monomial and the law that we gave is actually a
relation in A.

To prove 2. we just have to look at the drawing and notice that as

α ∧ γ ≤ α ∧ δ and α ∧ γ ≤ β ∧ γ,

we get that α ∧ γ ≤ A. Using the same way of reasoning we also get that
β ∨ δ ≥ B, so 2. holds.
The third point is also immediate.

The straightening laws that we have given can be divided in two types:

• Straightening laws in A, when {α, β, γ, δ} is not totally ordered,

• Veronese type relations which are 0 when seen as elements of A, when
{α, β, γ, δ} is totally ordered.

As exactly these are also the relations that define A(2), we can conclude that
the ASL we have constructed is actually A(2).

1.4 A poset construction in dim ≤ 3

Let P be a poset of rank 3, pure and with unique minimal element µ0. Also
let d ≥ 2 be a natural number. We will construct a poset P (d) that has the
combinatorial properties required in the previous section.

Take as the set of vertices of P (d) the d-multichains in P . Let α =
(α1, . . . .αd) and β = (β1, . . . .βd) be two such multichains with α1 ≤ . . . ≤ αd

and β1 ≤ . . . ≤ βd. For each multichain α we define:

v(α) := (ht(α1), ht(α2)− ht(α1), . . . , ht(αd)− ht(αd−1)).

We say that α ≤ β if the following hold:

1. {a1, . . . .αd, β1, . . . .βd} is totally ordered and

2. v(α) ≤ v(β) component-wise.
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In general, for a vector v = (v1, . . . , vn) denote by |v| :=
∑i=n

i=1 vi. In our
case, the fact that P has rank 3 implies that for every d-multichain α ,
|v(α)| ≤ 2. It is easy to see that if α < β, then |v(α)| < |v(β)|. Also the
only d-multichain αmin with |v(αmin)| = 0 is αmin = (µ0, . . . , µ0), and for
all other d-multichains β we have αmin ≤ β.
If rank(P ) ≤ 3, this is a partial order. Antisymmetry and reflexivity are
obvious. To check transitivity it is enough to suppose that all inequalities
are strict. So let α, β, γ be d-multichains such that α < β and β < γ. Then
we also have |v(α)| < |v(β)| and |v(β)| < |v(γ)|. As |v(α)|, |v(β)|, |v(γ)| ∈
{0, 1, 2} this implies |v(α)| = 0, so α = αmin < γ.
This proof obviously depends on the fact that the rank of P is 3. More than
that, this is in general not a partial order for rank(P ) > 3.

We have seen that P (d) has a unique minimal element, αmin. It is also
easy to check that rank(P (d)) = rank(P ). We actually have ht(α) = |v(α)|.

For a natural number m and a poset P , denote Mm(P ) := {m-multichains
in P}. For a m-multichain α in P denote by suppP (α) the set of vertices
that appear in α. If α is a multichain in P (d) then by suppP (α) we denote
the set of vertices of P that appear in all the d-multichains that α is made
of.

To check that also # Mmd(P ) = #Mm(P (d)) for all m ≥ 1 we have to
make the following two remarks:

1. If P0 = {0, 1, 2} with the natural order, then P (d)
0
∼= H3(d).

2. There exists a bijection, say:

fP0,d : Mmd(P0) −→ Mm(P (d)
0 ),

such that for any α ∈ Mmd(P0) we have suppP0
(α) = suppP0

(f(α)).

The isomorphism of posets in (1.) is given by:

α = (α1, . . . , αd) /−→ v(α) = (α1, α2 − α1, . . . , αd − αd−1),

the inverse of it being:

H3(d) 0 v = (v1, . . . , vd) /−→ (v1, v1 + v2, . . . ,
i=d∑

i=1

vi).

We know that Mmd(P0) and Mm(P (d)
0 ) have the same cardinality for ev-

ery m. A bijection f as in (2.) exists because for every subposet of Q ⊂ P0 we
have that Q(d) is a subposet of P (d)

0 . This is again only true for rank(P ) ≤ 3.
So we can construct f step by step, starting with #(supp(α)) = 1.
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Any poset P can be seen as the union of its maximal chains. This union is
not disjoint, but the construction of P (d) can be done on each such maximal
chain C and then P (d) will be the union of C(d).
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Now we define F : Mmd(P ) −→ Mm(P (d)) as follows: Take α ∈ Mmd(P ).
We now that there is at least one maximal chain C such that supp(α) ⊆ C.
Choose one such C and define:

F (α) := fC,d(α) ∈ C(d) ⊂ P (d).

From the observations above we can see that F (α) does not depend on the
choice of C. If we take another C ′ '= C such that supp(α) ⊆ C ′, then
supp(α) ⊂ C ∩ C ′. So fC,d(α) = fC′,d(α) ∈ C(d) ∩ C ′(d). The function we
defined is bijective because it has an inverse F−1 : Mm(P (d)) −→ Mmd(P )
defined by:

F−1(β) := f−1
C,d(β) ∈ C ⊂ P,

where C ⊂ P is a maximal chain such that β ∈ C(d). The same arguments
as above tell us that also F−1 is well defined.





Chapter 2

Lefschetz Property

The weak Lefschetz property (WLP) is an important property of Artinian
algebras and it has been recently studied by several authors. The m-times
WLP is just a very natural generalization of it. For an overview of the main
results achieved so far regarding this topic see [22], [33]. One interesting
problem is the description of the Hilbert function of Artinian algebras hav-
ing the WLP. In [22] the authors give a complete characterization of these
Hilbert functions. First they make the remark that if and Artinian algebra
has the WLP, then its Hilbert function must be a weak Lefschetz O-sequence
in the sense of definition 2.2 and then they construct an Artinian algebra
with the WLP for each weak Lefschetz O-sequence. In this chapter we ex-
tend this characterization to Artinian algebras with m-times the WLP and
we construct, in a more algebraic fashion, an algebra for each m-times weak
Lefschetz O-sequence. We also answer a few natural questions regarding the
Betti numbers of these algebras.

2.1 Preliminaries

Let K be an infinite field of characteristic 0 and let A =
⊕

d≥0 Ad be a
homogeneous K-algebra, that is an algebra of the form R/I, where R is the
polynomial ring in n variables K[x1, . . . , xn] and I is a homogeneous ideal.
We will denote hd(A) = dimK(Ad) and by h(A) the Hilbert function of A.

Definition 2.1. We say that an Artinian algebra A has the weak Lefschetz
Property (WLP) if there exists % ∈ A1 such that the multiplication
×% : Ad−→ Ad+1 has maximal rank for every d ≥ 1.
Such an element % is called a weak Lefschetz Element (WLE) for A.

We say that A has m-times the weak Lefschetz Property (m ∈ N) if there
exist %1, . . . , %m ∈ A1 such that %1 is a WLE for A and %i is a WLE for
A/(%1, . . . , %i−1),∀ i ∈ 2, . . . ,m.

The following definition uses the notion of O-sequence, which for us will
just mean a sequence of natural numbers that can be the Hilbert function
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of some graded K-algebra. For more details on O-sequences see [34] or
[12, Chapter 4.2].

Definition 2.2. Let h : 1 = h0, h1, . . . , hs be a finite O-sequence.
We say that h is a weak Lefschetz O-sequence if :

- h is unimodal (i.e. h0 < h1 < . . . < hk ≥ hk+1 ≥ . . . ≥ hs for some
k ∈ 0, . . . , s).

- the sequence 1, h1 − h0, . . . , hk − hk−1 is again an O-sequence.

Inductively, we say that h is a m-times weak Lefschetz O-sequence if:

- h is unimodal.

- the sequence 1, h1−h0, . . . , hk−hk−1 is a (m−1)-times weak Lefschetz
O-sequence.

If I ⊂ R is a monomial ideal, the minimal monomial generating set of I
will be denoted by Gens(I). We will use also the following notion:

Definition 2.3. A monomial ideal I ⊂ R is called strongly stable if:
For each monomial M ∈ I and for each variable xk that divides M , we have
( xi

xk
)M ∈ I, ∀ i < k.

It is easy to see that in order to verify if a monomial ideal is strongly
stable, it is enough to verify the condition above only for the monomials in
Gens(I).

To a homogeneous ideal I ⊂ R one can canonically attach the generic
initial ideal of I, Gin(I) with respect to the reverse lexicographic order.
By definition Gin(I) is the initial ideal of I with respect to the reverse
lexicographic order after performing a generic change of coordinates.

For a homogeneous ideal I ⊂ R one can also define the lex-segment
ideal associated to I as follows. In general, for a vector space V of forms
of degree d, one defines the vector space Lex(V ) to be the vector space
generated by the largest dim(V ) forms in lexicographic order. Then, one
defines Lex(I) :=

⊕
d Lex(Id). Macaulay’s theorem on Hilbert functions (see

for instance [12, 36]) guarantees that Lex(I) will actually be an ideal, not just
a graded vector space. One can immediately notice that the construction of
Lex(I) depends only on the Hilbert function of R/I, so for an O-sequence
h we will denote by Lex(h) the lex-segment ideal for which the Hilbert
function of R/Lex(h) is h.

These ideals play a fundamental role in the investigation of many alge-
braic, homological, combinatorial and geometric properties of I itself. We
recall here some of their properties that we will use later.

When passing from an ideal to its generic initial ideal, the Hilbert func-
tion does not change. An important property of the generic initial ideal is
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that, in characteristic zero, it is strongly stable. The following result shows
how the weak Lefschetz property is reflected by the generic initial ideal:

Proposition 2.4. Let I ⊂ R be an ideal such that R/I is an Artinian
algebra. Then R/I has m-times the weak Lefschetz property if and only if
R/Gin(I) has m-times the weak Lefschetz property.

This result can be found for m = 1 in [38]. To see that it holds for
m > 1 one just has to follow the same proof and use [18, Lemma 2.1] for
m linear forms.

The graded Betti numbers of I, Gin(I) and Lex(I) satisfy the following
inequalities (for details, see [19]):

Theorem 2.5. (a) βij(R/I) ≤ βij(R/Gin(I)) ∀ i, j,

(b) βij(R/I) ≤ βij(R/Lex(I)) ∀ i, j.

Recall that a homogeneous ideal I is said to be componentwise linear if
for all k ∈ N the ideal I<k> generated by the elements of degree k in I has
a linear resolution.

Also, I is said to be a Gotzmann ideal if for all k ∈ N the space Ik of forms
of degree k in I has the smallest possible span in the next degree according
to the Macaulay inequality (see [36, Theorem 3.1]), that is dimK R1Ik =
dimK R1Lex(Ik).

Aramova, Herzog and Hibi characterized in [2] the ideals that have the
same Betti numbers as their generic initial ideal as follows:

Theorem 2.6. The following conditions are equivalent:

(a) βij(R/I) = βij(R/Gin(I)) , ∀ i, j;

(b) I is componentwise linear.

Ideals with the same Betti numbers as the lex-segment ideal were char-
acterized by Herzog and Hibi in [24]:

Theorem 2.7. The following conditions are equivalent:

(a) βij(R/I) = βij(R/Lex(I)) , ∀ i, j;

(b) I is a Gotzmann ideal.

The fact that if an Artinian algebra has m-times the WLP, then its
Hilbert function is a m-times weak Lefschetz O-sequence follows immedi-
ately from [22, Remark 3.3]. The unimodality of the Hilbert function is a
consequence of the natural grading of the algebra. This guarantees that if
×%1 : Aj −→ Aj+1 is surjective then ×%1 : Ad −→ Ad+1 is surjective ∀ d ≥ j.
The second part of the definition of a m-times weak Lefschetz O-sequence
is guaranteed by the fact that A/(%) in an algebra with (m − 1)-times the
WLP and with Hilbert function 1, h1 − h0, . . . , hk − hk−1.
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2.2 The construction of R/Wm(h)

Fix h : 1 = h0 < h1 < . . . < hk ≥ hk+1 ≥ . . . ≥ hs a m-times weak
Lefschetz O-sequence. We will denote by ∆h the (m − 1)-times weak Lef-
schetz O-sequence: 1, h1 − h0, . . . , hk − hk−1. Inductively we will denote
∆1h = ∆h and by ∆ih the (m − i)-times weak Lefschetz O-sequence given
by ∆(∆i−1h) for i = 1, . . . ,m.

For every finite O-sequence h0, h1, . . . , hs, 0, 0, . . . with hs '= 0 we will
say that the length of h is s. Returning to our m-times weak Lefschetz
O-sequence we will denote by ki the length of ∆ih for every i = 1, . . . ,m.
Notice that k = k1 ≥ k2 ≥ . . . ≥ km.

We will construct an ideal Wm(h) of R such that R/Wm(h) will be the
algebra we are looking for. We will first construct W1(h), and then use
induction to construct Wm(h) in the general case.

2.2.1 The case m=1

Let n = h1 and consider I0 to be the lex-segment ideal of R′ = K[x1, . . . , xn−1]
with Hilbert function ∆h. Now we define I1 to be the ideal I0R of R. It is
easy to see that the Hilbert function of R/I1 is:

1 = h0, h1, . . . , hk−1, hk, hk, . . . , hk, . . . .

Also, as (x1, . . . , xn−1)k+1 ⊆ I0 , we have that (x1, . . . , xn−1)k+1 ⊆ I1.
So we know that all the monomials of degree ≥ k + 1 in R that are not in
I1 are divisible by xn.

In every degree d we will arrange the monomials of R which are not
in I1 in decreasing reverse lexicographic order. Then we will add to the
generators of I1 the largest monomials in each degree such that we obtain
the right Hilbert function. But we first have to check how the Hilbert func-
tion changes at each step in order to guarantee that this construction can
be done.

Let d0 be the lowest degree in which the Hilbert function of R/I1 differs
from h. As this happens in degree higher than k, we know by the unimodality
of h that hd0(R/I1) > hd0 . So there are ”too many” monomials of degree
d0 that are not in I1.

We define r0 = hd0(R/I1)− hd0 . Let T1 , . . . , Tr0 be the largest (in
reverse lexicographic order) r0 monomials of degree d0 not in I1. Now we
define:

I2 := I1 + (T1 , . . . , Tr0).

We want to show that the Hilbert function of R/I2 is:

1 = h0, h1, . . . , hd0−1, hd0 , hd0 , . . . , hd0 , . . . .
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Obviously the Hilbert function of R/I2 is equal to the one of R/I1 in
degree smaller than d0 and now also in degree d0 it is exactly hd0 .

Denote by Mi,1 , . . . , Mi,ui ∈ R′ the monomials of degree i which are
not in the original I0 (ui will be equal to hi − hi−1). These will be the
monomials on degree ≤ k in the first (n− 1) variables that are not in I1. So
the monomials of degree d > k that are not in I1 are the following:

Mk,1x
d−k
n , . . . , Mk,uk

xd−k
n , . . . , M1,1x

d−1
n , . . . , M1,u1x

d−1
n .

We have T1 = Mk,1xd0−k
n , and let i0 and j0 be the index for which

Tr0 = Mi0,j0x
d0−i0
n (the r0th largest monomial of degree d0 not in I1 ).

After adding to I1 these first r0 monomials, we get that dim((R/I2)d) ≤ hd0

for d > d0.

Suppose there exists a monomial of degree d > d0, Mt,rxd−t
n /∈ I1, with

(t < i0) or (t = i0 and r > j0), i.e. that is not in those first r0 monomials
added to I1, but Mt,rxd−t

n ∈ I2 . As Mt,r /∈ I0, Mt,rxd−t
n must be divisible

by a generator of I2, who itself is divisible by xn. So it must be divisible by
one of Mk,1xd0−k

n , . . . , Mi0,j0x
d0−i0
n .

