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Preface 

 

 

This brochure not only gives a brief introduction to meta analysis, but also includes the manual 

for the meta-analysis programs. The program system consists of a number of routines that deal 

with probabilities, effect sizes d, and effect sizes r (correlations). The researcher can select these 

three options according to the kind of data base available. In addition, a data editor and several 

utilities are provided which allow one to make the necessary transformations. The program is 

initialized by typing META, and the user will be faced with the main menu where further 

information is supplied. Most procedures are self-explanatory, but before seriously running a 

meta-analysis it is recommended to consult the manual. 

 

The program which was written in Turbo Pascal 5.0, is available either on 360K 5 1/4" disks 

formatted with MS-DOS 3.3 or on a 3 1/2" disk (720 K), and should run on all IBM-compatible 

microcomputers with 256K RAM or more. It is wise to copy all files to a hard disk. *NOTE* If 

you are using the 5 1/4" disk version the p-to-r.EXE file is on the second disk, and you must 

change the path within the program to make p to r conversions. This can be done by using the 

New Path option under the General Menu. Simply set the path to the drive where the second disk 

is located.  (If the second disk is in drive B set the path to B:\.) After you are done, you must set 

the path back to the drive with the main disk. The *.EXE - files are necessary elements of the 

program, whereas the other files are example data sets. Files with the suffixes p, d or r are input 

for the meta-analyses for p-, d- or r-values, respectively. This manual is included as a WordStar 

4.0 file and as a WordPerfect 5.0 file labelled MANUAL.WS4 and MANUAL.WP5 respectively. 

 

 

There is also an ATARI ST version of the program designed by Uwe Czienskowski which 

requires some German. Inquiries should be made at the address below. 

 

The program is activated by typing META (Enter). 

 

Execution can be aborted by typing ^Break in case of an emergency but the menus include 

regular exit options, mostly ESC or Q. 

 

Acknowledgements. 

 

Several colleagues have been very helpful in detecting errors and suggesting improvements. They 

include Uwe Czienskowski, André Hahn, Dietmar Kleine, Anja Leppin, and Bettina Seipp. A 

few algorithms, especially for numerical transformations, have been taken from Mullen and 

Rosenthal (1985). The pull-down menus, the calculator, and a few other elements have been 

programmed with the help of source code provided by the Turbo Overdrive Package (Nescatunga 

Software). The editor is based on source code from Borland's Turbo Pascal Editor Toolbox. 
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License and Registration. 

 

The program is not public domain but it is being distributed under the User Supported Software 

concept. Any user may copy and distribute the software as long as this is done free of charge. If 

you are a registered user you will receive update information. This is important because at the 

time you are reading this the program may already be obsolete. To obtain a copy of the latest 

version and to register send a formatted diskette with a US$10 check to the address below. 

 

 

Disclaimer. 

 

The program has been carefully tested with respect to published data in the meta-analysis 

literature. The results may sometimes differ slightly because the present algorithms are extremely 

accurate due to the software emulation of a numeric co-processor. But I make no warranty of any 

kind, and I shall not be liable for mistakes arising if this program fails to operate in the manner 

desired by the user. I will also not be liable for any damages arising from the use of or inability to 

use the program.  

 

If you run into a problem, first consult this manual; only then request information from the 

author. Any further suggestions for improving the program are also welcome. Direct all 

correspondence to: 

 

  Prof. Dr. Ralf Schwarzer 

  Institut für Psychologie (WE 7) 

  Freie Universität Berlin 

  Habelschwerdter Allee 45 

  D - 14195 Berlin  

  G e r m a n y 

  FAX (Country Code + (0)30  838 5634 

 

 

When this manual was written the program version 5.0 was valid. You may find more recent 

information in a text file called ReadMe. 

 

 

Berlin, Fall 1989       Ralf Schwarzer 
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"The thirteenth stroke of a clock is not only false by itself, but 

casts grave doubts on the credibility of the preceding twelve." 

