WiSe23/24 A. Constantinescu J. Plock F. Ugolini

Stand: 17. Januar 2024

Lineare Algebra 1 – Hausaufgabe 12

Abgabe via Whiteboard als Name_LA1_H12.pdf bis 18:00 am Mittwoch, den 24. Januar 2024.

Die Antworten sind stets zu begründen, inklusiv Beispiele.

Übung 1. 2 Punkte

Seinen folgende Teilmengen des \mathbb{R} -Vektorraumes \mathbb{R}^4 :

$$\begin{array}{lll} T & = & \{(1,1,1,0),(0,1,1,1)\} \\ S & = & \{(1,1,0,0),(1,0,1,0),(1,0,0,1),(0,1,1,0),(0,1,0,1),(0,0,1,1)\}. \end{array}$$

- 1. Man zeige, dass T linear unabhängig ist.
- 2. Man zeige, dass S ein Erzeugendensystem von \mathbb{R}^4 ist.
- 3. Man ergänze T mit Vektoren aus S zu einer Basis von V.

Aufgabe 2. 2 Punkte

Sei W ein \mathbb{K} -UVR von V und seien $v_1, v_2 \in V$. Wir definieren für i = 1, 2

$$W_i := W + \operatorname{Span}_{\mathbb{K}} \{v_i\}.$$

Man zeige, dass wenn $v_2 \in W_1$ und $v_2 \notin W$, dann $v_1 \in W_2$.

Total: 4 Punkte

Zusatzaufgaben

Diese Aufgaben werden weder bewertet noch müssen sie abgegeben werden. Sie werden in den Tutorien besprochen und sind für die Klausurvorbereitung sehr empfohlen.

Zusatzaufgabe 3.

Sei $C([a,b],\mathbb{R})$ der \mathbb{R} -Vektorraum aller stätigen Funktionen $f:[a,b] \longrightarrow \mathbb{R}$, wobei $a,b \in \mathbb{R}$ mit a < b und [a,b] das kompakte Interval $\{x \in \mathbb{R} : a \le x \le b\}$ bezeichnet. Zeigen Sie, dass dieser \mathbb{R} -Vektorraum unendlich dimensional ist.

Zusatzaufgabe 4.

Sei $V = \operatorname{Mat}_n(\mathbb{R})$ der \mathbb{R} -Vektorraum der quadratischen $n \times n$ Matrizen, und sei

$$T_{\lambda} := \{(a_{ij}) \in V \mid \text{ mit } a_{11} + \dots + a_{nn} = \lambda\}, \quad \text{mit } \lambda \in \mathbb{R}.$$

- 1. Was für Bedingungen muss $\lambda \in \mathbb{R}$ erfüllen, damit T_{λ} ein $\mathbb{R}\text{-UVR}$ von Vist?
- 2. In den Fällen in denen T_{λ} ein \mathbb{R} -UVR von V ist, bestimmen Sie dim \mathbb{R} T_{λ} .

Zusatzaufgabe 5.

Sei V ein \mathbb{K} -Vektorraum und seien B_1 und B_2 zwei Basen von V.

- 1. Zeigen Sie, dass $\forall v \in B_1, \exists w \in B_2, \text{ sodass } (B_1 \setminus \{v\}) \cup \{w\} \text{ eine Basis von } V \text{ ist.}$
- 2. Zeigen Sie, dass man für alle $v \in B_1$, ein $w \in B_2$ so wählen kann, dass

$$(B_1 \setminus \{v\}) \cup \{w\}$$
 und $(B_2 \setminus \{w\}) \cup \{v\}$

gleichzeitig Basen sind.

Zusatzaufgabe 6.

Beweisen Sie den Satz 4.1. (Seite 128) aus dem non-Skript, und vergleichen Sie Ihren Beweis mit dem Beweis, der im non-Skript angegeben wird.

Zusatzaufgabe** 7.

Man zeige, dass \mathbb{R} als \mathbb{Q} -Vektorraum unendlich dimensional ist.

[Hinweis: Eine unendliche Basis kann man nicht explizit angeben. Man kann aber zeigen, dass es beliebig große linear unabhängige Teilmengen gibt. Z.B. n verschiedene Primzahlen.]