Let Mi,jxd0−i
n be that monomial. It follows that Mi,j |Mt,r, so i ≤ t. As

i ≥ i0 ≥ t it follows that i = t. So they have the same degree, but r > j0 ≥ j
so they are different and the divisibility can not take place - a contradiction.
So the only monomials that belong to I2 but not to I1 in degree d ≥ d0 are
exactly Mk,1xd−k

n , . . . , Mi0,j0x
d−i0
n .

So we have shown that after adding the necessary monomials to I1 in
the first degree where this is needed (d0), the Hilbert function of the new
algebra R/I2 will become:

1 = h0, h1, . . . , hd0−1, hd0 , hd0 , . . . , hd0 , . . . .

This procedure can be repeated as from degree > k the original weak
Lefschetz O-sequence is decreasing, and after a finite number of steps (at
most s−k) we will obtain a new ideal, which we will denote by W1(h), such
that R/W1(h) has the desired Hilbert function.

So we have constructed a monomial ideal with Hilbert function h and
with the property that (x1, . . . , xn−1)k+1 ⊆ W1(h). We also have that all
the generators which are divisible by xn appear in degree ≥ k + 1 and that
the generators not divisible by xn appear in degree ≤ k + 1.

In order to be able to apply induction we will need to prove the following:

Lemma 2.8. The ideal W1(h) is strongly stable.

Proof. By construction W1(h) is a monomial ideal. Let M ∈ Gens(W1(h))
be a monomial of degree d. We want to prove that xi

M
xj
∈ W1(h),∀ j such

that xj |M and ∀ i < j.
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We distinguish two cases:
1. If xn ' |M , then M could be seen as a monomial of I0 which is the lex-
segment ideal for ∆h. As the lex-segment ideal is strongly stable, we get
that xi

M
xj
∈ I0,∀ j such that xj |M and ∀ i < j.

2. If xn|M , then let j ∈ 1, . . . , n be such that xj |M and let i < j. Then we
have xi

M
xj
≥rev−lex M and so we must have that xi

M
xj
∈ W1(h) by construc-

tion, because we chose as generators the largest monomials in rev-lex order.

2.2.2 The general case

Let m ∈ N, m ≥ 2. Assume we can construct an algebra R′/Wm−1(∆h),
with Hilbert function ∆h, such that Wm−1(∆h) is a strongly stable ideal
of R′ = K[x1, . . . , xn−1] and that (x1, . . . , xn−i)ki+1 ⊆ Wm−1(∆h) for all
i = 2, . . . ,m− 1.

Now we define I1 = Wm−1(∆h)R. The Hilbert function of R/I1 will
be 1 = h0, h1, . . . , hk−1, hk, hk, . . . , hk, . . . and following the method
of adding the needed highest monomials in rev-lex order as in the case of
m = 1, we can construct an ideal Wm(h). The same arguments as in the
case m = 1 prove that the construction can be done, because in that case
we didn’t use the fact that I0 was the lex-segment ideal, we just used the
fact that it was a strongly stable ideal. The choice of I0 as the lex-segment
ideal is needed for obtaining maximal Betti numbers.

In fact, since Wm−1(∆h) is strongly stable, the proof of Lemma 2.1 works
also for proving that Wm(h) is strongly stable.

2.2.3 R/Wm(h) has m-times the WLP

In this section we will show that the algebra we have constructed so far is
actually what we wanted:

Proposition 2.9. R/Wm(h) has m-times the weak Lefschetz Property.

In order to prove this, we will use the following result from [38]:

Lemma 2.10. If I is a strongly stable ideal of R = K[x1, . . . , xn] then:
R/I has the WLP ⇐⇒ xn is a WLE for R/I.

From this result we can deduce the following one:

Lemma 2.11. If I is a strongly stable ideal of R = K[x1, . . . , xn], then the
following are equivalent.

1. R/I has the WLP.

2. (a) h(R/I) is unimodal : h0 < h1 < . . . < hk ≥ hk+1 ≥ . . . ≥ hs,
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(b) (x1, . . . , xn−1)k+1 ⊆ I,

(c) If M ∈ Gens(I) is divisible by xn, then deg(M) ≥ k + 1.

Proof. 1.⇒2. The fact the Hilbert function is unimodal is already known
from [22].
By Lemma 3.3 we know that xn is a WLE for R/I, so the multiplication
×xn : (R/I)d → (R/I)d+1 must be of maximal rank, i.e. injective if d < k
and surjective if d ≥ k. This implies immediately that (x1, . . . , xn−1)d ⊆ I
for d > k.
Suppose that there is a minimal generator M of I, which has degree d < k+1,
and xn|M . Then M

xn
'= 0 in (R/I)d−1 but is taken by the multiplication with

xn to M = 0 in (R/I)d - a contradiction with the injectivity of ×xn.
2.⇒1. We will show that xn is a WLE for R/I. As we have that

(x1, . . . , xn−1)k+1 ⊆ I, it follows that the multiplication by xn is surjec-
tive in degree ≥ k.
Let d < k suppose that there exists a monomial of degree d, M ∈ R and
M /∈ Id, such that xnM ∈ Id+1. This means that xnM is divisible by a
minimal generator G of I. As deg(G) ≤ k, we have that xn ' |G. This means
that G|M contradicting the fact that M /∈ Id.

Let us notice that 2. ⇒ 1. of Proposition 3.4 holds also when I is just a
monomial ideal, not necessarily a strongly stable one.

Now we can prove proposition 3.2.

Proof. We will use induction on m:
If m = 1 we can easily see that the conditions (a), (b) and (c) from

Lemma 3.3 are satisfied by construction so, as W1(h) is strongly stable, we
can apply Lemma 3.3 and get that R/W1(h) has the WLP.

Suppose that the proposition is true for m − 1. This means that the
algebra R′/Wm−1(∆h) has (m− 1)-times the WLP (R′ = K[x1, . . . , xn−1]).
As Wm(h) is strongly stable and again the conditions of Lemma 3.3 are
satisfied, we get that R/Wm(h) has the WLP and, by Lemma 3.2, xn is a
WLE. As by construction R/Wm(h) + (xn) = R′/Wm−1(∆h) which has by
hypothesis (m− 1)-times the WLP, we get that R/Wm(h) has m-times the
WLP.

2.3 Ideals with Maximal Betti Numbers

In this section we will first show that R/Wm(h) has maximal Betti numbers
among algebras with Hilbert function h and m-times the WLP. Then we
will characterize all other ideals that have maximal Betti numbers within
this class. In the third part of this section we will show that these upper
bounds are rigid.
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2.3.1 R/Wm(h) has maximal Betti numbers

We want to prove the following:

Proposition 2.12. For any algebra R/J that has Hilbert function h and
m-times the WLP we have:

βij(R/J) ≤ βij(R/Wm(h)), ∀i, j ≥ 0. (2.1)

We have seen in Section 2 that for a homogeneous ideal J ⊂ R taking its
generic initial ideal Gin(J) does not change the Hilbert function, and also
that R/J has m-times the WLP if and only if R/Gin(J) has m-times the
WLP. From Theorem 2.3 we have the following inequality:

βij(R/J) ≤ βij(R/Gin(J)), ∀i, j ≥ 0.

So, as Gin(J) is a strongly stable ideal, it will be enough to prove that (2.1)
holds for J strongly stable.

First let us establish some notation. For a monomial M = xa1
1 . . . xan

n in
K[x1, . . . , xn] we define:

max(M) = max{i : ai > 0}.

For a set of monomials A ⊂ K[x1, . . . , xn] and for i = 1, . . . , n we write:

mi(A) = ({M ∈ A : max(M) = i}, m≤i(A) = ({M ∈ A : max(M) ≤ i}.

When J is either a vector space generated by monomials of the same degree
or a monomial ideal, we set

mi(J) = mi(G), m≤i(J) = m≤i(G),

where G is the set of minimal monomial (vector space or ideal) genera-
tors of J . If J is a monomial ideal we will denote by Ji the vector space
{M ∈ J : deg(M) = i}.

We will need the following result from [19]:

Proposition 2.13. Let I, J be strongly stable ideals with the same Hilbert
function. Assume that m≤i(Ij) ≤ m≤i(Jj), ∀i, j ≥ 0. Then one has:

1. mi(J) ≤ mi(I), ∀ i > 0.

2. βij(R/J) ≤ βij(R/I), ∀ i, j ≥ 0.

We can now prove Proposition 4.1:
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Proof. We saw that we can suppose that J is strongly stable and, as Wm(h)
is also strongly stable, from proposition 4.2 we have that in order to prove
that (2.1) holds, we only need to prove that:

m≤i((Wm(h))j) ≤ m≤i(Jj), ∀ i ≤ n and ∀ j ≥ 0. (2.2)

As R/J and R/Wm(h) have the same Hilbert function it follows imme-
diately that (2.2) holds for i = n.

If i < n it is easy to see that, as Wm−1(∆h) = (Wm(h)+ (xn))/(xn) and
if we denote Jm−1 = (J + (xn))/(xn), then we have:

m≤i((Wm(h))j) = m≤i((Wm−1(∆h))j), ∀ i < n and

m≤i(Jj) = m≤i((Jm−1)j), ∀ i < n.

So what we have to prove now is that

m≤i((Wm−1(∆h))j) ≤ m≤i((Jm−1)j), ∀ i < n and ∀ j ≥ 0. (2.3)

This means that if (2.2) holds for m − 1, then it also holds for m. So, in
order to conclude, we only need to look at the case m = 1.

If m = 1 we have:
1. If j > k1 we have by Lemma 3.3 that

(x1, . . . , xn−1)j ⊆ W1(h) and (x1, . . . , xn−1)j ⊆ J.

So, in this case, we actually have equality in (2.3) ∀ i < n.
2. If j ≤ k1 By construction W0(∆h) is the lex-segment ideal and J0

is still a strongly stable ideal (see [6, Proposition 1.4]). By Lemma 3.2, xn

is a WLE for both R/J and R/Wm(h), and thus we have that the Hilbert
functions of R′/J0 and R′/W0(∆h) are equal to ∆h.

From the equality of the Hilbert functions we have |(W0(∆h))j | = |(J0)j |
and thus we can apply a result of A.M. Bigatti (see [6, theorem 2.1]) that
ensures that (2.2) holds also for m = 1.

2.3.2 Other Ideals with Maximal Betti Numbers

To simplify notation we introduce, for all i ∈ 1, . . . n the following morphism:
ρi : K[x1, . . . , xn] −→ K[x1, . . . , xi], with:

ρi(xj) =
{

xj if j ≤ i
0 if j > i.

Notice that if I ⊂ K[x1, . . . , xn] is a homogeneous ideal, then ρi(I) is an
ideal of K[x1, . . . , xi]. This ideal will have the same generators as the ideal
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I + (xn, . . . , xn−i+1)/(xn, . . . , xn−i+1).

In this section we will give a description of the ideals J of R such that
R/J has Hilbert function h, m-times the WLP and maximal Betti numbers
within this category. More precisely we will prove the following:

Proposition 2.14. Let J ⊂ R be an ideal such that R/J has Hilbert func-
tion h and m-times the weak Lefschetz property (m ∈ N). The following
are equivalent:

1. J has maximal Betti numbers among ideals with the above properties.

2. J is componentwise linear and the ideal ρn−m(Gin(J)) is Gotzmann.

We have already seen in Proposition 4.1 that Wm(h) has maximal Betti
numbers. Let us fix J ⊂ R as in the hypothesis of Proposition 4.3. From
Theorem 2.3 and Proposition 4.1 we get:

βij(R/J) ≤ βij(R/Gin(J)) ≤ βij(R/Wm(h)).

This means that if R/J has maximal Betti numbers among algebras with
m-times the WLP and Hilbert function h, then βij(R/J) = βij(R/Gin(J)).
In other words, J must be componentwise linear (by Theorem 2.4.).

Knowing this, we will now concentrate on the properties of Gin(J). Re-
placing J with Gin(J) we may assume that J is strongly stable.

For a homogeneous ideal J ⊆ R and i ∈ N we will denote by J≤i the
ideal generated by the elements of J with degree ≤ i. If J is monomial, then
J≤i will also be monomial.

We already know from Lemma 3.2 that for a strongly stable ideal J , R/J
has the WLP if and only if xn is a WLE for R/J . An easy generalization of
this fact is the following:

Lemma 2.15. Let J ⊆ R be a strongly stable ideal. Then
R/J has m-times the WLP ⇐⇒ xn−i is a WLE for R/J + (xn, . . . , xn−i+1)
for all i = 0, . . . ,m− 1.

Proof. When m = 1 the result is just the one of Lemma 3.2.
If m > 1 then still we know that xn is a WLE for R/J . But R/J +(xn) has
(m− 1)-times the WLP and J +(xn)/(xn) will be still strongly stable so we
can apply induction.

We will prove the following result which, together with the above obser-
vations, proves Proposition 4.3.

Proposition 2.16. Let J ⊂ R be a strongly stable ideal such that R/J has
m-times the WLP and Hilbert function h. Then

βij(R/J) = βij(R/Wm(h)),∀ i, j ⇐⇒ ρn−m(J≤km) is Gotzmann.
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Proof. The ideals J and Wm(h) are strongly stable with the same Hilbert
function. We know that m≤i(Wm(h)j) ≤ m≤i(Jj) ∀ i, j from the proof of
Proposition 4.1. From [19, Proposition 3.7] we know that the following are
equivalent:

βij(R/J) = βij(R/Wm(h)), ∀ i, j. (2.4)

m≤i(Jj) = m≤i((Wm(h))j), ∀ i, j. (2.5)

⇒ So we have m≤i(Jj) = m≤i((Wm(h))j), ∀ i, j, but this means also
that

m≤i((ρn−m(J))j) = m≤i((ρn−m(Wm(h)))j) ∀ i, j.

By construction ρn−m(Wm(h)) = W0(∆mh) = Lex(∆mh), which is a
strongly stable ideal. Also ρn−m(J) is a strongly stable ideal because its
generators are just the generators of J in the first n−m variables.

By Lemma 4.4 we have that xn−i is a WLE for R/ρn−i(Wm(h)) and for
R/ρn−i(J), ∀ i = 0, . . . ,m−1. Thus we get that both R/ρn−m(Wm(h)) and
R/ρn−m(J) have the same Hilbert function, ∆mh.

So we can apply [19, Proposition 3.7] and obtain that

βi,j(ρn−m(J)) = βi,j(Lex(∆mh)),

which means by Theorem 2.4. that ρn−m(J) is a Gotzmann ideal.
⇐ We will show that (2.5) holds.
1. If i = n− t ≥ n−m then (2.5) holds from the equality of the Hilbert

functions of R/ρn−t(J) and R/ρn−t(Wm(h)).
2. If i < n−m, we have

m≤i(Jj) = m≤i((ρn−m(J))j),

m≤i((Wm(h))j) = m≤i((ρn−m(Wm(h))j).

So we only need to prove (2.5) for ρn−m(J) and ρn−m(Wm(h)) = Lex(∆mh).
In this case (2.5) holds because ρn−m(J) is a Gotzmann ideal, which is
equivalent by Theorem 2.5 to the equality of its Betti numbers with the
Betti numbers of the lex-segment ideal. This is again equivalent by [19,
Proposition 3.7] to

m≤i((ρn−m(J))j) = m≤i((Lex(∆mh))j).