(Mark Twain, cit. Light & Pillemer, 1984, p. viii) 

 
 
 

1. General Introduction to Meta-Analysis 
 

 

1.1 Reviewing and integrating the research literature 

 

 

Research results are known to be inconsistent. If 12 studies reach a specific conclusion there will 

be a thirteenth that draws the opposite one. As a researcher, one might feel tempted to conduct an 

additional study to solve the existing conflict but this would be premature and costly: (1) the 

information inherent in the available studies should be exhausted first, (2) the next researcher 

would again be confronted with 14 conflicting studies, and (3) if policy decisions were needed 

they would have to be postponed unduely. Instead, a detailed review is indispensable that allows 

to make a sound judgment on the average of the findings compiled so far and on the reasons for 

the prevailing inconsistency. 

 

The research literature on most topics is sky-rocketing. Keeping pace with the overwhelming 

amount of incoming data in one's domain of interest is very time-consuming, if possible at all. 

For an evaluation of the "state of the art" of a specific field we often still have to depend on one 

or two literature reviews prepared by more or less ingenious scholars who have accumulated a 

great deal of studies, have summarized the heap of findings, and have drawn more or less valid 

conclusions, based on their own point of view. Narrative reviews, however, are considered to be 

subjective, to be scientifically unsound, and to be an inefficient way to extract useful information 

from the literature (Light & Pillemer, 1984, pp. 3ff). 

 

The shortcomings of the traditional approach are evident, and therefore, attempts have been made 

to search for more promising methods of research integration and research evaluation. Glass 

(1976) was the first to introduce a novel perspective of dealing with the information overload 

problem by originating a comprehensive method that allows to estimate the average effect of 

treatments on outcome variables across a large number of studies. He coined the term "meta-

analysis" and distinguished it from primary analysis and secondary analysis. Primary analysis is 

the original research which includes data collection, data processing, and publication of results, 

whereas secondary analysis requires a different investigator who, following the same research 

question, reanalyses the original data from either a different perspective or with different 

techniques. Meta-analysis, however, draws upon the summary statistics of a multitude of studies 

without having access to the original data. 

 

According to Glass (1976) a meta-analysis aims at integrating a large number of results. 

Statistical methods are applied to summary statistics such as means or standard deviations found 

in the original studies, whereas raw data are subject to primary and secondary analyses only. The 

focus is not on statistical significance but on the size of treatment effects. Such an effect size is 

defined as the standardized mean difference between a treatment group and a control group in 

terms of an outcome variable. This unit-free measure of effect size ("d") had been proposed 
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previously by Cohen (1977, 2nd edition). The effect sizes of many studies are averaged in order 

to obtain an estimate of the most representative relationship between a treatment and an outcome. 

 

The young history of meta-analysis started with two large-scale applications, one on the 

effectiveness of psychotherapy which covered 475 studies (Smith, Glass, & Miller, 1980), and 

one on the effect of school class size covering 77 studies (Smith & Glass, 1980). The ideas of 

Glass were received with great enthusiasm and were disseminated rapidly. Shortly after its 

introduction into research methodology the term meta-analysis was used in hundreds of 

theoretical articles as well as applications to advanced literature reviews. Although Glass had 

initially presented his programmatic outlook at a meeting of the American Educational Research 

Association, other disciplines such as psychology and the health sciences were immediately 

disposed to discuss, to apply and to improve this novel methodology. 

 

One of the characteristics of Glass' approach lay in the inquiry of study features. Instead of 

simply averaging all available summary statistics, more emphasis was put on relating study 

features to outcomes and discovering the influence of specific factors inherent in the research 

design on the resulting effect sizes. If, for example, females and males differ with respect to their 

mean effect size, gender is identified as a moderator. This approach requires a coding scheme 

where as many study features as possible are entered in order to examine their potential 

moderating influence on effect sizes. Instead of integrating all summary statistics on the whole it 

is preferred to recognize subsets of data that produce distinctive mean effect sizes and, thus, 

proliferate additional knowledge about the research domain that was non-existent before 

applying meta-analysis. Study features could be the kind of population, age, source of 

publication, publication year, therapy type, technical quality of the study, etc. Glass suggested 

that these variables should be regressed on effect sizes in order to examine their 

interrelationships. 

