Freie Universität Berlin Institut für Mathematik SoSe24
A. Constantinescu
S. Tornquist
Z. Adams
D. Schlaugies
A. Zepernick

Stand: 5. Juni 2024

Lineare Algebra 2 – Hausaufgabe 8

Abgabe via Whiteboard als Name_LA2_H8.pdf bis 18:00 am Freitag, den 14. Juni 2024.

Die Antworten sind stets zu begründen, inklusiv Beispiele.

Übung 1. 2 Punkte

Sei $A \in \operatorname{Mat}_n(\mathbb{C})$ eine Matrix, deren JNF aus den folgenden Blöcken besteht:

- 2 Jordan Blöcke der Form $J_2(1)$
- 2 Jordan Blöcke der Form $J_3(1)$
- 3 Jordan Blöcke der Form $J_1(2)$
- 2 Jordan Blöcke der Form $J_3(2)$
- 1 Jordan Blöcke der Form $J_1(3)$
- 1 Jordan Blöcke der Form $J_2(3)$
- 4 Jordan Blöcke der Form $J_3(3)$.
- 1. Man bestimme n.
- 2. Für $\lambda \in \{1, 2, 3\}$ und für alle $i \in \mathbb{N}$ man bestimme $\dim_{\mathbb{C}} \operatorname{Ker}(A \lambda I_n)^i$.

Übung 2. 2 Punkte

Man betrachte den 4-dimensionalen \mathbb{R} -Vektorraum $V = \operatorname{Mat}_2(\mathbb{R})$ und den Endomorphismus $f \in \operatorname{End}_{\mathbb{R}}(V)$ gegeben durch

$$f(A) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \cdot A, \quad \forall \ A \in V.$$

Man zeige, dass f trigonalisierbar ist und man bestimme die Jordansche Normalform von f.

Total: 4 Punkte

Zusatzaufgaben

Diese Aufgaben werden weder bewertet noch müssen sie abgegeben werden. Sie werden in den Tutorien besprochen und sind für die Klausurvorbereitung sehr empfohlen.

Zusatzaufgabe 3.

Man betrachte folgende Matrix:

$$A = \begin{pmatrix} 3 & 5 & -16 & 6 \\ 7 & 2 & -17 & 7 \\ 1 & 0 & -4 & 1 \\ -5 & -5 & 15 & -8 \end{pmatrix} \in \operatorname{Mat}_4(\mathbb{R}).$$

- 1. Man zerlege das charakteristische Polynom von A in Linearfaktoren.
- 2. Man bestimme die Haupträume von A.
- 3. Man berechne die Jordansche Normalform und das Minimalpolynom von A.
- 4. Man bestimme eine Matrix $S \in GL_4(\mathbb{R})$, sodass $S^{-1}AS$ die JNF von A ist.

Zusatzaufgabe 4.

Gibt es einen Endomorphismus $f \in \operatorname{End}_{\mathbb{R}}(\mathbb{R}^3)$ mit $\dim_{\mathbb{R}} \operatorname{Ker} f = 1$ und $\dim_{\mathbb{R}} \operatorname{Ker} f^2 = 3$?

Zusatzaufgabe 5.

Sei
$$J_3(2) = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \in \operatorname{Mat}_2(\mathbb{R})$$
. Man bestimme $J_3(2)^i$ für alle $i \in \mathbb{N}$. *

Zusatzaufgabe 6.

Sei $A \in \operatorname{Mat}_{10}(\mathbb{C})$ mit der Eigenschaft $1 < \dim_{\mathbb{C}} \operatorname{Eig}(A, \lambda) < \dim_{\mathbb{C}} \operatorname{Hau}(A, \lambda)$ für alle Eigenwerte $\lambda \in \mathbb{C}$ und mit

$$mPol_A(x) = (x^2 - 1)^2(x - 2)^3.$$

Man berechne Spur A^9 .

Zusatzaufgabe 7.

Sei $f \in \operatorname{End}_{\mathbb{C}}(\mathbb{C}^3)$ mit der Eigenschaft, dass Spur $f = \det f = 0$ und f höchstens zwei verschiedene Eigenwerte hat. Zeigen Sie, dass f nilpotent ist.

^{*}Hinweis: Jennoilsimonid aie bino N = N = N tim $N + C = (2)_{E}$