2.3.3 Rigid Resolutions

For a homogenous ideal I it has been shown in [20] that if βq(I) = βq(Gin(I))
then βi(I) = βi(Gin(I)) for all i ≥ q. This property is called rigidity and it
also holds if Gin(I) is replaced by Lex(I) or any generic initial ideal of I.



28 Lefschetz Property

In this section we will prove that algebras with m-times the WLP have a
similar property: if one of the Betti numbers reaches the upper bound given
by the Betti numbers of R/Wm(h)), then all the following Betti numbers
reach it as well. More precisely we will prove that:

Proposition 2.17. Let I ⊂ R be a homogeneous ideal such that R/I has
m-times the WLP and Hilbert function h. If βq(R/I) = βq(R/Wm(h)) for
some q then βi(R/I) = βi(R/Wm(h)) for all i ≥ q.

Proof. We have already seen that we have the following inequalities:

βi(R/I) ≤ βi(R/Gin(I)) ≤ βi(R/Wm(h)).

If for some q equality takes place, we have from [20, Corollary 2.4] the
following: βi(R/I) = βi(R/Gin(I)) for all i ≥ q. So we just need to prove
that the proposition holds for Gin(I), i.e. we can assume that I is a strongly
stable ideal.

From the Eliahou-Kervaire formula for the Betti numbers of stable ideals
(see for example [6]) we have that:

βi(R/I) =
n∑

s=i

ms(I)
(

s− 1
i− 1

)
. (2.6)

In the proof of Proposition 4.1 we have shown that the inequality (2.2) takes
place, so from Proposition 4.2 we have that:

mi(I) ≤ mi(Wm(h)), ∀ i > 0. (2.7)

So by (2.6) and (2.7) we have that βq(R/I) = βq(R/Wm(h)) also implies
the following equality:

mi(I) = mi(Wm(h)),∀ i ≥ q.

So, again by (2.6), we get that βi(R/I) = βi(R/Wm(h)) for all i ≥ q.

Corollary 2.18. Let I ⊂ R be a homogeneous ideal such that the graded
algebra R/I has m-times the WLP and Hilbert function h.

If βq(R/I) = βq(R/Wm(h)) for some q then:

βij(R/I) = βij(R/Wm(h)) ∀ i ≥ q, ∀ j.

Proof. By proposition 4.1 we have βij(R/I) ≤ βij(R/Wm(h)) ∀ i, j, and as
βi(R/I) =

∑
j βij(R/I), Proposition 4.6 implies the desired equality.
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2.4 Ideal of points

In this section we will construct, starting from Wm(h) and using a dis-
traction matrix, another ideal I (with the same Hilbert function and Betti
numbers) such that R/I still has m-times the WLP and I≤k1 is the ideal of
finite set of rational points in Pn−1

K .

First let us recall some notions and results that we need. The results
on distractions that we will present here were proven by Bigatti, Conca and
Robbiano in [7].

Definition 2.19. Let L = (Lij | i = 1, . . . , n , j ∈ N) be an infinite matrix
with entries Lij ∈ R1 with the following properties:

1. {L1j1 , . . . , Lnjn} generates R1 for every j1, . . . , jn ∈ N.

2. There exists an integer N ∈ N such that Lij = LiN for every j > N .

We call L an N -distraction matrix or simply a distraction matrix.

Definition 2.20. Let L be a distraction matrix, and M = xa1
1 xa2

2 . . . xan
n a

monomial in R. Then the polynomial DL(M) =
∏n

i=1(
∏aj

j=1 Lij) is called
the L-distraction of M .

Having defined DL(M) for every monomial, DL extends to a K-linear
map. Therefore we can consider DL(V ) where V is a subvector space of R,
and call it the L-distraction of V .

The ideal that we will construct will be DL(Wm(h)) for some distraction
matrix L with some extra properties. When I is a homogeneous ideal of R ,
DL(I) will coincide with

⊕
d DL(Id), which is in general just a vector space,

not an ideal. However, when I is a monomial ideal we have the following
result:

Proposition 2.21. Let L be a distraction matrix, and I ⊂ R a monomial
ideal.

1. The vector space DL(I) is a homogeneous ideal in R.

2. If M1, . . . ,Mr are monomials in R such that I = (M1, . . . ,Mr), then
we have the following: DL(I) = (DL(M1), . . . , DL(Mr)).

3. h(R/I) = h(R/DL(I)).

4. βij(R/I) = βij(R/DL(I)) ∀ i, j.

So we know now that R/DL(Wm(h)) will still have Hilbert function h.
But will R/DL(Wm(h)) still have m-times the weak Lefschetz property? The
following result [7, Theorem 4.3] will lead us to the answer of this question:
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Theorem 2.22. Let L be a distraction matrix and I ⊂ R be a strongly
stable monomial ideal. Then Gin(DL(I)) = I.

So from Proposition 2.2 it follows that also R/DL(Wm(h)) has m-times
the weak Lefschetz property.

We still want to show that DL(Wm(h))≤k1 is an ideal of a finite set of
points. For this we need to recall the following notion:

Definition 2.23. Let I = (xa1
i1

, . . . , xar
ir

) ⊂ R be an irreducible monomial
ideal and let S = {s = (s1, . . . , sr) | 1 ≤ si ≤ ai ,∀ i = 1, . . . , r}. Let
L be a distraction matrix, and let Vs be the K-vector space generated by
{Li1s1 , . . . , Lirsr}. If Vs '= Vs′ , ∀ s, s′ ∈ S (s '= s′), we say that L is radical
for I.

More generally, if I is any monomial ideal, we say that L is radical for I
if L is radical for all the irreducible components of I.

The following result will show us how we need to choose the distraction
matrix L in order to obtain the desired construction (see [7, Corollary 4.10]).

Proposition 2.24. Let I ⊂ K[x1, . . . , xn−1] be a zero-dimensional strongly
stable monomial ideal, and let L be a distraction matrix which is radical for
I, and whose entries are in the polynomial ring R = K[x1, . . . , xn].

Then DL(I) is the ideal of a finite set of points in Pn−1
K such that

Gin(DL(I)) = IR.

First let us notice that by Proposition 5.3 we have:

DL(Wm(h))≤k1 = (DL(M) | M ∈ Gens(Wm(h)), deg(M) ≤ k1).

and that by construction the generators of (Wm(h))≤k1 are the generators
of Wm−1(∆h) so they are monomials in x1, . . . , xn−1.
We choose L to be a distraction matrix such that the first (n−1) lines form
a distraction matrix L′ that is radical for Wm−1(∆h), and has entries is
K[x1, . . . , xn]. So DL′(Wm−1(∆h)) = DL((Wm(h))≤k1) = DL(Wm(h))≤k1 .
Together with the arguments presented so far in this section, this proves the
following:

Proposition 2.25. Let L be a distraction matrix such that the first n − 1
lines form a distraction matrix L′ that is radical for Wm−1(∆h). Then :
R/DL(Wm(h)) has m-times the WLP, Hilbert function h, the same Betti
numbers as R/Wm(h) and the ideal DL(Wm(h))≤k1 is the ideal of a finite
set of rational points in Pn

K .

This proposition is a generalization of the results obtained by T.Harima,
J.C.Migliore, U.Nagel and J.Watanabe in [22, Theorem 3.20].
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2.5 Examples

Let h : 1, 4, 7, 8, 7, 4, 1 be our given O-sequence and let R = K[x, y, z, t]. We
will have ∆h : 1, 3, 3, 1 and ∆2h : 1, 2. So we see that h is a 2-times weak
Lefschetz O-sequence.

We will construct W2(h) as well as W1(h) and see that they are different.
Let us first construct W2(h). We start with the lex-segment ideal of ∆2h

which is the ideal

Lex(∆2h) = (x2, xy, y2) ⊂ K[x, y].

The ideal Lex(∆2h)S, where S = K[x, y, z] will have the Hilbert function:

1, 3, 3, 3, 3, . . . .

The monomials of S of degree d > 2 that are not in Lex(∆2h)S will be:

xzd−1, yzd−1, zd.

To obtain the ideal W1(∆h) we need to add to Lex(∆2h)S the first two for
d = 3 and the third for d = 4. So we get:

W1(∆h) = (x2, xy, y2, xz2, yz2, z4).

Now the next step is considering the ideal W1(∆h)R, which will have Hilbert
function:

1, 4, 7, 8, 8, 8, . . . .

The monomials of R of degree d > 3 that are not in W1(∆h)R will be:

z3td−3, xztd−2, yztd−2, z2td−2, xtd−1, ytd−1, ztd−1, td.

So in order to obtain W2(h) we need to add the first one for d = 4, the next
three for d = 5, the next three for d = 6 and the last one for d = 7. So we
get that

W2(h) = (x2, xy, y2, xz2, yz2, z4, z3t, xzt3, yzt3, z2t3, xt5, yt5, zt5, t7).

To construct the ideal W1(h) we start directly with the lex-segment ideal
for ∆h in S = K[x, y, z]:

Lex(∆h) = (x2, xy, xz, y3, y2z, yz2, z4).

The ring R/(Lex(∆h)R) will have again the Hilbert function

1, 4, 7, 8, 8, 8, . . . .

but the monomials of R of degree d > 3 that are not in Lex(∆h)R will be
this time:

z3td−3, y2td−2, yztd−2, z2td−2, xtd−1, ytd−1, ztd−1, td.
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And by adding to Lex(∆h)R in the first monomial for d = 4, the next three
for d = 5 etc. we obtain:

W1(h) = (x2, xy, xz, y3, y2z, yz2, z4, z3t, y2t3, yzt3, z2t3, xt5, yt5, zt5, t7).

We will now give an example of a particular distraction and see how it
acts on W2(h). It is easy to check that the first three lines of the follow-
ing matrix form a radical distraction for the ideal W1(∆h) (as needed by
Proposition 5.7):

L =





x x− t x− 2t x− 3t x− 3t . . .
y y − t y − 2t y − 3t y − 3t . . .
z z − t z − 2t z − 3t z − 3t . . .
t t t t t . . .



 .

As the highest degree of the generators in first three variables is 4, we
can consider Lij = Li4,∀ j ≥ 4. The ideal DL(W2(h))≤3 will be:

DL(W2(h))≤3 = (x(x− t), xy, y(y − t), xz(z − t)).

One can check easily that this ideal is radical.

Let us consider also the following ideal:

I = (x2, y2, z2, xyzt, xyt3, xzt3, yzt3, xt5, yt5, zt5, t7).

By Lemma 3.4 we see immediately that R/I has the WLP.

In order to have a more general picture of the Betti numbers of algebras
with Hilbert function h, we will also look at R/Lex(h). This algebra will
have the highest Betti numbers possible in this case.

Lex(h) = (x2, xy, xz, xt2, y3, y2z, y2t2, yz3, yz2t, yzt3, yt4, z5, z4t,

z3t3, z2t4, zt5, t7).

Now let’s take a look at the Betti diagrams of the ideals constructed so
far (the Betti diagram of DL(W2(h)) is equal to the one of W2(h)).
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1 2 3 4 1 2 3 4
1 3 3 1 - 1 3 3 1 -
2 3 6 4 2 2 3 5 2 -
3 3 8 7 2 3 2 5 4 1
4 4 11 10 3 4 3 9 9 3
5 3 9 9 3 5 3 9 9 3
6 1 3 3 1 6 1 3 3 1

R/Lex(h) R/W1(h)

1 2 3 4 1 2 3 4
1 3 2 - - 1 3 - - -
2 2 4 2 - 2 - 3 - -
3 2 5 4 1 3 1 3 4 1
4 3 9 9 3 4 3 9 9 3
5 3 9 9 3 5 3 9 9 3
6 1 3 3 1 6 1 3 3 1

R/W2(h) R/I

We can notice that R/Lex(h) has the largest Betti numbers. Just as
predicted, R/W1(h) has larger Betti numbers than R/W2(h)and R/I. We
can also notice that the inequality is strict in some cases. The fact that
the Betti numbers of R/W2(h) are all larger than the ones of R/I is just a
coincidence.





Chapter 3

Parametrizations of Ideals in
k[x, y]

For a filed k of any characteristic, a monomial ideal I0 ⊂ K[x1, . . . , xn] and
any term order τ , the set Vh(I0) = {I ⊂ K[x1, . . . , xn] | I homogeneous,
with inτ (I) = I0} has a natural structure of affine variety. If we have that
dimk(K[x1, . . . , xn]/I0) < ∞, also the set in which we consider all ideals
(not necessarily homogeneous), V (I0) := {I ⊂ K[x1, . . . , xn] | in(I) = I0}
has a structure of affine variety.
The main goal of this chapter is to parametrize the affine variety V (I0),
when I0 is a monomial, lex-segment ideal of R = k[x, y], τ is the degree
reverse-lexicographic (DRL) term order, and dimk(R/I0) < ∞. It is known
by results of J. Briançon [9] and A. Iarrobino [29] that V (I0) is an affine
space. This fact is also a consequence of general results of A. Bialynicki-
Birula [4, 5]. The parametrization that we will find associates to each ideal
I ∈ V (I0) a canonical Hilbert-Burch matrix. This will also allow us to find
a formula for the dimension of V (I0). We will also extend somehow this
results to homogeneous ideals of the polynomial ring k[x, y, z], with initial
ideal generated only in two variables. This will allow us to study also the
Betti strata of V (J0), where J0 = I0k[x, y, z] and I0 is a monomial, lex-
segment ideal of R = k[x, y].

3.1 Preliminaries

All the initial terms and ideals that we will consider from now on will be
with respect to the degree reverse lexicographic term order.

Let I0 ⊂ R be a monomial ideal as above:

I0 := (xt, xt−1ym1 , . . . , xymt−1 , ymt).

Notice that we have 0 = m0 ≤ m1 ≤ . . . ≤ mt; and let us define di := mi −
mi−1 for all i = 1, . . . t. It is clear that the ideal I0 is uniquely determined
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by the sequence of the mi’s, so also by that of the di’s.
Now define the following matrix:

X =





yd1 0 . . . 0
−x yd2 . . . 0
0 −x . . . 0

. . . . . . . . . . . .
0 0 . . . ydt

0 0 . . . −x





and let A be another (t + 1)× t matrix, with entries in the polynomial ring
in one variable k[y], with the following property:

deg(ai,j) ≤
{ Min{i− j + mj −mi−1 − 1, di − 1} if i ≤ j,

Min{i− j + mj −mi−1 , dj − 1} if i > j,
(3.1)

where i = 1, . . . , t + 1 and j = 1, . . . , t. We will denote by AI0 the set of all
matrices that satisfy the above condition. Notice that AI0 = AN , where N
is the sum over i and j of the above bounds +1, whenever these bounds are
positive. At the end of the next section we will compute the exact formula
for N , when I0 is a lex-segment ideal.

For i = 1, . . . , t + 1 and any A ∈ AI0 , denote by [X + A]i the matrix
obtained by deleting the ith row of the matrix X+A. We define the following
polynomials for i := 0, . . . , t:

fi := (−1)i det([X + A]i+1).

Let ψ : AI0 −→ V (I0) be the application defined by:

ψ(A) := It(X + A),

where by It(X + A) is the ideal generated by t-minors of the matrix X + A.
In particular ψ(A) is the ideal generated by f0, . . . , ft.

3.2 Main theorem

Theorem 3.1. Let I0 ⊂ R = k[x, y] be a monomial lex-segment ideal with
dim(R/I0) < ∞. Then, the application ψ : AI0 −→ V (I0) is bijective.