 

The definition of meta-analysis has become broader in recent years, and the label meta-analysis 

has been questioned by some authors who have coined alternative terms such as quantitative 

review, study synthesis, or research integration. Although these expressions might be somewhat 

more appropriate, the previous label has maintained its appeal and is used most often. In the 

present monograph the four terms are used interchangeably. 

 

A classification of various meta-analytic strategies has been proposed by Rosenthal (1984). He 

distinguishes between meta-analytic comparisons and meta-analytic combinations of either 

probabilities or effect sizes (Figure 1). 

 

 probabilities effect sizes 

 

comparison 

  

 

combination 

  

 

Figure 1 

Classification of meta-analytic approaches (cf. Rosenthal, 1984) 
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The strategies proposed by Glass (1976) and many others include the fourth cell only: the 

integration of effect sizes. But it is also possible to integrate a number of significance tests -- a 

method discussed already some decades ago, but deemphazised by most authors. The comparison 

of either significance tests or effect sizes refers to the variation in the data instead of the average. 

Global comparison examines the degree of homogeneity, whereas specific comparisons are used 

when some studies are contrasted with others. Rosenthal broadens the scope of meta-analysis by 

pointing to stimulating alternatives of quantitative reviews and by providing handy formulas to 

carry them out. 

 

 

1.2 Vote-counting: An inadequate attempt at quantification 

 

Before advanced meta-analysis methodology was known, many reviewers have attempted to 

quantify the summary statistics found in the literature simply by counting positive and negative 

results. They established, for example, categories such as "significantly positive", "significantly 

negative" or "non-significant". If the findings supported the hypothesis a tally was credited to the 

first category, and if it contradicted the hypothesis a tally was assigned to the second category. 

Conclusions were then drawn by a straightforward comparison of the tallies. The shortcomings of 

this procedure can be illustrated by the following example of 8 experimental studies dealing with 

the impact of salt intake on blood pressure (Table 1a). 

 

Only two out of eight findings (25%) favor the assumption that more salt intake increases blood 

pressure, two findings contradict this assumption, two findings tend to be positive but are not 

significant, and another two tend to be negative but are not significant either. From a traditional 

view, the conclusion would be to doubt any effect of salt intake on blood pressure because the 

majority of studies failed to support this assumption.  

 

Table 1a 

Fictitious example of the effect of salt intake on blood pressure 

 

 

Study 

# 

positive 

significant. 

. positive  

non-significant 

negative  

non-significant 

negative 

significant 

1 /    

2    / 

3  /   

4    / 

5 /    

6   /  

7  /   

8   /  
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Table 1b 

Fictitious example of the effect of salt intake on blood pressure (the coefficients are effect sizes) 

 

Study 

# 

positive 

significant 

positive  

non-significant 

negative  

non-significant 

negative 

significant 

1      .60    

2    -.10 

3       .40   

4    -.10 

5      .60    

6        -.30  

7       .40   

8        -.30  
 
 

From a meta-analysis viewpoint, however, the strength of association would be more meaningful 

(Table 1b). Computing the mean effect sizes of positive and negative findings and neglecting the 

level of significance yields .50 in favor of the hypothesis, but only -.20 opposed to it. The 

procedure has been simplified here for illustrative reasons, but the message is that vote-counting 

can be misleading. Hedges and Olkin (1980) have found that the statistical power of vote-

counting is low, and that with increasing number of studies one fails to recognize a positive 

effect when in fact there is one (type II error). The number of tallies generates insufficient 

information: For example, to know that chemotherapy beats radiotherapy in 10 out of 12 cancer 

treatment studies is not to know whether chemotherapy wins by a nose or in a walkaway. 

