Freie Universität Berlin Institut für Mathematik

SoSe24
A. Constantinescu
S. Tornquist
Z. Adams
D. Schlaugies
A. Zepernick

Stand: 29. Mai 2024

Lineare Algebra 2 – Hausaufgabe 7

Abgabe via Whiteboard als Name_LA2_H7.pdf bis 18:00 am Freitag, den 7. Juni 2024.

Die Antworten sind stets zu begründen, inklusiv Beispiele.

Aufgabe 1. 2 Punkte

Für alle $n, k \in \mathbb{N}_{>0}$ mit $1 \leq k \leq n-1$ definieren wir $N = (n_{ij}) \in \operatorname{Mat}_n(\mathbb{C})$ die Matrix durch

$$n_{ij} = \begin{cases} 1 & \text{wenn } j = i + k, \\ 0 & \text{sonst.} \end{cases}$$

1. Man bestimme alle C-Vektorräume der Kette

$$\operatorname{Ker} f_N^1 \subseteq \cdots \subseteq \operatorname{Ker} f_N^m \subseteq \cdots$$

2. Man bestimme alle C-Vektorräume der Kette

Bild
$$f_N^1 \supseteq \cdots \supseteq \text{Bild } f_N^m \supseteq \cdots$$

3. Für welche $r, s \in \mathbb{N}_{>0}$ sind $\operatorname{Ker} f_N^r$ und $\operatorname{Bild} f_N^s$ sind f_N -invariant?

Aufgabe 2. 2 Punkte

Sei V ein endlich dimensionaler \mathbb{C} -Vektorraum und sei $f \in \operatorname{End}_{\mathbb{C}}(V)$ ein diagonalisierbarer Endomorphismus. Seien E_1, \ldots, E_r die Eigenräume von f und sei $U \subseteq V$ ein f-invarianter \mathbb{C} -Vektorraum.

- 1. Man zeige, dass $U = (E_1 \cap U) \oplus (E_2 \cap U) \oplus \cdots \oplus (E_r \cap U)$.
- 2. Ist $f|_U \in \text{End}_{\mathbb{C}}(U)$ auch diagonalisierbar?

Total: 4 Punkte

Zusatzaufgaben

Diese Aufgaben werden weder bewertet noch müssen sie abgegeben werden. Sie werden in den Tutorien besprochen und sind für die Klausurvorbereitung sehr empfohlen.

Zusatzaufgabe 3.

Sei $n \geq 3$ und $A \in \operatorname{Mat}_n(\mathbb{K})$ eine nilpotente Matrix. Ist es wahr, dass jede/irgendwelche Teilmatrix von A auch nilpotent ist? Ein Computer könnte hier hilfreich sein.

Zusatzaufgabe 4.

Sei $f \in \operatorname{End}_{\mathbb{K}}(V)$ ein nilpotenter Endomorphismus und $g \in \operatorname{End}_{\mathbb{K}}(V)$ ein invertierbarer Endomorphismus.

- 1. Man zeige, dass wenn $f \circ g = g \circ f$, dann ist f + g invertierbar.*
- 2. Man zeige, dass die Voraussetzung $f \circ g = g \circ f$ notwendig ist.

Zusatzaufgabe 5.

Sei $f \in \operatorname{End}_{\mathbb{Q}}(\mathbb{Q}^3)$ ein trigonalisierbarer Endomorphismus mit den Eigenschaften, dass alle Eigenwerte von f in \mathbb{N} liegen, dass $f - \operatorname{id}_{\mathbb{Q}^3}$ injektiv ist und dass det A = 1001. Man bestimme das Minimalpolynom von f.

Zusatzaufgabe 6.

Es seien $f, g \in \operatorname{End}_{\mathbb{K}}(V)$ zwei Endomorphismen eines endlich dimensionalen Vektorraumes. Diese heißen simultan diagonalisierbar wenn es eine Basis \mathcal{B} von V gibt, sodass sowohl $M^{\mathcal{B}}(f)$ als auch $M^{\mathcal{B}}(g)$ diagonale Matrizen sind. Man zeige, dass

f und g sind simultan diagonalisierbar $\iff f \circ g = g \circ f$ und beide sind diagonalisierbar.

(Hinweis: Man kann Aufgabe 2 verwenden.)

^{*}Hinweis: Man fange mit dem Fall $f^2 = 0$ an, und man suche die Inverse von f + g.