This will be the parametrization of V (I0) that we are looking for. To
prove this we have to prove three things:

1. The application ψ is well defined.

2. The application ψ is injective.
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3. The application ψ is surjective.

We believe the result to be true without the assumption that I0 is a
lex-segment ideal. But we were not able to prove the second point without
this hypothesis. Hoping that such a proof exists, we present here proofs
of the first and the third point that work for any monomial ideal I0 with
dim(R/I0) < ∞.

3.2.1 Proof of 1

We want to prove that

in(It(X + A)) = I0, for all A ∈ AI0 .

First we show that in(fi) = xt−iymi . Then we will show that {f0, . . . , ft}
form a Gröbner basis.

Notice that the conditions imposed on the degrees of the entries in A we
get that:

deg(ai,i) ≤ di − 1,
deg(ai+1,i) ≤ Min(1, di − 1).

The product on the diagonal of [X + A]i+1 will be:

(yd1 + a1,1) . . . (ydi + ai,i)(−x + ai+2,i+1) . . . (−x + at+1,t)

and by the above observation it follows that its leading term will be xt−iymi .
Now let us look at the other monomials that may appear in the support

of fi. Let σ : {1, . . . , t} −→ {1, . . . , î + 1, . . . , t + 1} be a bijection. Denote:

σ̃(j) =
{

σ(j) if σ(j) < i + 1,

σ(j)− 1 if σ(j) > i + 1.

and for j = 1, . . . , t denote:

ασ(j),j :=






ydj + aσ(j),j , if σ(j) = j,

− x + aσ(j),j , if σ(j) = j + 1,

aσ(j),j , otherwise.

So the other monomials that may appear in the support of fi will appear
from products of the form:

t∏

j=1

ασ(j),j .
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By construction we have that for any bijection σ :

deg(
∏t

j=1 ασ(j),j) ≤
t∑

j=1

σ(j)− j + mj −mσ(j)−1

︸ ︷︷ ︸
||

t− i + mi

||
deg(xt−iymi).

First let us notice that if for some j we have σ(j)−j +mj−mσ(j)−1 < 0,
then this actually means that the whole product is 0. By the above inequality
we get that all the monomials in the support of fi that are not divisible by
a power of x higher than or equal to t− i are smaller than xt−iymi in degree
lexicographic order.

In order to have that in(fi) = xt−iymi we have to check that a monomial,
which is divisible by a power of x higher than t− i, has degree strictly less
than t− i + mi.

To check this, we first have to notice that to obtain such a mono-
mial, we have to take an ασ(j),j that has σ̃(j) = j + 1 > j (i.e. ασ(j),j

is an element of the matrix Ai that lies just under the diagonal). As
σ is a bijection this implies that we also have to have, for some k, that
σ̃(k) < k (i.e ασ(k),k lies above the diagonal). So, by definition, we get that:
deg(ασ(k),k) ≤ σ(k)− k + mk −mσ(k)−1−1.

As the syzygy module of I0 is generated by the columns of the matrix
X, by an optimization of the Buchberger algorithm (see [31], Remark 2.5.6),
to show that {f0, . . . , ft} are a Gröbner basis we only have to look at the
S-polynomials of the form:

ydifi−1 − xfi, for all i = 1, . . . , t,

and check that they can be written as
∑t

j=0 βjfj , with:

in(βjfj) ≤ in(ydifi−1 − xfi), for all j = 0, . . . , t.

But by construction we have that:

ydifi−1 − xfi +
t∑

j=0

aj+1,ifj = 0.

As all the ai,j are polynomials in k[y] and all the leading terms of the fj ’s
are divisible by different powers of x, we get that the leading terms of the
ai,jfj ’s cannot cancel each other, so we must have:

Maxj{in(ai,jfj)|ai,j '= 0} = in(ydifi−1 − xfi).

This ends the proof of the fact that ψ is well defined.
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3.2.2 Proof of 2

We will use in this proof the fact that I0 is a lex-segment ideal, i.e. for any
monomial u ∈ I0 of degree d, all the monomials v of degree d, with v >Lex u
are also in I0.

It is easy to check that I0 is a lex-segment ideal iff di > 0, ∀ i = 1, . . . , t.
In this case, we can give a more accurate description of maximal degrees
that may appear in X + A.

First, above the diagonal (i ≤ j) we will have

Min{i− j − 1 + mj −mi−1, di − 1} = di − 1,

because

i− j − 1 + mj −mi−1 = i− j − 1 + mj −mj−1 + . . . + mi −mi−1

= i− j + dj + dj−1 + . . . + di+1 + di − 1

≥ 0 + di − 1.

Below the diagonal (i > j) things are slightly more complicated:

i− j + mj −mi−1 = i− j + mj −mj+1 + . . . + mi−2 −mi−1

= i− j − dj+1 − . . .− di−1

≤ 1.

Let us fix two sets of ”special” indices:

J := {j ∈ 1, . . . , t | dj ≥ 2},
I := {i ∈ 1, . . . , t | di ≥ 3} ∪ {1}.

Notice that I ⊆ J . Let 1 = i0, i1 . . . , iq the elements of I in increasing
order. By the above observations, we can divide the matrix X + A into
blocks depending on the indices in I as follows:
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0 0 0

0 0

0

0

0
t + 1

iq + 1

i3 + 1

i2 + 1

i1 + 1

1

1 i1 i2 i3 iq t

""
""
""
"

""
""
""
"

""
""
"

""
""
""
"

" " " " " "

" " " " " " "

" " " " " " "

" " " " " " "

" " " " " " "
" " " "

So, except for the last (t − iq) columns, the entries in each column are,
from some point on, equal to 0.

Let α ∈ 1, . . . , q. And let {j1, . . . , jp} := {j ∈ J | iα < j < iα+1}. We
will take a look at the first iα+1 rows of the columns indexed from iα to
iα+1 − 1.

For s ≥ 0 we denote by ·ys, a polynomial in k[y], with degree ≤ s. In the
next figure the part above the diagonal of kth row consists only of ·ydk−1.
In particular, if k /∈ J , then it is made of constants. The blocks denoted
by C consist also only of constants. The black squares, which correspond to
elements on the diagonal in the position (j, j) with j ∈ J are ydj + ·ydj−1.

And finally, all matrices denoted by * are of the form:

* =





−x + ·y y c . . . c
·y −x + c y . . . c
·y c −x + c . . . c
...

...
... . . . y

·y c c . . . −x + c




.
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For simplicity, we denote by c a constant in general, so all c that appear can
be different one from the other, and can also be zero.

0 0 0 0

0

00

C

C

C

*

*

*

*
iα+1

jq

j3

j2

j1

iα

iα j1 j2 j3 . . . jp−1 jp iα+1

""
"

""
"

""
"

" " "

" " " " " """""""

"""""""
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Now let us suppose that there exist A,B ∈ AI0 such that It(X + A) =
It(X + B) := I. We want to prove that in this case A = B. For i = 0, . . . , t
denote:

fi := (−1)i det([X + A]i+1),
gi := (−1)i det([X + B]i+1).

We will prove that fi = gi, ∀ i = 0, . . . , t. This implies that A = B
because the columns of the matrix (X + A) and (X + B) are syzygies for
the fi’s, respectively the gi’s. So, if fi = gi for all i, then also the columns
of (X + A) − (X + B) = A − B will be again syzygies. But the entries of
A − B are polynomials in k[y], and as the leading terms of the fi’s involve
different powers of x, they must all be zero. So A = B.

To prove that fi = gi, ∀ i = 0, . . . , t, we will first make two important
observations.

As in the proof of 1, we denote by αi,j the entries of X +A and with βi,j

the entries of X + B. These are of the following form:

αi,j :=

{ ydi + ai,i if i = j,
−x + ai+1,i if i = j + 1,
ai,j otherwise.

and

βi,j :=

{ ydi + bi,i if i = j,
−x + bi+1,i if i = j + 1,
bi,j otherwise.

First we will show that the homogeneous component of maximal degree
of fi is equal to he homogeneous component of maximal degree of gi, for all
i = 0, . . . , t.

Let ω be the weight vector (1, 1). For a polynomial f ∈ k[x, y] we
denote by inω(f) the sum of the monomials of maximal degree. For an ideal
I ⊂ k[x, y] we denote by inω(I) := 〈inω(f) | f ∈ I〉. We will prove the
following lemma:

Lemma 3.2. Let I0 ⊂ R be a monomial lex-segment ideal. Let A,B ∈ AI0

be two matrices such that It(X + A) = It(X + B). Then, with the above
notations, we have:

inω(fi) = inω(gi), ∀ i = 0, . . . , t.

Proof. As the DRL order is a refinement of the partial order given by the
weight vector ω, we have by [35] that:

in(inω(I)) = in(I) = I0.
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By the proof of 1. we know that both {fi}i=0,...,t and {gi}i=0,...,t are Gröbner
bases with respect to the DRL term order. So again by [35] we get that
{inω(fi)}i=0,...,t and {inω(gi)}i=0,...,t are DRL Gröbner bases.

Again, by looking at the proof of 1. we see that the monomials of
maximal degree of the fi’s appear in the following way: they will be the
maximal degree part of the products

t∏

j=1

ασ(j),j

with the property that deg(ασ(j),j) = σ(j) − j + mj −mσ(j)−1 for all j. In
other words, the polynomials inω(f0), . . . , inω(ft) will be the maximal minors
of a matrix X + A′, where the entries a′i,j of A′ have the following property:

a′i,j =
{

ci,jyi−j+mj−mi−1 if j < i and 0 ≤ i− j + mj −mi−1 < dj ,

0 otherwise,

with ci,j ∈ k.
The same holds for the polynomials inω(g0), . . . , inω(gt). Let us say they

are the maximal minors of a matrix X+B′, with B′ having the same property
as A′.

As all these polynomials are homogeneous, their leading term is the
same for the DRL and the Lex term order. So we find ourselves in the case
already solved by Conca and Valla in [17]. That is the matrices A′ and
B′ parametrize the same homogeneous ideal, inω(I). So, by [17, Theorem
3.3], they must be equal. Thus we also have that inω(fi) = inω(gi) for all
i = 0, . . . , t.

Second we will prove the following lemma:

Lemma 3.3. Let f ∈ I be a polynomial such that xt does not divide any
monomial m ∈ Supp(f). Then f can be written as:

f =
t∑

i=1

aifi,

with ai ∈ k[y] and deg(fi) ≤ deg(f).

Proof. We have that in(f) = xsyr with s < t. As in(f) ∈ in(I), we have
that r ≥ mt−s. We now define a new polynomial:

f ′ := f − LC(f)yr−mt−sfs,

where LC(f) is the leading coefficient of f . By construction, the monomials
that appear in the support of the fi’s are not divisible by xt for i = 1, . . . , t.
So we have that f ′ has the same property as f . After a finite number of
steps we will obtain the desired representation.
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Combining the previous two lemmas, we can write for any i = 0, . . . , t:

fi = gi +
∑

deg(gj)<deg(fi)

Rj,i gj , with Rj,i ∈ k[y], ∀ i, j.

So we can form a (t + 1)× (t + 1) transition matrix R, with entries in k[y],
such that:

(g0, . . . , gt)R = (f0, . . . , ft).

The matrix R is of the form:

0 0 0

0 0

0

0

0

0

0

0

0

0
0

0 . . . 0 . . . 0 . . . 0 . . .1
1

1
1

1
1

1

1

1

R1,j1 . . . R1,j2 . . . . . . R1,t

Rj1−1,j1 . . . . . . . . . Rj1−1,t

Rj2−1,j2 . . . . . . Rj2−1,t

. . . Rj3−1,t

. . . Rjp−1,t

t

jp

j3

j2

j1

0

0 j1 j2 j3 . . . jp t

""
""
""
"

""
""
""
"

""
""
""
"

""
""
""

### ###
###

###
###

" " " " " " "

" " " " " " "

" " " " " " "

" " " " " " "# # #
# # #

# # #
" " " " " " "

# # #
We indexed the rows and columns of the matrix starting from 0 for

simplicity. Because in(f0) = xt does not divide any of the monomials in the
support of any fi, with i > 0 we have that R0,j = 0, ∀ j > 0. The rest is
just a consequence of the fact that I0 is a lex-segment ideal. So we have:

deg(f0) = . . . = deg(fj1−1) < deg(fj1) = . . . < deg(fj2) = . . . .

The next step to prove injectivity is to prove that Ri,j = 0. Here is the
plan for the next and final part in the proof of the injectivity:
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Notice that the columns of the matrix R(X + A) are syzygies for the
gi’s. We subtract from these syzygies appropriate multiples of the columns
of X +B such that we obtain new syzygies of the gi’s, this time with entries
in k[y]. So all the entries must be actually 0. These entries will be linear
combinations of the Ri,j ’s, with coefficients the entries of A and B and some
ydi . Given the restrictions on the degrees of the entries in A and B we will
deduce some limitations on the degrees of the Ri,j ’s that could only take
place if all of them are 0.

We will do this block by block, starting with the block formed by the
columns i1, i1 + 1, . . . , i2 − 1 of R, continuing with the next i3 − i2 columns
of R and so on.

Let i1 ≤ s ≤ i2− 1. When multiplying R with the sth column of X +A,
we get entries of the form:

αr,s +
i2−1∑

j=i1

Rr−1,j αj+1,s,

where 1 ≤ r ≤ t. Notice that when r = 1 the entry is actually α1,s.
Also for r ≥ i2 the entries will be αr,s, because Rr,j = 0 for r ≥ i2 and
j ≤ i2 − 1. So these entries involve only the Ri,j ’s with i ∈ {1, . . . , i2 − 1}
and j ∈ {i1, . . . , i2−1}. That is why we can prove this block by block. Also
some of the Ri,j ’s in this block will be 0 because of the form of the matrix
R. We will describe these cases later on.

As αs+1,s = −x + . . ., to cancel the x’s in every entry we must subtract
from this new syzygy: Rr−1,s× (the (r − 1)th column of X + B). We do
this for every r = 1, . . . , i1. So we obtain a new syzygy for the gi’s with the
following entries:

αr,s +
i2−1∑

j=i1

Rr−1,j αj+1,s −
i2−1∑

l=1

Rl,s βr,l.

As the −x appears first with coefficient Rr−1,s and then in the second
sum also with coefficient Rr−1,s, we can conclude that each entry is a poly-
nomial in k[y]. As we just added and subtracted syzygies, we obtain again a
syzygy. But as in the initial terms of the gi’s there appear different powers
of x, we get that all entries must be 0. So we have the following equations:

αr,s +
i2−1∑

j=i1

Rr−1,j αj+1,s −
i2−1∑

l=1

Rl,s βr,l = 0.

Recall that in this part we will show that Rr,s = 0 for r '= s with
i1 ≤ s ≤ i2 − 1 and 1 ≤ r ≤ i2.
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The entries of the matrix R below the diagonal and some of the ones
above are already 0. If we denote by:

j(r − 1) := Min{j ∈ J | j > r − 1},
j̃(s) := Max{j ∈ J | j ≤ s},

we can easily notice that the equations actually are:

ar,s − br,s +
i2−1∑

j=j(r−1)

Rr−1,j αj+1,s −
ej(s)−1∑

l=1

Rl,s βr,l = 0.

We are considering any A,B ∈ AI0 , so some of the αi,j ’s and βi,j ’s may
be 0. But we will always have that deg(αii) = deg(βii) = di. Notice also
that if s = i1, as Rr−1,s−1 '= 0 only if r < s, we get that j(r − 1) = i1 = s.
This means that the first sum starts from j = s, thus αi1,i1 will not appear.
So, in the first sum whenever Rr−1,s−1 '= 0, we have deg(αs,s) ≤ 2.