 

 

1.3 Combined significance tests 

 

The idea of combining the results from independent tests is much older than the term meta-

analysis, but only recently has this approach been popularized. It is possible to combine 

individual significance tests from a number of studies into one overall pooled test. The so-called 

Stouffer-method (see Rosenthal, 1984) which is briefly described here, is based on adding the 

standard normal deviation Z. Each individual probability p is converted to a Z score, and these Z 

scores are summed up across all studies. This sum is divided by the square root of the number of 

tests combined (k). The sum of normal deviates is itself a normal deviate and can be 

backtransformed into an overall p: The probability level associated with the sum of Z yields an 

overall level of significance. The complete procedure takes the form 

 

 pi  Zi 

 

 Z(overall) =    Zi / k  

 

 Z(overall) ---> p(overall) 

 

The advantage of such a procedure lies in the increased power of the overall comparison. If, for 

example, several tests consistently favor the research question but fail to reach the level of 
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significance, due to small sample sizes, the overall test would more easily become significant 

because the pooled sample size is much larger. On the other hand, if many studies are to be 

combined, sample size may become inflated, and the highly significant overall test does not 

provide useful information. 

 

The procedure of combining significance tests shall be illustrated by a small example. Assume 

that four studies which were conducted to examine the effect of a new drug treatment on blood 

pressure, came up with conflicting conclusions. The meta-analyst tracked down the information 

provided in the following table. 

 

Table 2 

Summary statistics of the effect of drug treatment  on  systolic blood pressure (fictitious) 

 
__________________________________________________________________________________________________________________

_______ 

Study Experimental Group  Control Group  p (one-tailed) 

 M   SD   N   M   SD   N 
__________________________________________________________________________________________________________________

_______ 

 A 130  15  10   140  20   5  0.1662 

 B 120  12  40   140  15  20  0.0000023 

 C 140  20  30   150  25  30  0.04559 

 D 160  20  40   145  35  20  0.03981   .960 
__________________________________________________________________________________________________________________

_______ 

 

We learn by this table that in Study A there was no significant difference between experimental 

and control groups, in Studies B and C the blood pressure readings of the experimental group 

were significantly decreased compared to the readings of the control group, and in Study D the 

opposite effect emerged. A vote count would only state that half of the studies confirmed the 

research question, one quarter disagreed with it, and one quarter reported no difference at all. 

 

In order to obtain an overall result, the above-described method can be applied. For each p value 

the corresponding Z score is determined by looking up the table with standard normal deviates 

which can be found in every introductory statistics book. Notice that the p value of study D has to 

be reversed (1-p) because the mean difference is in the opposite direction. The four Z scores are 

ZA=.9692, ZB=4.5874, ZC=1.6892, and ZD=-1.7529. Their sum is divided by 2, and the result 

Z(overall) is 2.7438. The probability level of this total score can be tracked down in the statistics 

table again and yields p(overall)=.003 (one-tailed). The conclusion is that the available studies, 

taken together, demonstrate that the new drug treatment significantly leads to lowered blood 

pressure levels. [In order to obtain the above results, the present computer program only requires 

input of the four p values; see data file ABCD.P on disk]. 

 

Procedures that combine significance tests have been criticized for several reasons. First, the 

focus is on an overall probability instead of on distributions. In meta-analysis, however, it is 

necessary to examine the variation of results because both positive and negative outcomes could 



General Introduction   -  8  - 

____________________________________________________________________________________________ 

cancel each other out, and because conflicting results should represent a challenge to identify 

substantial sources of variation. Second, a p value just indicates the probability of an error in 

rejecting the null hypothesis if it were true (type I error). It does not provide, however, an 

estimate of the magnitude of treatment effects. In the present example, there is evidence that the 

drug is beneficial, but to what degree? Minute benefits might not outweigh the costs. 

 

There are ways to obtain some of the missing information, however. First, variation in study 

outcomes can be assessed by a test of homogeneity. A formula is introduced by Rosenthal (1984, 

p. 77): 

 

 chi
2
 =    ( Zi - Z )

2
 

 

 df = k-1 

 

For the present example, a chi
2 

of 20.33 (ss) is computed with 3 degrees of freedom which 

indicates that the data are heterogeneous. This means that the meta-analyst should look for some 

systematic source of variation in reviewing the studies. 

 

Second, as an estimate of magnitude an effect size r can be obtained by 

                                        

 r = Z(overall) / N  

 

where N is the total sample size (Rosenthal, 1984, p. 31). In the present example, this estimate 

becomes r=.20 which gives an impression of how closely drug treatment versus no treatment is 

related to blood pressure. 

