WiSe23/24 A. Constantinescu J. Plock F. Ugolini

Stand: 15. November 2023

Lineare Algebra 1 – Hausaufgabe 3

LÖSUNGEN

Aufgabe 1. 2 Punkte

Man zeige oder man widerlege:

Für alle Mengen A und für alle Familien von Mengen $(B_i)_{i\in I}$ gilt:

$$A \setminus \left(\bigcup_{i \in I} B_i\right) = \bigcap_{i \in I} (A \setminus B_i).$$

Lösung zu Übung 1.

Die Aussage ist wahr. Wir zeigen direkt, dass für beliebige Mengen A und B_i ein Element genau dann in der linken Seite der Gleichheit liegt, wenn es in der rechten Seite liegt.

$$x \in A \setminus \left(\bigcup_{i \in I} B_i\right) \quad \Leftrightarrow \quad x \in A \quad und \quad \forall i \in I \ gilt \ x \notin X$$

$$\Leftrightarrow \quad \forall i \in I \ gilt \ x \in A \quad und \quad x \notin B_i$$

$$\Leftrightarrow \quad \forall i \in I \ gilt \ x \in A \setminus B_i$$

$$\Leftrightarrow \quad x \in \bigcap_{i \in I} A \setminus B_i).$$

Aufgabe 2. 2 Punkte

Sei $f:A\longrightarrow B$ eine Abbildung und seien $X,Y\subseteq A$ zwei Teilmengen.

- 1. Man zeige, dass $f(X \cup Y) = f(X) \cup f(Y)$.
- 2. Man zeige, dass $f(X \cap Y) \subseteq f(X) \cap f(Y)$.
- 3. Man zeige, dass f genau dann injektiv ist, wenn

$$f(X \cap Y) = f(X) \cap f(Y) \quad \forall X, Y \subseteq A.$$

Lösung zu Übung 2.

1. \subseteq Es sei $b \in f(X \cup Y)$. Es existiert also $a \in X \cup Y$, sodass f(a) = b. Dass $a \in X \cup Y$, bedeutet $a \in X$ oder $a \in Y$.

Wenn $a \in X$, dann gilt $b = f(a) \in f(X) \subseteq f(X) \cup f(Y)$.

Wenn $a \in Y$, dann gilt $b = f(a) \in f(Y) \subseteq f(X) \cup f(Y)$.

In beiden Fällen gilt also $b \in f(X) \cup f(Y)$.

 \supseteq Es sei $b \in f(X) \cup f(Y)$. Es gilt also $b \in f(X)$ oder $b \in f(Y)$. Das heißt per Definition

$$(\exists x \in X, sodass f(x) = b)$$
 oder $(\exists x \in Y, sodass f(x) = b)$

Das bedeutet, es existiert ein $x \in X \cup Y$, sodass b = f(x), also $b \in f(X \cup Y)$.

- 2. Sei $b \in f(X \cap Y)$. Es existiert also $a \in X \cap Y$ mit f(a) = b. Weil $a \in X$, folgt $b = f(a) \in f(X)$ und, weil $a \in Y$, folgt $b = f(a) \in f(Y)$. Also $b \in f(X) \cap f(Y)$.
- 3. \implies Sei f injektiv und sei $b \in f(X) \cap f(Y)$. Es gilt also

$$b \in f(X)$$
 und $b \in f(Y)$

Es existiert also ein $x \in X$ mit b = f(x) und es existiert ein $y \in Y$ mit b = f(y). Also

$$f(x) = f(y) = b.$$

Aus der Injektivität folgt aber x = y, und somit $x \in X \cap Y$. Also $b = f(x) \in f(X \cap Y)$.

 \sqsubseteq Es seien x, y mit f(x) = f(y) =: b. Wir definieren die Mengen $X := \{x\}$ und $Y := \{y\}$. Es gilt nach Voraussetzung, dass

$$f(X \cap Y) = f(X) \cap f(Y)$$

Weil f(x) = f(y) = b gilt, haben wir $f(X) = f(Y) = \{b\}$. Also

$$f(X \cap Y) = f(X) \cap f(Y) = \{b\} \cap \{b\} = \{b\} \neq \emptyset.$$

Das heißt, dass $X \cap Y \neq \emptyset$. Weil es Mengen mit einem Element sind, muss also X = Y gelten. Also $\{x\} = \{y\}$ und somit x = y.

Wir haben somit gezeigt, dass $f(x) = f(y) \Rightarrow x = y$. Also f ist injektiv.