The degrees of the α’s and β’s are as follows:

- deg(αs,s) = ds.

- For j = j(r − 1), . . . , i2 − 1, j '= s− 1 we have:

deg(αj+1,s) ≤
{

deg(βr,r) if j + 1 ∈ J or

deg(βr,r)− 1 if j + 1 /∈ J.

- For l = 1, . . . , j̃(s)− 1, l '= r we have:

deg(βr,l) ≤
{

deg(βr,r) if l ∈ J and l < r or

deg(βr,r)− 1 else.

- deg(βr,r) = dr.

Depending on r and s there are four types of equations. From the first
three types we can deduce directly upper bounds on the degree of Rr,s. The
fourth type may need to be modified in order to obtain such bounds.

Type 1: If (s /∈ J and r ∈ J ), or (r ∈ I) then, as (dr ≥ 2 and ds = 1)
or (dr ≥ 3 and ds ≤ 2) we get:

deg(Rr,s) <

{
deg(Rr−1,j) for some j ∈ {j(r − 1), . . . , i2 − 1}, or

deg(Rl,s) for some l ∈ {1, . . . , j̃(s)− 1}, l '= r.

Type 2: If s /∈ J and r /∈ J then, as dr = 1 and ds = 1, we get:



3.2 Main theorem 47






deg(Rr,s) <

{
deg(Rr−1,j) for some j + 1 /∈ J , or

deg(Rl,s) for some r '= l /∈ J , or l > r,

or

deg(Rr,s) ≤
{

deg(Rr−1,j) for some j + 1 ∈ J , or

deg(Rl,s) for some l ∈ J , and l < r.

Type 3: If s ∈ J and r ∈ J \ I then, as dr ≥ 2 and ds = 2, we get:






deg(Rr,s) <

{
deg(Rr−1,j) for some j '= s− 1, or

deg(Rl,s) for some l '= r,

or

deg(Rr,s) ≤ deg(Rr−1,s−1).

Type 4: If s ∈ J and r /∈ J then we have dr = 1 and ds = 2. So in this
case we need to modify the original equation. As αs,s is the coefficient of
Rr−1,s−1 we can look at the equation where Rr−1,s−1 appears in the second
sum, with coefficient βr−1,r−1. There are two sub-cases:

The equation for Rr−1,s−1 is an equation of type 1,2 or 3. That is
br−1,r−1 has maximal degree among the coefficients of the Ri,j .

The equation for Rr−1,s−1 is again an equation of type 4. In this
case we can suppose inductively that we have already modified that
equation such that br−1,r−1 has maximal degree among the coefficients
of the Ri,j ’s.

Now we look at r − 1.
If r − 1 ∈ J , then we multiply our initial equation with ydr−1−2 and

subtract from it the equation for Rr−1,s−1. In this case we will find that
now ydr−1−2br,r has maximal degree as we wanted.

If r−1 /∈ J , then we subtract from our equation the equation for Rr−1,s−1

multiplied by y. In this case, the new Ri,j ’s that may have a coefficient of
degree 2, are of the form Ri,j , with i < r−1. So by repeating this procedure
we will reach at some point the previous case.

For this type of equations there are three kinds of conclusions that we
can draw:
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




deg(Rr,s) < some Ri,j ,

or

deg(Rr,s) ≤
{

deg(Ri,j) for some j + 1 ∈ J and i < r, or

deg(Rl,j) for some l ∈ J and j < s,

or

deg(Rr,s) = 0.

The third possibility comes from the fact that when r−1 ∈ J , by multi-
plying the equation with ydr−1−2 and subtracting the equation for Rr−1,s−1,
we get that the new coefficient of Rr,s, (i.e. ydr−1−2br,r) may have the same
degree as the free term (αr−1,s−1 − βr−1,s−1). When r − 1 /∈ J we will find
this situation by induction, when we arrive at an index i ∈ J .

We were vague for the strict inequality, because we do not need to know
the indices in that case.

Now we just have to see that these inequalities imply that Rr,s = 0. Be-
cause of the third possibility for the equations of type 4, we have to consider
again two cases. Denote by M := max{deg(Ri,j) | 1 ≤ r ≤ i2 and i1 ≤ s ≤
i2 − 1}. The following remarks are the key to the last part of the proof.

Remark 3.4. 1. If r and s satisfy the conditions for the type 1 equations,
then we have deg(Rr,s) < M .

2. If deg(Rr,s) = M > 0, then deg(Rr,s) = deg(Ri,j) for some i < r.

Case 1: M = 0. In this case we can use induction on r. We will not
need to modify the equations of type 4.
If r = 1 then we are in the type 1 situation. So deg(R1,j) < M = 0.
Suppose Ri,j = 0 for all i < r. Then for all four types of equations, when
we replace with 0 the Ri,j ’s with i < r, we get equations of the form:

ar,s − br,s −
ej(s)−1∑

l=r

Rl,s βr,l = 0.

So, as by construction we have deg(βr,r) > deg(βl,r) if l > r and also
deg(βr,r) > deg(βr,s), we get again that if Rr,j '= 0 then deg(R1,j) < M = 0.
This means we have Rr,j = 0 for all j ≤ i2 − 1, j '= r.

Case 2: M > 0. This means not all Ri,j ’s are zero for i ∈ {1, . . . , i2}
and j ∈ {i1, . . . , i2 − 1}. Choose Rr,s '= 0 with deg(Rr,s) = M . Then by the
second remark we can find another Rr,s with deg(Rr′,s) = M and r′ < r. We
can repeat this until we find a Ri,j with i and j as in the type 1 equations.
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Thus, by the first remark we obtain a contradiction.

The proof proceeds in the same way with the next block, formed by
columns indexed from i2 to i3 − 1, and so on until we prove that R = id.

This ends the long proof for the injectivity.

3.2.3 Proof of 3

Even if it would make things easier, we will no longer assume in the proof
of the surjectivity that I0 is a lex segment ideal.

We want to find for every ideal I ⊂ k[x, y] such that in(I) = I0, a
Hilbert-Burch matrix of the form X + A with A ∈ AI0 .

It is easy to see that we can find a Gröbner basis {f0, . . . , ft} for I with
in(fi) = xt−iymi and leading coefficient 1. Because of the form the leading
terms of these polynomials, we can also suppose that the monomials in the
support of the fi’s are not divisible by xt (except for the leading term of
f0). Otherwise, if there exists an i such that cxt+hyl ∈ Supp(fi), for some
h, l ≥ 0 and c ∈ k, we modify fi to be fi − cxhylf0.

The S-polynomials ydifi−1 − xfi have no term in their support divisible
by xt+1. So their reduction to 0 will be of the following form:

ydifi−1 − xfi +
t∑

j=0

aj,ifj = 0, (3.2)

with ai,j ∈ k[y], ∀ i, j and in(βjfj) ≤ in(ydifi−1 − xfi), for all j = 0, . . . , t.
The fact that ai,j ∈ k[y] follows by slightly changing the proof of Lemma 3.3.

These S-polynomials correspond to syzygies of the leading terms of the
fi’s:

ydi(xt−i+1ymi−1)− x(xt−iymi).

As these syzygies generate the syzygy module of in(fi), Schreyer’s theorem
implies that the equations (3.2) generate the syzygy module of the fi’s.

Setting these syzygies as columns of a matrix, we obtain a (t + 1) × t
matrix of the form X + A, where the entries of A are elements of k[y]. By
the Hilbert-Burch theorem we have that the t-minors of this matrix generate
the ideal I.

By the inequality of the leading terms in (3.2) we obtain the following
restrictions on the degrees of the ai,j :

deg(ai,j) ≤
{

i− j + mj −mi−1 − 1 if i ≤ j,

i− j + mj −mi−1 if i > j.
(3.3)

Now we will show how to modify this matrix in order to obtain a new
matrix X +A′ with A′ ∈ AI0 . It is easy to see that elementary operations on



50 Parametrizations of Ideals in k[x, y]

the Hilbert-Burch matrix do not change the fact that the maximal minors
generate the ideal.

To do this we will use a sequence of pairs of standard operations, that
we will call reduction moves.

Take i '= j, with i ∈ {1, . . . , t + 1} and j ∈ {1, . . . , t}. Suppose we have

deg(ai,j) ≥
{

di if i < j,

dj if i > j.
(3.4)

If i < j, (resp. i > j) denote by qi,j the quotient of the division of ai,j by
ydi + ai,i, (resp. ydj + aj,j). So we have:

ai,j =
{ (ydi + ai,i)qi,j + ri,j , with deg(ri,j) < di, if i < j,

(ydj + aj,j)qi,j + ri,j , with deg(ri,j) < dj , if i > j.
(3.5)

Notice that, as the degree of ai,j is bounded as in (3.3), we also have:

deg(qi,j) ≤
{

i− j + mj −mi − 1 if i < j,

i− j + mj−1 −mi−1 if i > j.
(3.6)

We will call a (i, j)-reduction move the following two standard operations:

If i < j:

- Add the ith column multiplied by −qi,j to the jth column.

- Add the (j + 1)th row multiplied by qi,j to the (i + 1)th row.

If i > j:

- Add the jth row multiplied by −qi,j to the ith row.

- If j ≥ 2, add the (i − 1)th column multiplied by qi,j to the (j − 1)th
column.

So in the second case, when j = 1 we only do the first move.

The first operation, reduces the degree of the entry in the position (i, j),
by replacing ai,j with ri,j . The second one cancels the multiple ox x that
appeared in the position (i+1, j) if i < j, (respectively the position (i, j−1)
if i > j) as a consequence of the first move.

Notice that, after each such reduction move, the degrees in the new
matrix are still bounded as in (3.3). We take a look at what happens for
i < j, the other case being similar.
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For the first operation, for all k = 1, . . . , t + 1, we have:

deg(ak,iqi,j) ≤ (k−i+mi−mk−1)+(i−j+mj−mi−1) = k−j+mj−mk−1−1.

For the second operation, for all k = 1, . . . , t, we have:

deg(aj+1,kqi,j) ≤ j+1−k+mk−mj+i−j+mj−mi−1 = i+1−k+mk−mi−1.

As it is clear that every reduction move influences more elements, not
just the one it is aimed at, we will have to determine which entries are
influenced ”most”. This way, we will be able to conclude that after a finite
sequence of reduction moves we will be able to reduce the degree of an entry
by 1 and leave all other degrees as before. This way, in the end, we will be
able to reduce the matrix to the desired form. Notice that, once the matrix
is in AI0 , by definition we cannot make any more reduction moves.

Let us denote with Redi,j the reduction moves. We will say that Redi,j

is maximal in (k, l) if ak,l is modified such that deg(ak,l) reaches the upper
bound given in (3.3). It is easy to see that in order to get this, also deg(qi,j)
has to reach the upper bound given in (3.6). Let us see where a reduction
could be of maximal degree.

Case 1: i < j. We have to have deg(qi,j) = i− j +mj−mi−1 according
to (3.6). By definition Redi,j will act on the elements of the jth column and
on those of the (i + 1)th row. Let us first take a look at what happens on
the jth column.

Let k ∈ {1, . . . , t + 1}. We want to see what the degree of ak,iqi,j could
be:

If k < i

deg(ak,iqi,j) = k − i + mi −mk−1 − 1 + i− j + mj −mi − 1

= (k − j + mj −mk−1 − 1)− 1,

so it cannot reach the upper bound in (3.3).
If k ≥ j

deg(ak,iqi,j) = k − i + mi −mk−1 + i− j + mj −mi − 1

= k − j + mj −mk−1 − 1,

so it can be maximal only if k < j.

Let us now look at what happens on the (i+1)th row. Let k ∈ {1, . . . , t}.
The degree of aj+1,kqi,j could be:

If k ≤ j + 1

deg(aj+1,kqi,j) = j + 1− k + mk −mj + i− j + mj −mi − 1

= (i + 1− k + mk −mi)− 1,
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so it can reach the upper bound only if k > i + 1.
If k > j + 1

deg(aj+1,kqi,j) = j + 1− k + mk −mj − 1 + i− j + mj −mi − 1

= (i + 1− k + mk −mi − 1)− 1,

so it cannot be maximal.
So for the reduction moves that act above the diagonal the positions that
could be maximal are:

(k, j) if i < k < j

(i + 1, k) if i + 1 < k ≤ j + 1.

Case 2: i > j. We have to have deg(qi,j) = i−j+mj−1−mi−1 according
to (3.6). By definition Redi,j will act on the elements of the ith row and on
those of the (j − 1)th column. Let us first take a look at what happens on
the ith row.

Let k ∈ {1, . . . , t}, k '= j . We want to see what the degree of aj,kqi,j

could be:
If k < j

deg(aj,kqi,j) = j − k + mk −mj−1 + i− j + mj−1 −mi−1

= i− k + mk −mi−1,

so it reaches the upper bound in (3.3).
If k > j

deg(aj,kqi,j) = j − k + mk −mj−1 − 1 + i− j + mj−1 −mi−1

= (i− k + mk −mi−1)− 1,

so it can be maximal only if k > i.

Let us now look at what happens on the (j − 1)th column. Let k ∈
{1, . . . , t + 1}. The degree of ak,i−1qi,j could be:

If k < i− 1

deg(ak,i−1qi,j) = k − i + 1 + mi−1 −mk−1 − 1 + i− j + mj−1 −mi−1

= k − j + 1 + mj−1 −mk−1 − 1,

so it can reach the upper bound only if k < j − 1.
If k ≥ i− 1

deg(ak,i−1qi,j) = k − i + 1 + mi−1 −mk−1 + i− j + mj−1 −mi−1

= k − j + 1 + mj−1 −mk−1,
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so it can be maximal.

So for the reduction moves that act below the diagonal the positions that
could be maximal are:

(i, k) if k < j or k > i

(k, j − 1) if k < j − 1 or k ≥ i− 1.

Here is a graphical representation of the positions that may be maximal
for Redi,j :

$ $ $ $
$ $

%

%j

i + 1

i

i

i− 1

j

j − 1

i i + 1 j j + 1 j − 1 j i

i < j i > j

The circle represents the position of the ai,j that is being reduced, the dots
represent entries on the diagonal. The thin lines are columns, respectively
rows, and the thick lines represent the positions in which maximal elements
for Redi,j may appear.

Now we will show how, using these reduction moves, we can bring the
Hilbert-Burch matrix to the form we want to.

We will proceed by induction on t. When t = 1 there is not much to
prove, so we can assume by induction that the upper left t× (t− 1) part of
the matrix is already in the form we want. We will show now how we can
bring the elements of the last row and column to the desired form. We will
start with the last row.

Suppose that for j ∈ {1, . . . , t} we have already brought the elements
at+1,t, . . . , at+1,j+1 to the desired degree. Also let us suppose that we have
deg(at+1,j) = t + 1− j + mj −mt > dj − 1.

First we do the reduction move Redt+1,j . This will have maximal degree.
Then we will apply the other reduction moves that are necessary to bring the
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t×(t−1) upper left part to the desired form. This can be done by induction.
It is easy to see from the graphical representation, that for all these moves,
the elements at+1,j , . . . , at+1,t will not be maximal. Now, also by induc-
tion we will bring to the desired form also the elements at+1,t, . . . , at+1,j+1.
Again, as the reduction moves will not be of maximal degree, by definition
the element at+1,j will not be maximal for any of them. So after performing
all these reductions we will have deg(at+1,j) < t + 1− i + mj −mt.