 

 

Finally, there is a suggestion to deal with the "file drawer problem" (Rosenthal, 1984). It is 

possible that only few significant results are published and that the majority remains in the file 

drawers either because of reporting bias or publication bias. It is unknown how severe this bias 

really strikes, but it is possible to estimate the number of additional studies that would be 

required to reverse the overall p to a value higher than e.g., .05 (Rosenthal, 1984, p. 108; Wolf, 

1986, p. 38): 

 

 Nfs .05 = (  Zi / 1.645 )
 2

 - k 

 

This number indicates how many no-effect findings would have to exist in the file drawers in 

order to invalidate a significant overall p. In the present example, 7 unpublished studies showing 

no effects would have to be tracked down in the file drawers to overturn the combined 

significance of p =.003 of the four available studies. With these 7 studies combined the overall p 

of all 11 studies would be .05. 

 

In sum, the combination of significance tests can be a useful procedure if only probabilities are 

available to the meta-analyst. There are many further ways to compare and to combine tests (see 

Rosenthal, 1984). Effect sizes, however, are generally seen as a superior prerequisite for more 
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advanced meta-analyses (Fricke & Treinies, 1985; Hedges & Olkin, 1985; Hunter, Schmidt, & 

Jackson, 1982; Light & Pillemer, 1984; Wolf, 1986). 

 

1.4 Combination of effect sizes from experimental studies 

 

The previous example data contain more information than has been used in our p values meta-

analysis. Since the mean M, the standard deviation SD and the sample size N for both groups are 

provided, we can easily determine an effect size for each study. An effect size refers to the 

strength of a relationship between the treatment and the outcome variable. Most statistical tests 

such as the t - test can be transformed into an effect size d which, in this case, reflects the 

magnitude of the difference between two groups in standardized terms (Cohen, 1977). This 

coefficient is free of the original measurement unit. This is achieved by dividing the mean 

difference by the standard deviation of the measures. If, for example, one group has a mean of 

25, the other has one of 20, and both have a standard deviation of 5, then the effect size is 5/5=1. 

In other words, the first group is one standard deviation superior to the second. [If no control 

group is available, effect sizes also can be determined as standardized pretest-posttest 

differences; see Kulik & Kulik, 1989, p. 254]. 

 

A common estimator of effect size is the standardized mean difference as proposed by Glass 

(1976). The mean Mc of a control group is subtracted from the mean Me of an experimental 

group, and divided either by the control group standard deviation or by the pooled standard 

deviation of both groups: 

 

 g = (Me - Mc ) / SD 

 

The latter strategy is generally preferred. In this case, SD is the square root of the weighted 

average of the two variances: 

 

 s2 = ( (ne - 1)(se)2 + (nc - 1)(sc)2 ) / ( ne + nc - 2) 

 

In most of the literature the above effect size is called d instead of g, but in this monograph we 

follow the distinction made by Hedges and Olkin. The index d remains reserved for the unbiased 

effect size estimator d. Hedges and Olkin (1985, p. 80) show that g has a small sample bias. By 

defining a new estimator d, they remove this bias: 

 

 d = ( 1 - ( 3 / 4 * N - 9 )) * g 

 

Table 3 presents again the descriptive statistics of the four studies which examined the drug 

treatment effect on blood pressure. This time the focus is not on significance but on the 

magnitude of effects. Both effect sizes, g and d, are displayed (see data file ABCD.G on disk; M, 

SD and d need not be provided). 

 

Table 3 

Summary statistics of the effect of drug treatment on systolic blood pressure (fictitious) 

 

Study Experimental Group     Control Group      g        d 
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 M     SD   N    M    SD    N 
__________________________________________________________________________________________________________________

_______ 

 

 A 130   15 10  140   20  5    .5988     .5636 

 B 120   12 40  140   15 20  1.5315   1.5116 

 C 140   20 30  150   25 30    .4417     .4360 

 D 160   20 40  145   35 20  -.5794    -.5719 
__________________________________________________________________________________________________________________

_______ 

 

The average of effect sizes g turns out to be .498, the average of effect sizes d equals .485. If the 

effect sizes are weighted by their sample sizes, the population effect size would be delta=.472. 

