Freie Universität Berlin Institut für Mathematik SoSe24
A. Constantinescu
S. Tornquist
Z. Adams
D. Schlaugies
A. Zepernick

Stand: 19. Juni 2024

Lineare Algebra 2 – Hausaufgabe 10

Abgabe via Whiteboard als Name_LA2_H10.pdf bis 18:00 am Freitag, den 28. Juni 2024.

Die Antworten sind stets zu begründen, inklusiv Beispiele.

Aufgabe 1. 2 Punkte

Seien \mathbb{K} ein Körper, V ein endlich dimensionaler \mathbb{K} -Vektorraum und $\varphi \in \operatorname{Bil}_{\mathbb{K}}(V)$.

1. Sei $U \subseteq V$ ein K-Untervektorraum von V. Man zeige, dass

$$\varphi|_{U\times U}$$
 ist nicht entartet $\iff V=U\oplus U^{\perp}$.

2. Man gebe ein Beispiel einer Bilinearform $\varphi \in \text{Bil}_{\mathbb{K}}(V)$ und eines \mathbb{K} -Untervektorraumes $0 \neq U \subseteq V$, sodass φ nicht entartet ist, aber $\varphi|_{U \times U}$ die Nullabbildung ist.

Aufgabe 2. 2 Punkte

Seien V ein endlichdimensionaler \mathbb{K} -Vektorraum, $\varphi \in \operatorname{Bil}^{\operatorname{sym}}_{\mathbb{K}}(V)$ und $v \in V$ mit $\varphi(v,v) \neq 0$. Sei $v^{\perp} := \{ w \in V \mid \varphi(v,w) = 0 \}$.

- 1. Man zeige, dass $V = \operatorname{Span}_{\mathbb{K}}(v) \oplus v^{\perp}$,
- 2. Kann man auf die Voraussetzung " $\varphi(v,v) \neq 0$ " verzichten?
- 3. Kann man auf die Voraussetzung "V ist endlichdimensional "verzichten?

Für die unverzichtbaren Voraussetzungen man gebe entsprechende Gegenbeispiele an.

Total: 4 Punkte

Folgende Aufgabe wird nicht bewertet und soll nicht abgegeben werden:

Leseaufgabe 3. ~ 1 Stunde

Lesen Sie den Beweis von Satz 11.10 (Seiten 268-269) im non-Skript und finden Sie selber ein Beispiel dafür.

Zusatzaufgaben auf der Rückseite

Zusatzaufgaben

Diese Aufgaben werden weder bewertet noch müssen sie abgegeben werden. Sie werden in den Tutorien besprochen und sind für die Klausurvorbereitung sehr empfohlen.

Zusatzaufgabe 4.

Man zeige, dass die Kongruenz[†] von Matrizen eine Äquivalenzrelation auf $\mathrm{Mat}_n(\mathbb{K})$ ist.

Zusatzaufgabe 5.

Man zeige, dass die Abbildung $\Phi: \operatorname{Bil}_{\mathbb{K}}(V, W) \longrightarrow \operatorname{Hom}_{\mathbb{K}}(W, V^*)$, gegeben durch

 \mathbb{K} -linear ist.

Zusatzaufgabe 6.

Seien V ein endlichdimensionaler K-Vektorraum, \mathcal{B} eine Basis von V, und $\varphi \in \operatorname{Bil}_{\mathbb{K}}(V)$.

- 1. Ist die Determinante det $\mathcal{M}_{\varphi}^{\mathcal{B}}$ von der Basiswahl unabhängig wenn $\mathbb{K}=\mathbb{C}?$
- 2. Gibt es Körper für welche die Antwort eine andere ist als für $\mathbb{K} = \mathbb{C}$?

Zusatzaufgabe 7.

Sei V ein \mathbb{K} -Vektorraum und $\varphi \in \mathrm{Bil}^{\mathrm{sym}}_{\mathbb{K}}(V)$. Man zeige oder man widerlege:

$$\{(v,w)\in V\times V\ :\ v\perp w\} \text{ ist ein }\mathbb{K}\text{-}\text{Unterraum von }V\times V.$$

Zusatzaufgabe 8.

Sei $V = \mathbb{R}^3$ der dreidimensionale \mathbb{R} -Standandraum und sei $\varphi \in \operatorname{Bil}^{\operatorname{sym}}_{\mathbb{R}}(V)$ die Bilinearform, deren zugeordnete Matrix bezüglich der Standardbasis $\mathcal{B} = e_1, e_2, e_3$ die folgende Matrix ist:

$$\mathcal{M}^{\mathcal{B}}(\varphi) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}$$

- 1. Man finde alle Vektoren $w \in V$ mit $w \perp (1,0,0)$.
- 2. Man bestimme V^{\perp} .

[‡]Kongruenz: $A \approx B \Leftrightarrow \exists S \in GL_n(\mathbb{K}) \text{ sodass } A = S^\top BS$.