This whole sequence of operations depends on the first reduction move
Redt+1,j . It is easy to notice that, even if we will start with a reduction that
is not of maximal degree, we will still reduce the degree of at+1,j by at least
one. So we can do this until deg(at+1,j) ≤ dj − 1.

Now let us bring also the elements on the last column to the desired
form. Suppose that the first t − 1 columns and at+1,t are of the desired
form. Also suppose that we brought a1,t, . . . , ai−1,t to the desired form. Let
deg(ai,t) = i− t− 1 + mt −mi−1 > di − 1.

We apply now Redi,t which will be of maximal degree. Then we will
bring the rest of the matrix, that we assumed had already the desired form,
in the desired form again. These operations can be done by induction, and
it is easy to see that the elements a1,t, . . . , ai−1,t will not be maximal. So
also ai,t will not be maximal for any reduction. This means that we have
reduced its degree by at least one.

This whole sequence of operations depends on the first reduction move
Redi,t, and it is easy to notice that, even if we will start with a reduction
that is not of maximal degree, we will still reduce the degree of ai,t by at
least one. So we can do this until deg(ai,t) ≤ di − 1. We have thus proven
the surjectivity.

3.2.4 Dimension

In this part we will show how to compute the dimension of the affine space
V (I0) that we parametrized. Using the same notation as in the proof of the
main theorem we have:

Proposition 3.5. Let I0 ⊂ R be a monomial lex-segment ideal. We have
the following formula:

dim(V (I0)) = dimk(R/I0)+2(t+1)−β0,t+1−2β0,t+
∑

i≥0

((
β0,i

2

)
+ β0,i+1β0,i

)

where βi,j = βi,j(I0) are the graded Betti numbers of I0. In particular β0,i

is the number of minimal generators of I0 that have degree i.

Proof. To compute the dimension of V (I0) we just have to look at the num-
ber of coefficients that appear in a matrix of AI0 . For this, we will use the
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same notations that we used in the proof of 2. We recall that

I = {i0, . . . , iq} := {i ∈ 1, . . . , t | di ≥ 3} ∪ {1},
J = {j ∈ 1, . . . , t | dj ≥ 2},

j(l) = Min{j ∈ J | j > l},
j̃(l) = Max{j ∈ J | j ≤ l}.

This means that we have:

deg(xt) = . . . = deg(xt−j1+1ymj1−1) <
< deg(xt−j1ymj1 ) = . . . = deg(xt−j2+1ymj2−1) <
< deg(xt−j2ymj2 ) = . . . = deg(xt−j3+1ymj3−1) <

. . .
< deg(xt−jqymjq ) = . . . = deg(ymt),

where J = {j1, j2, . . . , jq}. Denote by J ∗ = {j0, j1, . . . , jq, jq+1} where
j0 = 1, jq+1 = t + 1 and the others are just the elements of J . As I0 is a
lex-segment ideal, for i ∈ {1, . . . , q}:

ji+1 − ji = number of minimal generators of degree t− ji + mji

= β0,t−ji+mji
(I0).

We also have:

j1 − j0 + 1 = number of minimal generators of degree t

= β0,t(I0).

Let us now look at the form of a matrix in AI0 . We have:

deg(ak,l) ≤






dk − 1 if k ≤ l,

1 if l = js ∈ J and js + 1 ≤ k ≤ js+1,

0 if l /∈ J and l + 1 ≤ k ≤ j(l),

0 if j(l) = js ∈ J \ I and js + 1 ≤ k ≤ js+1,

− 1 otherwise.

The first case are the entries on and above the diagonal. As a polynomial
in k[y] of degree at most r has r + 1 coefficients, form the first case we get:

t∑

i=1

(t− i + 1)di =
t∑

i=1

mi = dimk(R/I0).

From the second case, which corresponds to entries below ydj + aj,j , with
j ∈ J , that may have degree 1, we get:

q+1∑

i=2

2(ji − ji−1) =
∑

i&=t

2β0,i = 2
∑

β0,i − 2β0,t = 2(t + 1)− 2β0,i.
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The third case, which corresponds to entries below y + al,l with l /∈ J , gives
us:

q+1∑

i=1

(ji − ji−1)(ji − ji−1 − 1)
2

=
∑

i≥0

(
β0,i

2

)
.

And finally, the last part will count the constants in the rectangular blocks
below the diagonal. These blocks appear only if there are generators in two
consecutive degrees. We have:

q∑

i=1

(ji − ji−1)(ji+1 − ji) = β0,t+1(β0,t − 1) +
∑

i&=t

β0,iβ0,i+1

=
∑

i≥0

β0,iβ0,i+1 − β0,t+1.

To conclude, we only have to add up the results in the four different cases.

3.2.5 Examples

We will show now with three examples how the proof of the main theorem
works. We start with a ”small” example from which it will be easier to
see the main idea behind the proof of the injectivity. Then, we are forced
to choose a rather ”large” example in order to present the more technical
arguments that we use in the proof. The last example shows how to find the
canonical Hilbert-Burch matrix for a given ideal I, i.e. the corresponding
matrix A ∈ Ain(I).

Example 1

Let I0 be the following ideal:

I0 = (x3, x2y5, xy7, y11).

So we have: m0 = 0, m1 = 5, m2 = 7, m3 = 11 and d1 = 5, d2 = 2,
d3 = 4. The sets of ”special” indices are: I = {1, 3} and J = {1, 2, 3}. Let
us compute the dimension in this case. We have dimk(R/I0) = 5 + 7 +11 =
23. The non-zero Betti numbers are: β0,3 =β0,7 =β0,8 =β0,11 = 1. So by
applying the formula we get:

dim(V (I0)) = 23 + 2 · 4− 0− 2 · 1 + 1 = 30.

The matrix that bounds the degrees of the entries of a matrix A ∈ AI0 is:




4 4 4
1 1 1
0 1 3

−3 −2 1



 .
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By looking at this matrix we can check that the formula of the dimension is
correct in this case.
Now let A and B be two matrices in AI0 . The matrix X + A will be:

X + A =





y5 + a1,1 a1,2 a1,3

−x + a2,1 y2 + a2,2 a2,3

a3,1 −x + a3,2 y4 + a3,3

0 0 −x + a4,3



 .

The matrix X + B will have a similar form. Using the same notations
as in the proof we can write:

f0 = g0,
f1 = g1,
f2 = g2 + R1,2 g1,
f3 = g3 + R1,3 g1 + R2,3 g2.

So the transition matrix R will have the following form:

R =





1 0 0 0
0 1 R1,2 R1,3

0 0 1 R2,3

0 0 0 1



 .

It is easy to see that, as the columns of X +A are syzygies for (f0, f1, f2, f3),
the columns of R(X + A) will be syzygies for (g0, g1, g2, g3). From these we
will subtract the necessary multiples of the columns of B in order to obtain
syzygies with entries in k[y]:

S1 =




y5 + a1,1

−x + a2,1 + a3,1R1,2

a3,1

0



−




y5 + b1,1

−x + b2,1

b3,1

0



 ,

S2 =




a1,2

y2 + a2,2 + (−x + a3,2)R1,2

−x + a3,2

0



−




b1,2

y2 + b2,2

−x + b3,2

0



−




(y5 + b1,1)R1,2

(−x + b2,1)R1,2

b3,1 R1,2

0



 ,

S3 =




a1,3

a2,3 + (y4 + a3,3)R1,2 + (−x + a4,3)R1,3

y4 + a3,3 + (−x + a4,3)R2,3

−x + a4,3



−




(y5 + b1,1)R1,3

(−x + b2,1)R1,3

b3,1 R1,3

0



−

−




b1,2 R2,3

(y2 + b2,2)R2,3

(−x + b3,2)R2,3

0



−




b1,3

b2,3

y4 + b3,3

−x + b4,3



 .
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From S1 we get that:

a2,1 + a3,1R1,2 − b1,2 = 0.

But we cannot draw any conclusion from here, as a3,1 may also be 0.
From the first entry of S2 we have

a1,2 − b1,2 − (y5 + b1,1)R1,2 = 0.

As deg(a1,2) ≤ 4 and deg(b1,2) ≤ 4 we obtain that R1,2 = 0. We set R1,2 = 0
in S3 and we get

a1,3 − b1,3 − (y5 + b1,1)R1,3 − b1,2R2,3 = 0,

a2,3 + a4,3R1,3 − b2,1R1,3 − (y2 + b2,2)R2,3 − b2,3 = 0.

From the first equation, as all the a’s and b’s have degree less then 4 we
get that if R1,3 '= 0 then

deg(R1,3) < deg(R2,3).

From the second equation, as this time all the a’s and b’s have degree less
then 1 we get that if R2,3 '= 0 then

deg(R2,3) < deg(R1,3).

This means that we actually must have R1,3 = R2,3 = 0.

Example 2

In the previous example, we did not have to change the equations. Also, as
all indices were ”special” in that case, we obtained directly strict inequalities.
In the next example we will see all the possible types of situations that may
arise. Let I0 be the following ideal:

I0 = (x12, x11y3, x10y4, x9y5, x8y10, x7y11, x6y12,

x5y14, x4y15, x3y16, x2y19, xy20, y21).

So t = 12, the m’s and the d’s are:

m = (0, 3, 4, 5, 10, 11, 12, 14, 15, 16, 19, 20, 21),

d = (3, 1, 1, 5, 1, 1, 2, 1, 1, 3, 1, 1).

The sets of ”special” indices are:

I = {1, 4, 10},
J = {1, 4, 7, 10}.
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Let us again compute the dimension of V (I0). In this case dimk(R/I0) =
150. The non-zero Betti numbers are: β0,12 = 1 and β0,14 =β0,18 =β0,19 =β0,21 =
3. So the dimension will be:

dim(V (I0)) = 150 + 2 · 13− 0− 2 · 1 + 3 + (3 + 9) + 3 + 3 = 195.

One can again verify this is true by looking at the matrix that bounds
the degrees of the matrices in AI0 . We will now look at a general matrix
A ∈ AI0 . This will be an 13 × 12 matrix, with entries polynomials in k[y].
The matrix that bounds the degrees of the ai,j ’s is the following:





2 2 2 2 2 2 2 2 2 2 2 2
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 4 4 4 4 4 4 4 4 4

−3 −3 −3 1 0 0 0 0 0 0 0 0
−3 −3 −3 1 0 0 0 0 0 0 0 0
−3 −3 −3 1 0 0 1 1 1 1 1 1
−4 −4 −4 0 0 0 1 0 0 0 0 0
−4 −4 −4 0 0 0 1 0 0 0 0 0
−4 −4 −4 0 0 0 1 0 0 2 2 2
−6 −6 −6 −2 −2 −2 −1 −1 −1 1 0 0
−6 −6 −6 −2 −2 −2 −1 −1 −1 1 0 0
−6 −6 −6 −2 −2 −2 −1 −1 −1 1 0 0





.

In order to emphasize the maximal possible degree of each ai,j '= 0 we
denote:

ai,j =
{

• ymi,j , if mi,j > 0,
c , if mi,j = 0.

The dot stands for the coefficient of the highest power of y. With this
notation the matrix A is:




• y2 • y2 • y2 • y2 • y2 • y2 • y2 • y2 • y2 • y2 • y2 • y2

• y c c c c c c c c c c c
• y c c c c c c c c c c c
• y c c • y4 • y4 • y4 • y4 • y4 • y4 • y4 • y4 • y4

0 0 0 • y c c c c c c c c
0 0 0 • y c c c c c c c c
0 0 0 • y c c • y • y • y • y • y • y
0 0 0 c c c • y c c c c c
0 0 0 c c c • y c c c c c
0 0 0 c c c • y c c • y2 • y2 • y2

0 0 0 0 0 0 0 0 0 • y c c
0 0 0 0 0 0 0 0 0 • y c c
0 0 0 0 0 0 0 0 0 • y c c





.
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Let B ∈ AI0 be another matrix as in the proof of the injectivity. Suppose
that they both parametrize the same ideal. The transition matrix R from
X + A to X + B is:





1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 R1,4 R1,5 R1,6 R1,7 R1,8 R1,9 R1,10 R1,11 R1,12

0 0 1 0 R2,4 R2,5 R2,6 R2,7 R2,8 R2,9 R2,10 R2,11 R2,12

0 0 0 1 R3,4 R3,5 R3,6 R3,7 R3,8 R3,9 R3,10 R3,11 R3,12

0 0 0 0 1 0 0 R4,7 R4,8 R4,9 R4,10 R4,11 R4,12

0 0 0 0 0 1 0 R5,7 R5,8 R5,9 R5,10 R5,11 R5,12

0 0 0 0 0 0 1 R6,7 R6,8 R6,9 R6,10 R6,11 R6,12

0 0 0 0 0 0 0 1 0 0 R7,10 R7,11 R7,12

0 0 0 0 0 0 0 0 1 0 R8,10 R8,11 R8,12

0 0 0 0 0 0 0 0 0 1 R9,10 R9,11 R9,12

0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1





.

Now we take a look at the syzygies that arise from multiplying the tran-
sition matrix with the matrix X +A. It is clear that when multiplying with
the first three columns of X + A, the R’s do not appear. Also when multi-
plying columns 4 to 9, the last three columns of the matrix R do not play
any role. So in this example we will look just at the Ri,j ’s with j ≤ 9. We
will now follow the steps of the proof of the injectivity.

When me multiply the 4th column of X + A with the transition matrix
we obtain:

• y2

c + (−x + • y)R1,4 + • yR1,5 + • yR1,6 + cR1,7 + cR1,8 + cR1,9

c + (−x + • y)R2,4 + • yR2,5 + • yR2,6 + cR2,7 + cR2,8 + cR2,9

y5 + (−x + • y)R3,4 + • yR3,5 + • yR3,6 + cR3,7 + cR3,8 + cR3,9

(−x + • y) + cR4,7 + cR4,8 + cR4,9

• y + cR5,7 + cR5,8 + cR5,9

• y + cR6,7 + cR6,8 + cR6,9

c
c
c
0
0
0
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To cancel the x’s that appear, we add to this syzygy:

(−R1,4) times the first column of X + B,
(−R2,4) times the 2nd column of X + B,
(−R3,4) times the 3rd column of X + B,

4th column of X + B.

As this column vector will be a syzygy with entries polynomials in y, we
obtain that all the entries must be 0. So we obtain the following equations:

• y2 − y3R1,4 − • y2R2,4 − • y2R3,4 = 0,

c + • yR1,4 + • yR1,5 + • yR1,6 + cR1,7 + cR1,8 + cR1,9

−• yR1,4 − yR2,4 − cR3,4 = 0,

c + • yR2,4 + • yR2,5 + • yR2,6 + cR2,7 + cR2,8 + cR2,9

−• yR1,4 − cR2,4 − yR3,4 = 0.

We obtain also other equations, but these will be the only equations that
we actually can deduce something from. Notice that the summands in bold
do not depend on the choice of the entries of A or B. The coefficients of
R1,4, R2,4 and R3,4 are of the highest degree. This means that:

If R1,4 '= 0 then

deg(R1,4) <

{
deg(R2,4), or
deg(R3,4).

If R2,4 '= 0 then






deg(R2,4) <

{
deg(R1,j) for some j ∈ {7, 8, 9}, or
deg(R3,4),

or

deg(R2,4) ≤ deg(R1,j) for some j ∈ {4, 5, 6}.