All three parameters indicate consistently that the experimental group differs about half a 

standard deviation from the control group. So far the magnitude of the treatment effect has been 

estimated, which is more information than the mere significance we had found before. 

 

However, is this result trustworthy? A closer look into the data shows that they are very 

heterogeneous. A test of homogeneity yields Q=25.06 (ss). The method provides more detailed 

information about the effect size variation, and before reporting more results the basic idea has to 

be described. 

 

Although there are several ways to combine effect sizes from a series of experiments, the focus 

here will be on the "random effects model" (Hedges & Olkin, 1985). The variation of observed 

effect sizes can mirror partly the true variation of population effect sizes. If, for example, study 

characteristics such as different treatments, subject groups or stimulus materials account for some 

variation, then there may be several population effect sizes underlying the data. "Thus the 

observed variability in sample estimates of effect size is partly due to the variability in the 

underlying population parameters and partly due to the sampling error of the estimator about the 

parameter value" (Hedges & Olkin, 1985, p. 191). The program decomposes the observed effect 

size variance into both parts (see Formulas 7, 9 and 10, p. 194). The population variance is 

computed by subtracting the sampling error variance from the observed variance: 

 

 population variance = observed variance - sampling error 
 

The percentage of observed variance made up by sampling error can be computed: 

 

 ? % = sampling error * 100 / observed variance  

 

This illustrates the degree of homogeneity or heterogeneity of the data set. If 100% of the 

observed variance is explained by sampling error (which is desired), the data are homogeneous. 

If, for example, 40% are explained by sampling error, then the residual variation of 60% is due to 

systematic factors. The meta-analyst should then look for moderator variables such as study 

characteristics which may account for this systematic variation. It is reasonable, therefore, to first 

examine the results from the "random effects model" to realize if the observed effect size 

variance is already exhausted. Otherwise the meta analyst may run several further analyses with 

specific data subsets according to some reasonable hypotheses. There is also a test of 
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homogeneity (p. 197) which serves as an additional indicator for a judgment on the heterogeneity 

status.  

 

Within the "random effects model" a mean effect size delta is estimated (see p. 199). In case of 

homogeneity this would be the final result.  

 

In the present example, the observed variance of effect sizes d is .73. This is decomposed into 

sampling error variance (.14) and population variance (.59). As can be seen, most of the observed 

variance remains unexplained because only 19% can be attributed to sampling error. The bulk of 

the observed variance is due to some systematic source of variance, and the meta-analyst should 

try to identify these sources, e.g., by looking at study features. 

 

Sometimes it is helpful to group the effect sizes into subsets according to similarity. Then, one 

can inquire what these studies share in common in order to arrive at characteristics that had been 

overlooked previously when the coding scheme was set up. In this small example, three clusters 

emerged: Studies A and C were grouped together, and Study B as well as Study D represented 

"clusters" on their own. (For more details see chapter 2.4.8). 

 

There is also a fail-safe N formula for d values developed by Orwin (1983) (see chapter 2.4.7). In 

this example, 6 no effect studies would have to exist in the file drawers in order to pull down the 

population effect size delta=.47 to a critical delta of .20. Which level of delta is seen as critical 

depends on the judgment of the meta-analyst. 
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1.5 Combination of effect sizes from correlational studies 

 

Correlations are the best-known effect sizes. They describe the direction and strength of the 

relationship between two variables conveniently within a range of -1.0 and +1.0. Since most 

empirical studies focus on bivariate relationships and report correlations, suitable methods have 

been invented to combine effect sizes r from a multitude of studies. However, meta-analysis is 

more than simply averaging correlations, as will be shown in the following section. 

 

Assume that we are interested in the association between drug abuse and delinquency, and that 

we have compiled eight studies where these two variables were related to each other. Six studies 

report Pearson correlations, one reports a t - test and the last a chi2-test. The latter two were 

transformed into effect sizes r (see chapter 2.6 for formulas). Table 4 provides the fictitious data 

(see data file EIGHT.R on disk; the z values need not be provided). 

