Freie Universität Berlin Institut für Mathematik

WiSe24/25

Stand: 6. Dezember 2024

A. Constantinescu O. Parczyk V. Hiebeler D. Schlaugies

Mathematik Entdecken 1 – Hausaufgabe 8

Abgabe via Whiteboard als Nachname_ME1_h8.pdf bis 20:00 am Freitag, den 13. Dezember 2024.

Die Antworten sind stets zu begründen, inklusiv Beispiele.

Aufgabe 1. 4 Punkte

Für jedes $n \in \mathbb{N}$ sei $F_n = 2^{2^n} + 1$ die n-te Fermat Zahl.

- 1. Man zeige*, dass $F_{n+1} = (F_n 1)^2 + 1$ für alle $n \in \mathbb{N}$ gilt.
- 2. Man zeige[†], dass $\prod_{k=0}^n F_k = F_{n+1} 2$ für alle $n \in \mathbb{N}$ gilt.
- 3. Man zeige[‡], dass für alle $i \neq j$ gilt $\operatorname{ggT}(F_i, F_j) = 1$.
- 4. Man verwende Punkt 3 und den Hauptsatz der elementaren Zahlentheorie, um die Unendlichkeit der Menge aller Primzahlen zu beweisen.

Total: 4 Punkte

Zusatzaufgaben auf der Rückseite

Direkter Beweis: :siamiH*

Induktion and Punkt 1. Hinkeis: 1. Punkt 2 und Teilbarkeit. :siamuH_‡

Zusatzaufgaben

Diese Aufgaben werden weder bewertet noch müssen sie abgegeben werden. Sie werden in den Tutorien besprochen und sind für die Klausurvorbereitung sehr empfohlen.

Zusatzaufgabe 2.

Man bestimme alle $a, b, c, d, n \in \mathbb{N}$, sodass

$$2^a \cdot 3^b \cdot 5^{2+c} \cdot 7^d = n!$$

Zusatzaufgabe 3.

Man zeige oder man widerlege:

Wenn p_1, \ldots, p_n die ersten n Primzahlen sind, dann ist $p_1 \cdot \cdots \cdot p_n + 1$ auch prim.

Zusatzaufgabe 4.

Man zeige, dass für alle $n \in \mathbb{N}$ die Zahl $n^2 + n + 1$ nicht durch 5 teilbar ist.

Zusatzaufgabe 5.

Man zeige, dass für alle $x \in \mathbb{Z}$ die Zahl $x^3 - 6x^2 + 11x - 6$ durch 3 teilbar ist.

Zusatzaufgabe 6.

Sei $a = \overline{a_r \dots a_0} \in \mathbb{N}$ eine natürliche Zahl die mit den Ziffern a_r, \dots, a_0 in dem Dezimalsystem dargestellt ist. Sei $k \in \mathbb{N}_{>0}$. Man zeige, dass a genau dann durch 5^k teilbar ist, wenn $\overline{a_{k-1} \dots a_0}$ durch 5^k teilbar ist.

Zusatzaufgabe 7.

Es sei p eine Primzahl und $k \in \mathbb{N}_{>0}$. Man zeige, dass

$$a^2 \equiv a \mod p^k \iff a \equiv 0 \mod p^k \text{ oder } a \equiv 1 \mod p^k.$$

Hinweis: Man versuche den Fall k = 1 zu erst.

Zusatzaufgabe 8.

Man zeige, dass $1 + 2^2 + 3^{3^3}$ nicht das Quadrat einer natürlichen Zahl ist.

(**Hinweis:** $3^{3^3} = 3^{(3^3)} = 3^{27}$.)

(Erste Phase der Mathe Olympiade, 5.Klasse, Bukarest 1998)