If R3,4 '= 0 then





deg(R3,4) < deg(R2,j) for some j ∈ {7, 8, 9},
or

deg(R3,4) ≤
{

deg(R2,j) for some j ∈ {4, 5, 6}, or
deg(R1,4).

Most of the relations will be obtained in the same way. The only different
situation will appear when we multiply the matrix R with the 7th column of
X + A. In this case we will obtain two equations which we need to modify:
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c + cR1,4 + cR1,5 + y2R1,6 + • yR1,7 + • yR1,8 + • yR1,9−
− yR2,7 − cR3,7 − cR4,7 − cR5,7 − cR6,7 = 0, (3.7)

c + cR2,4 + cR2,5 + y2R2,6 + • yR2,7 + • yR2,8 + • yR2,9−
− • yR1,7 − yR3,7 − cR4,7 − cR5,7 − cR6,7 = 0. (3.8)

By the proof, we want to get inequalities on the degrees of R2,7, re-
spectively R3,7 from the equations (3.7) and (3.8). But the degree of their
coefficients is not maximal among the other coefficients. To correct this we
will use the following equations:

• y2 − y3R1,5 − • y2R2,5 − • y2R3,5 = 0, (3.9)
• y2 − y3R1,6 − • y2R2,6 − • y2R3,6 = 0, (3.10)

+cR1,4 + • yR1,5 + • yR1,6 + cR1,7 + cR1,8 + cR1,9−
−yR2,6 − cR3,6 = 0. (3.11)

To obtain a ”good” equation for R2,7 we multiply (3.7) by y and subtract
(3.10). To obtain a ”good” for R3,7 we multiply (3.11) by y and subtract
it from (3.8). Then, as me may still have the coefficients of R1,5 and R1,6

of higher degree then the one of R3,7, we multiply the new equation by y
and subtract from it (3.9) times a constant and (3.10) times a constant.
And this will be enough, as in both (3.9) and (3.10) the coefficients of R1,5,
respectively R1,6 are of degree strictly higher then the other coefficients that
may appear. This way the equation of R2,7 will become:

• y2 + • yR1,4 + • yR1,5 + • y2R1,6 + • y2R1,7 + • y2R1,8+
• y2R1,9 − y2R2,7 − • yR3,7 − • yR4,7 − • yR5,7 − • yR6,7− (3.12)

− • y2R2,6 − • y2R3,6 = 0.

One can see that now we obtain either inequalities on the degree of R2,7

or that R2,7 is of degree 0. This is why we have to consider two cases.

Denote by M the maximum of the degrees of the R’s. The first case
is when M = 0. In this case we obtain that all the R’s are 0 without
changing the original equations. First we get that R1,4 = . . . = R1,9 = 0
and R4,7 = . . . = R4,9 = 0 because their degree cannot be maximal. Then,
by looking at what is left of the equations of the R2,j ’s we get that also
R2,4 = . . . = R2,9 = 0. And so on.

If M > 0 then we look at the R’s with maximal degree. So the fact that
R2,7 could be of degree 0 (i.e. not maximal), does not change the proof.
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Suppose for instance that R3,8 is of maximal degree. So its degree cannot
be strictly less then the degree of another Ri,j . So we have:

deg(R3,8) =






deg(R1,8), or
deg(R2,6), or
deg(R2,7).

The degree of R1,8 cannot be maximal.
If R2,7 is a constant, we cannot have this equality either. So deg(R2,6) = M .
But then

deg(R2,6) =
{

deg(R1,6), or
deg(R1,5).

And none of those can be maximal.
If R2,7 would be of maximal degree we get by (3.12) that

deg(R2,7) =






deg(R1,j) for some j ∈ {6, . . . , 9}, or
deg(R2,6), or
deg(R3,6).

Again it cannot be any of the R1,j ’s, and as we have seen neither R2,6 that
are of maximal degree. So it must be R3,6. But then we have:

deg(R3,6) =
{

deg(R1,6), or
deg(R2,5).

So by the same argument we must have deg(R2,5) = M . But then we get
that deg(R1,4) = M or deg(R1,5) = M - a contradiction.

It is easy to notice that if some of the Ri,j would be 0, this would only
reduce the number of cases we have to consider.

Example 3

Now we will give an example of how the proof of the surjectivity of ψ works.
That is we will start with an ideal I ⊂ R with dim(R/ in(I)) = 0 and
construct the corresponding matrix of Ain(I).

Let I be the ideal generated by the following polynomials:

f0 = x3 − x2y − 2xy2 + 2y3 − 2x2 + xy + y2 − x + 2y − 2,

f1 = x2y2 − 2y4 − x3 + x2y − 2y3 + x2 − 3xy + 4y2 + 4x− y,

f2 = xy3 − y4 − 2x2y + 6xy2 − 5y3 + x2 − xy + 2y2 − 3x + 4y − 2,

f3 = y5 + x2y2 − 2xy3 + 2y4 + 3xy2 + 2y3 − x2 − 2xy − y2 − x− 11y + 6.

These polynomials are already a DRL Gröbner basis for I. So its initial
ideal will be I0 = in(I) = (x3, x2y2, xy3, y5).We have: t = 3, m0 = 0,
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m1 = 2, m2 = 3, m3 = 5 and d1 = 2, d2 = 1, d3 = 2. Notice first that in the
support of f1 there is a monomial divisible by a power of x higher than or
equal to t: x3. So we will set f1 to be f1 + f0.

The next step is to compute the S-polynomials:

S1,0 = y2f0 − xf1,

S2,1 = y f1 − xf2,

S3,2 = y2f2 − xf3.

After performing the division algorithm we obtain:

S1,0 = (−1)f0 + yf1 + f2 + 0f3,
S2,1 = (−2y + 1)f0 + f1 + (−y + 1)f2 + f3,
S3,2 = (y2 − 1)f0 + 3f1 + f2 + (y + 1)f3.

By Schreyer’s theorem, these syzygies generate the syzygy module of I. So
we have obtained the following Hilbert-Burch matrix:





y2 − 1 −2y + 1 y2 − 1
−x + y y + 1 3

1 −x− y + 1 y2 + 1
0 1 −x + y + 1



 .

Notice that, as expected, it is a matrix of the form X + A. The matrix that
bounds the degrees of the entries of the matrices in AI0 is:





1 1 1
1 0 0
1 0 1
0 0 1



 , and A =





−1 −2y + 1 y2 − 1
+y 1 3

1 −y + 1 1
0 1 −y + 1



 ,

so A /∈ AI0 . We will need to do some reduction moves. We will start looking
at the upper left 2×1 corner of A. There the bounds are respected. Now we
will look at the up upper left 3× 2 corner. We start looking at the last row
of this block, from right to left. Then, if everything is fine there, we look
at the last column from top to bottom. In this case, the first entry that we
look at, (a3,2) has degree higher than the bound. So we apply the reduction
move Red3,2 to X + A:

- Subtract from row 3, row 2 multiplied by (-1) .

- As you can see, in position 3,1 there is an entry which contains x. So
to cancel this x we subtract from column 1: column 2 multiplied by
(1). We obtain:




y2 − 1 −2y + 1 y2 − 1
−x + y y + 1 3

−x + y + 1 −x + 2 y2 + 4
0 1 −x + y + 1



 , then




y2 + 2y − 2 −2y + 1 y2 − 1

−x− 1 y + 1 3
y − 1 −x + 2 y2 + 4
−1 1 −x + y + 1



 .
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Now we start over with checking the matrix. This time we find an entry
with degree higher than the bound in position 1,3. We apply Red1.3:

- Subtract from column 3, column 1 multiplied by 1.

- Subtract from row 2, row 4 multiplied by 1. We obtain:



y2 + 2y − 2 −2y + 1 −2y + 1

−x− 1 y + 1 x + 4
y − 1 −x + 2 y2 − y + 5
−1 1 −x + y + 2



 , then




y2 + 2y − 2 −2y + 1 −2y + 1

−x− 2 y + 2 y + 6
y − 1 −x + 2 y2 − y + 5
−1 1 −x + y + 2



 .

We check again the matrix in the same order and find that the entry
2,3 does not respect the upper bound. Notice that this entry was of lower
degree when we started. So we apply now Red2,3:

- Subtract from column 3, column 2 multiplied by (-1).

- Subtract from row 3, row 4 multiplied by (-1). We obtain:



y2 + 2y − 2 −2y + 1 0

−x− 2 y + 2 4
y − 1 −x + 2 y2 + x− y + 3
−1 1 −x + y + 1



 , then




y2 + 2y − 2 −2y + 1 0

−x− 2 y + 2 4
y − 2 −x + 3 y2 + 4
−1 1 −x + y + 1



 .

And now, after checking again, we find that this time the matrix respects
all the upper bounds. So the matrix A′ ∈ AI0 that corresponds to the ideal
I is: 



2y − 2 −2y + 1 0
−2 2 4

y − 2 3 4
−1 1 y + 1



 .

The generators of I given by the signed minors of the Hilbert-Burch matrix
have changed. They are now:

f ′0 = x3 − x2y − 2xy2 + 2y3 − 2x2 + xy + y2 − x + 2y − 2,

f ′1 = x2y2 − xy3 − y4 + 2x2y − 8xy2 + 5y3 − 2x2 − xy + 3y2 + 6x− 3y,

f ′2 = xy3 − y4 − 2x2y + 6xy2 − 5y3 + x2 − xy + 2y2 − 3x + 4y − 2,

f ′3 = y5 − 2xy3 + 4y4 + 5xy2 + 2y3 − 6y2 − 4x− 12y + 8.

3.3 Ideals in k[x, y, z]

In this section we will consider ideals of the polynomial ring in three vari-
ables. Given any monomial ideal J0 of k[x, y, z] and considering the affine
variety of the homogeneous ideals that have I0 as initial ideal for a certain
term order τ , we do not obtain in general the affine space (see [8] and [17] for
examples). We will prove that if we take J0 = I0k[x, y, z], with I0 ∈ k[x, y]
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a lex-segment ideal, and choose the degree reverse lexicographic order in-
duced by x > y > z, then Vh(J0) is again the affine space. We also give
a parametrization for this space, which comes from the parametrization of
V (I0).

First we will introduce some notation and recall some results that we
will use.

3.3.1 Notation and useful results

We will denote by S := k[x, y, z] and, as before, R = k[x, y]. We present
now some known results on homogenization and dehomogenization. Most
of them can be found in a more general form in [32].

Definition 3.6. Let f ∈ R and F ∈ S be two polynomials. We will write
f = c1t1 + . . . + csts, with ci ∈ k and ti monomials in x and y. Denote
ui := deg(ti) and set µ := max{ui}.

a) We define the homogenization of f in S to be:

fhom :=
s∑

i=1

citiz
µ−ui .

b) We define de dehomogenization of F with respect to the variable z to
be:

F deh := F (x, y, 1).

Here are some remarks on the behavior of polynomials under the two
operations defined above.

Proposition 3.7. Consider f, g ∈ R and F,G ∈ S.

1. (fhom)deh = f .

2. If s = max{i | zi divides F} then: zs(F deh)hom = F .

3. (fg)hom = fhomghom.

4. (FG)deh = F dehGdeh.

5. (F + G)deh = F deh + Gdeh.

Now we will extend these two operations to ideals.

Definition 3.8. Let I ⊂ R and J ⊂ S be two ideals.

a) We define the homogenization of I in S to be the ideal:

Ihom := (fhom | f ∈ I) ⊆ S).
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b) We define de dehomogenization of J with respect to the variable z to
be the set:

Jdeh := {F deh | F ∈ J} ⊆ R}.

Notice that Jdeh, being the image of J under a surjective ring homomor-
phism from S to R, is also an ideal. We have the following proposition:

Proposition 3.9. Let I ⊂ R and J ⊂ S be two ideals.

1. (Ihom)deh = I.

2. J ⊆ (Jdeh)hom = J :S (z)∞.

3. If I '= R then z is a non-zero divisor of S/Ihom.

On both R and S we will consider from now on the degree reverse lex-
icographic term order. As this term order is degree compatible, from [32],
Chapter 4.3 we can deduce the following.

Lemma 3.10. Let f ∈ R a non-zero polynomial and F ∈ S a non-zero
homogeneous polynomial. Then

1. in(fhom) = in(f).

2. in(F deh) = (in(F ))deh.

The last two results that we will cite in this section will regard the
homogenization and dehomogenization of Gröbner basis.

Proposition 3.11. Let I be an ideal of R and let J be a non-zero homoge-
neous ideal of S .

1. If {f1, . . . , fs} is a Gröbner basis of I, then {fhom
1 , . . . , fhom

s } is a
Gröbner basis of Ihom.

2. If {F1, . . . , Fs} is a homogeneous Gröbner basis of J , then
{F deh

1 , . . . , F deh
s } is a Gröbner basis of Jdeh.

Now we will define similar operations on matrices. In particular, the
dehomogenization of a matrix A with entries S with respect to the variable
z will be just the dehomogenization of all its entries. We will denote this
new matrix, with entries in R by Adeh.

The homogenization of a matrix with entries in R will not be defined this
straight forward. We will define this only for the matrices that parametrize
V (I0).

Let I0 ⊆ R be a monomial ideal generated, as in the previous chapter,
by xt, xt−1ym1 , . . . , ymt . We define its degree matrix to be the (t + 1) × t
matrix U with entries:

ui,j = mj −mi−1 + i− j.

Now we can define the homogenization of a matrix. Notice that this will
depend on the degree matrix associated to I0.
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Definition 3.12. Let A ∈ AI0 , with entries ai,j . For every i = 1, . . . , t + 1
and j = 1, . . . , t we define:

ahom
i,j := zui,j−deg(ai,j)ahom

i,j ,

where ahom
i,j is the standard homogenization defined in 3.6. The homogeniza-

tion of the matrix A will be the matrix with entries ahom
i,j . We will denote

this matrix by Ahom.

Remark 3.13. We could define the homogenization in the same way also
for the matrix X + A. But as the entries of X are either 0 or of degree ui,j

we would have:
(X + A)hom = X + (Ahom).

The matrices Ahom and X+Ahom are homogeneous matrices in the sense
of Definition 4.7.1. of [32]. So their minors will be homogeneous polynomials
in S. In particular, the ideal generated by the maximal minors of X +Ahom

is a homogeneous ideal of S.
For i = 0, . . . , t will denote by fi the determinant of the matrix obtained

from X + A by deleting the (i + 1)th row times (−1)i+1, and by Fi the
determinant of the matrix obtained from X +Ahom by deleting the (i+1)th
row times (−1)i+1. It is easy to see that we have:

Fi = (fi)hom.

We will end this section with a lemma that will turn out useful later.

Lemma 3.14. Let A ∈ AI0 be a matrix. With the above notations we have:

1. (It(X + A))hom = It(X + Ahom).

2. It(X + A) = (It(X + Ahom))deh.

Proof. In the proof of Theorem 3.1 we have seen that the set {f0, . . . , ft}
forms a degree reverse lexicographic Gröbner basis of It(X + A). So, by
Proposition 3.11 we have that the set {F0, . . . , Ft} forms a degree reverse
lexicographic Gröbner basis of (It(X + A))hom. Thus the first part follows.
The second part is an immediate consequence of the first point of Proposition
3.9.

3.3.2 Parametrization

Using the parametrization given by Theorem 3.1, we will now parametrize
the following variety. Let I ⊂ S be an ideal ”of points” in P2 such that z
is not a zero divisor for S/I. That is I is a Cohen-Macaulay homogeneous
ideal and dim(S/I) = 1.
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Remark 3.15. The fact that z is not a zero divisor for S/I is equivalent to
in(I) is generated by monomials that are not divisible by z.