 

Table 4 

Relationship between drug abuse and delinquency 

 

Study Sample Size  r  Fisher's z 
_____________________________________________________________________ 

A 131  .51  .5627 

B 129  .48  .5230 

C 155  .30  .3095 

D 121  .21  .2132 

E 111  .60  .6931 

F 119  .46  .4973 

G 112  .22  .2237 

H 145  .25  .2554 
____________________________________________________________________ 

                             

   N = 1,023   r  =.379   z  =.410     r  =.388 

 

In dealing with effect sizes r, the meta-analyst can take advantage of a convenient display 

technique which provides more information than a histogram: the stem-and-leaf display, 

introduced by Tukey (1977) within the framework of his "exploratory data analysis" (EDA). The 

present example yields the following display: 
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Figure 2 

Stem-and-Leaf-Display for 8 Effect Sizes in Data Set: Eight.r 
 

The effect sizes r range from .21 to .60 with .21, .22 and .25 in the first row, .30 in the next, .46 

and .48 in the third, followed by .51 and .60. In case of many data this display gives an excellent 

overview. It is superior to a histogram because it provides the exact numbers. 

 

Computing the average of a number of effect sizes r first requires a transformation of each 

individual r into Fisher's z. The average of the 8 z values is z  = .41 which has to be back-

transformed into  r  =.388. Some authors argue against the usual Fisher's z transformation and 

suggest to simply average the r values (e.g., Hunter et al., 1982). This would result in r =.379. 

 

Another issue refers to weighting the effect sizes r with sample size. Most authors are in favor of 

this procedure because they believe that studies which employ large samples should get more 

credit than those which are based on small samples. Correlations are known to become more 

stable as sample size increases. A weighted average of the 8 effect sizes would be r w=.374 

without Fisher's z transformation compared to r w=.383 with this transformation. The meta-

analyst has to make transparent which option is selected. In case of doubt, the last coefficient 

seems to be the best estimator of the population effect size (the program provides all kinds of 

estimators). 

 

The statistical procedures are mostly based on Hunter, Schmidt, and Jackson (1982) and Hedges 

and Olkin (1985). The aims of the meta-analysis of effect sizes r are the determination of (1) the 

population effect size and (2) the homogeneity. Given that all effect sizes belong to the same 

universe, it is assumed that each sample effect size r represents a deviation from its population 

effect size rho. Effects sizes of studies with large sample sizes should deviate less from the 
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population effect size than small N effect sizes. Therefore, in combining all effect sizes, it is fair 

to assign more weight to large N studies. Thus, the best estimate of the population effect size is 

the weighted average of all correlations.  

 

A sampling error of an effect size from a study with a small N is relatively high, whereas a 

sampling error of an effect size from a large N study is small. When averaging correlations, one 

also averages the sampling errors. The sampling error of an individual correlation may be very 

high but the sampling error of the average correlation over many studies becomes small -- 

dependent on the total sample size. This happens because positive and negative sampling errors 

cancel themselves out in summation. 

This is different, however, for the variance of correlations because the sign of the sampling error 

is eliminated by squaring the deviations. The variance across studies appears to be systematically 

larger due to sampling error. The relationship between sampling error variance and population 

variance is additive, and therefore, the observed variance of correlations can be regarded simply 

as the sum of both components.  

 

The Schmidt-Hunter method allows a good approximation of the sampling error variance s2e by  

 

 s
2

e = ((1 - r
2
)
 2

 * k) / N 

 

where r
2
 is the squared weighted mean of the effect sizes, k the number of studies, and N the 

total sample size (Hunter et al., 1982, 44). 

 

After this is known one can easily determine the population variance s2res by subtracting the 

sampling error s2e from the observed variance s2r: 

 

 s
2

res = s
2

r - s
2

e 

 

The population variance s
2

res is also called the residual variance, and its square root is called the 

residual standard deviation sres. 