Proof. If there would exist a minimal generator of in(I) divisible by z, given
the fact that we use the degree reverse lexicographic term order, we would
find a homogeneous generator of I that would be a multiple of z.
Now suppose z is a zero divisor, and choose f ∈ S \ I such that zf ∈ I and
in(f) is minimal with this property. As z in(f) ∈ in(I), which is generated by
monomials in x and y, we obtain in(f) ∈ in(I). So there exists a polynomial
g ∈ I with in(f) = in(g). As f − g /∈ I, z(f − g) ∈ I and in(f − g) < in(f)
we obtain a contradiction.

Denote in(I) = J0. The ideal J0 will be of the form:

J0 = I0S, with I0 ⊂ R, a monomial ideal.

We will consider the ideals for which I0 is just as in the hypothesis of Theo-
rem 3.1. So we have that dim(R/I0) = 0 and we will also require I0 to be a
lex-segment ideal. For this type of ideals we will parametrize the following
affine variety:

V (J0) = {I ⊂ S | I is a homogeneous ideal with in(I) = I0S}.

We will prove that this variety is parametrized also by AI0 . Recall that AI0

was the set of matrices with entries polynomials in y, that satisfy (3.1). We
define the following application:

ψ : AI0 −→ V (J0)

ψ(A) = It(X + Ahom), for all A ∈ AI0 .

Theorem 3.16. The application ψ : AI0 −→ V (J0) defined above is a
bijection.

Proof. In order to prove the theorem we need to prove again three things:

1. The application ψ is well defined.

2. The application ψ is injective.

3. The application ψ is surjective.

Proof of 1. For every A in AI0 , denote the ideal It(X + Ahom) by IA.
We need to show that IA is homogeneous and has in(IA) = J0. Using the
notations in the previous section we have by definition that the polynomials
F0, . . . , Ft are homogeneous. We just need to show that they form a Gröbner
basis and that their initial terms generate J0.
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We know from Theorem 3.1 that f0, . . . , ft form a Gröbner basis of
I0. As we have seen that for i = 0, . . . , t we have (fi)hom = Fi, by apply-
ing Proposition 3.11 we get that F0, . . . , Ft form a Gröbner basis. And by
applying Lemma 3.10 we obtain:

in(fi) = in(Fi), for all i = 0, . . . , t.

Proof of 2. Let A and B be two matrices in AI0 . Suppose that ψ(A) =
ψ(B). That is we have:

It(X + Ahom) = It(X + Bhom).

By the second part of Lemma 3.14 we obtain that we also have:

It(X + A) = It(X + B.)

And by the injectivity of ψ we get that A = B.

Proof of 3. Let I ∈ V (J0) be a homogeneous ideal. By Proposition 3.11
we have that Ideh ⊂ R is an ideal that has in(Ideh) = I0. So by Theorem
3.1 we know that

Ideh = It(X + A), for some A ∈ AI0 .

We will show that I = It(X + Ahom). By Lemma 3.14 we have that It(X +
Ahom) = (It(X + A))hom = (Ideh)hom. To complete the proof we just need
to show that I = (Ideh)hom. By Proposition 3.9 this means we have to show
that I = I :S (z)∞. But this is equivalent to z not being a zero divisor for
S/I.

3.4 Betti strata

We will now fix a Hilbert series H and consider all the ideals I of points in
P2 such that the Hilbert series of S/I is H. By an ideal of points in P2 we
understand a homogeneous ideal I ⊂ S such that S/I is Cohen-Macaulay of
dimension 1. In this case we have that the maximal ideal m = (x1, . . . , xn)
of S is not an associated prime of S/I. So, the Hilbert series H will be of
the form:

H(s) =
h(s)
1− s

,

with h(t) the Hilbert series of the 0-dimensional algebra S/I + (%), where %
is a linear non-zero divisor of S/I. Denote by

G(H) = {I ⊂ S | I is an ideal of points with HS/I = H}

the variety that parametrizes graded homogeneous ideals of S such that the
Hilbert series of S/I is H.
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The first restriction that we will use will be to consider ideals for which
z is not a zero divisor. Let I be an ideal of points in P2. This also means
that

I = q1 ∩ . . . ∩ qs,

where for all i we have√qi = pi and pi is the ideal of a point Pi in P2. The
geometric equivalent of z not being a zero divisor for S/I is that none of the
points P1, . . . , Ps belongs to the line of P2 given by z = 0. This means that
the set:

G∗(H) := {I ∈ G(H) | z is a non-zero divisor for S/I}

is an open subset of G(H).
The fact that z is not a zero divisor for S/I implies that in(I) = JS,

where J is an ideal of R. We also have that HR/J(s) = h(s). The same
thing also holds for the degree reverse lexicographic generic initial ideal of
I. So we have that:

Gin(I) = J0S, where J0 ⊂ R.

But in characteristic 0 the generic initial ideal is strongly stable, so we also
get that J0 must be strongly stable. As R = k[x, y], the only strongly stable
ideal with that Hilbert series is Lex(h). This means that the set:

G∗
Lex(H) = {I ∈ G∗(H) | in(I) = Lex(h)S}

is an open subset of G∗(H).

We will study now the Betti strata of this affine set. For a homogeneous
ideal I ⊂ S we will denote by βi,j(I) the (i, j)th Betti number. In particular,
β0,j(I) is the number of minimal generators of I of degree j. It is known
that any two of the sets {β0,j(I)}j , {β1,j(I)}j and {dim(Ij)}j determine the
third. For the fixed Hilbert series H(s) = h(s)/(1−s) and for given integers
j and u we define:

V (H, j, u) = {I ∈ G∗
Lex(H) | β0,j(I) = u},

V (H, j,≥ u) = {I ∈ G∗
Lex(H) | β0,j(I) ≥ u}.

For a vector β = (β1, . . . , βj , . . .) with integral entries we define:

V (H,β) =
⋂

j V (H, j, βj),

V (H,≥ β) =
⋂

j V (H, j,≥ βj).

For the fixed Hilbert function H, we consider the lex-segment ideal
Lex(h) and denote by m0, . . . ,mt its associated sequence. We have shown
that G∗

Lex(H) is parametrized by ALex(H), which is an affine space An. We
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will denote the coordinates of An by a1, . . . , an. So we know that to each
ideal I ∈ G∗

Lex(H) corresponds a unique matrix A ∈ ALex(H). Starting from
this matrix A we can construct a Hilbert-Burch matrix, that is X + Ahom.
For simplicity we will denote:

M := X + Ahom.

We have by the Hilbert-Burch theorem the following free resolution:

0 −→
t⊕

i=1

S(−qi)
M−→

t+1⊕

i=1

S(−pi) −→ I −→ 0 (3.13)

where pi = t + 1− i + mi for i = 1, . . . , t + 1 and qi = pi + 1 for i = 1, . . . , t.
For every integer j we set:

wj = {i | pi = j} and vj = {i | qi = j}.

For every integer j denote by Mj the submatrix of M with row indices wj

and column indices vj . As we are considering matrices that are in ALex(h)

we know that 0 = m0 < m1 < . . . < mt. So we also get t + 1 = p0 ≤
p1 ≤ . . . ≤ pt. This means that we can describe the matrices Mj in terms
of the mi’s. Even more, the entries of these matrices will be independent
coordinates of An.

To compute the graded Betti numbers of I we can tensor the resolution
(3.13) with k and look at the degree j component. This will give us the
following complex of vector spaces, whose homology gives the Betti numbers
of I:

k%vj
Mj−→ k%wj −→ 0.

Hence we have that:

β0,j(I) = (wj − rank(Mj).

This means that β0,j(I) ≥ u is equivalent to

rank(Mj) ≤ (wj − u.

Notice that, as we start from a matrix A ∈ ALex(h), we have (wj = β0,j(Lex(h)).
That is the number of minimal generators of degree j of Lex(h). We also
have (vj = β1,j(Lex(h)) = β0,j−1(Lex(h)).

So we obtain that V (H, j,≥ u) is the determinantal variety given by the
following condition on the β0,j(Lex(h))× β0,j−1(Lex(h)) matrix:

rank(Mj) ≤ β0,j(Lex(h))− u.

It is easy to notice, that for i '= j the sets of variables involved in Mi

and Mj are disjoint. This means that the intersection
⋂

j V (H, j,≥ βj) is
transversal. We have proven the following:
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Proposition 3.17. Each V (H, j,≥ βj) is a determinantal variety and the
variety V (H,≥ β) is the transversal intersection of the V (H, j,≥ βj)’s.
The variety V (H, j,≥ βj) is irreducible and it coincides with the closure of
V (H, j, βj), provided V (H, j, βj) is not empty.

Corollary 3.18. The variety V (H,≥ β) is irreducible.





Appendix A

A CoCoA Program for
Chapter 3

In this appendix we present the implementation of an algorithm which com-
putes the canonical Hilbert-Burch of Theorem 3.1. The algorithm is written
using the language of the computer algebra program CoCoA.

We start with an ideal I ⊂ R with dimk(R/I) < ∞, and check whether
its initial ideal is a lex-segment ideal. The command StampaBene is just a
way to print matrices in a clear way.

Define StampaBene(X,P);
Foreach A In X Do
PrintLn ;
Foreach B In A Do
Print Format(B,P);

End; End End;

Use R::=Q[x,y];
ID:=Ideal( .. );

Ts:=0;
Repeat Ts:=Ts+1; Until x^Ts IsIn LT(ID);
If Len(Gens(ID)) = Ts+1 Then

PrintLn("The initial ideal is a Lex-segment ideal");
Else PrintLn("Find another example. You started wrong.");

End;

In the next step, we compute a Gröbner basis of the ideal. We index the
polynomials in the Gröbner basis such that the power of x in the leading
term of fi is greater than the power of x in the leading term of fj when
i < j. Then, using the same notation as in Chapter 3, we compute t, the
mi’s and the di’s.
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L:=GBasis(ID);
F:=NewList(Len(L));
For I:=1 To Len(F) Do

E:=Log(LT(L[I]));
F[Len(F) - E[1]]:= L[I]/LC(L[I]);

EndFor;

T:=Len(F)-1;
M:=NewList(T+1);
For I:=1 To T+1 Do E:=Log(LT(F[I])); M[I]:=E[2]; End;
D:=NewList(T);
For I:=1 To T Do D[I]:=M[I+1]-M[I]; EndFor;

Now we modify the Gröbner basis {f0, . . . , ft}, such that no monomial,
except in(f0), in the support of any fi is divisible by a higher power of x
than t− 1.

FW:=F;
COUNT:=0;

For I := 2 To T+1 Do
Repeat
K:=0;
Test:=0;
FW[I]:=F[I];
While FW[I] <> 0 And Test = 0 Do
FW[I]:=FW[I] - LM(FW[I]);
If FW[I] <> 0 Then
E:=Log(LT(FW[I]));
H:=E[1] -T;
L:=E[2];
EndIf;
If H >= 0 And FW[I] <> 0 Then
K:=K+1;
COUNT:=COUNT+1;
Test:=Test+1;
F[I]:=F[I] - LC(FW[I])x^H y^L F[1];
EndIf;
EndWhile;
Until K = 0;

EndFor;

PrintLn("We had To change the generators ",COUNT," Times");
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Now we compute a Hilbert-Burch matrix. In most cases this will not be
the canonical Hilbert-Burch matrix that we are looking for. What we do is
compute the generators of the syzygy module by dividing the S-polynomials
Si,i+1 for i = 0, . . . , t − 1 by the Gröbner basis. Then, just to be sure, we
check that the signed minors of this matrix are the polynomials we started
with.

S:=NewList(Len(F)-1);
For J:=1 To Len(S) Do

S[J]:= - (LT(F[J+1])/GCD(LT(F[J]),LT(F[J+1])))F[J] +
(LT(F[J])/GCD(LT(F[J]),LT(F[J+1])))F[J+1];

End;

B:=NewList(Len(F)-1);
For I:= 1 To Len(S) Do

DivAlg(S[I],F);
DIV:=It;
B[I]:=DIV.Quotients;

EndFor;
B:=Transposed(Mat(B));

For I:= 1 To T Do
B[I,I]:=y^D[I] + B[I,I]; B[I+1,I]:=-x+B[I+1,I];

End;

TF:=Reversed(Minors(T,B));
For I:=1 To T+1 Do

If IsEven(T-I) Then
TF[I]:=-TF[I];

End;
End;

TF = F;

Now we bring this matrix to the canonical form, in the way described in
the proof of 3. We let B unchanged, in order to compare the results in the
end, and operate on the matrix A. The matrix GA is the matrix that gives
the degree limits for the matrices in AI0 . The counter NB tells us how many
times we had to operate on the matrix. In the end we will also check that
the new matrix defines the same ideal that we started with.

A:=B;

GA:=Mat[[ -1 | I In 1..T ] | J In 1..(T+1) ];
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For I:=1 To T+1 Do
For J:=1 To T Do
If I<=J Then
GA[I,J]:=Min(I-J-1+M[J+1]-M[I], D[I]-1);
Else GA[I,J]:=Min(I-J+M[J+1]-M[I], D[J]-1);
End;
End;

End;

K:=0;
NB:=0;

Repeat
Test:=0;
K:=0;
For I:= 2 To T+1 Do
If Test = 0 Then
For J:= 1 To I-1 Do
If Test = 0 Then
K:=K+1;
If A[I,I-J] <> 0 And Deg(A[I,I-J],y) > GA[I,I-J] Then
Test:=Test+1;
NB:=NB+1;
C:=(A[I,I-J]-NR(A[I,I-J],[A[I-J,I-J]]))/A[I-J,I-J];
For N:= 1 To T Do
A[I,N]:= A[I,N] - C*A[I-J,N];
EndFor;
PrintLn(’_________________’);
PrintLn(’Q = ’, C);
PrintLn(’I = ’, I);
PrintLn(’J = ’,I-J);
StampaBene(A,25);
PrintLn;
If I-J > 1 Then
For N:= 1 To T+1 Do
A[N,I-J-1]:=A[N,I-J-1] + C*A[N,I-1];
EndFor;
PrintLn(’_________________’);
PrintLn(’Q = ’, C);
StampaBene(A,25);
PrintLn;
EndIf;
EndIf;
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EndIf;
EndFor;

If I>2 Then
For J:= 1 To I-2 Do
If Test = 0 Then
K:=K+1;
If A[J,I-1] <> 0 And Deg(A[J,I-1],y) > GA[J,I-1] Then
NB:=NB+1;
Test:=Test+1;
C:=(A[J,I-1]-NR(A[J,I-1],[A[J,J]]))/A[J,J];
For N:= 1 To T+1 Do
A[N,I-1]:=A[N,I-1] - C*A[N,J];
EndFor;
PrintLn(’_________________’);
PrintLn(’Q = ’, C);
PrintLn(’I = ’, J);
PrintLn(’J = ’,I-1);
StampaBene(A,25);
PrintLn;
For N:= 1 To T Do
A[J+1,N]:=A[J+1,N]+ C*A[I,N];
EndFor;
PrintLn(’_________________’);
PrintLn(’Q = ’, C);
StampaBene(A,25);
PrintLn;
EndIf;
EndIf;
EndFor;

EndIf;
EndIf;
EndFor;
Until K=T^2;

FID:= Ideal(Minors(T,A));
FID=ID;

PrintLn("We had To operate On the matrix ", NB ," Times");
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