 

It is desirable that all the observed variance s
2

r is accounted for by the sampling error s
2

e, and 

that the residual variance s
2

res would become zero. Then the "percentage of observed variance 

accounted for by sampling error" would be 100% as an indication of homogeneity. Very often, 

however, only a small percentage can be explained by artifacts, leaving a state of heterogeneity 

which requires further searches for moderator variables.  

 

A population effect size can only be reliably interpreted if the underlying data set is sufficiently 

homogeneous. If most of the variance of the observed correlations is accounted for by sampling 

error, then this requirement is met. As a rule of thumb, Hunter et al. (1982) suggest, that at least 

75% of the observed variance should be "explained" by artifacts such as sampling error. The 

remaining 25% of "unexplained" variance are seen as negligible: it would not be worth while to 

search for moderators. 

 

The authors also provide a chi-square test of homogeneity with a very high statistical power. 

"Thus if the chi-square is not significant, this is strong evidence that there is no true variation 
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across studies; but if it is significant, the variation may still be negligible in magnitude" (Hunter 

et al., 1982, p. 47). 

 

Finally, there is a third indicator of homogeneity which seems to be the most important one. The 

absolute amount of residual variance also counts. If there is almost no variance left after 

subtracting the sampling error variance, then homogeneity is assumed. ".. it is the actual amount 

of remaining variance that is important, not the percentage remaining..." (McDaniel, Hirsh, 

Schmidt, Raju, & Hunter, 1986). But how small has the actual amount of residual variance to be? 

As a rule of thumb one can consider a residual standard deviation as small if it does not exceed 

25% of the population effect size (Stoffelmayr, Dillavou, & Hunter, 1983, p. 343). 

 

In the present example, the observed variance of effect sizes is .01985, the variance due to 

sampling error is .00548, and the population variance is .01437 (all numbers based on algorithm 

with Fisher's z transformation). This means that only 28% of the observed variance is explained 

by sampling error. The residual standard deviation of .1199 is larger than ¼ of the population 

effect size. The test of homogeneity is chi
2
 = 28 with 7 df which is significant. Thus, all three 

indicators agree upon heterogeneity.  

 

In this situation, the meta-analyst goes back to the studies and searches for features that may have 

caused the systematic variation. Let us assume that no coding scheme has been used, and that the 

meta-analyst has no idea where to locate the substantial source of variation. Here it may be 

helpful to inspect groups of studies that share similar effect sizes. Grouping smaller numbers of 

studies into more homogeneous subsets is achieved by a cluster analysis. Moderator variables can 

be detected by employing this strategy and by inspecting the resulting subgroups. This can be 

called an "inductive moderator search". In addition to those potential moderators which are 

deducted from theory, empirical subsets of effect sizes may hint to a further moderator 

responsible for heterogeneous effect size distributions. 

 

In the present example, two clusters emerged: Studies A, B, E and F versus Studies C, D, G and 

H (see chapter 2.5.7 for the cluster method). As a next step, these two data sets are separately 

analyzed in the same manner as the total data set above. 

 

The first data set yields a population effect size of .51. The observed variance is .0059, the 

sampling error variance .0039, and the remaining population variance .002. This means that 66% 

of the observed variance is explained by sampling error which still looks heterogeneous. The two 

other indicators, however, suggest homogeneity. (See data file FOUR1.R on disk). 

 

The second data set yields a population effect size of .25. The observed variance is .0013, the 

sampling error variance .0067, and no population variance remains. This means that 100% of the 

observed variance is explained by sampling error. All three indicators agree upon homogeneity. 

(See data file FOUR2.R on disk). 

 

The two population effect sizes differ considerably, and the two population variances are much 

lower than the one for the total data set. This means that a moderator must exist (see chapter 

2.5.4 for more details on moderator identification). The meta-analyst reviews the eight studies 

again and this time finds the clue: In the first set of studies, samples of adolescents have been 
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examined, whereas in the second set middle-aged adults have been the subjects under 

investigation. Young drug abusers who are jobless or lack money for other reasons more often 

have to rely on delinquent behavior to finance their habit than middle-aged adults with a secure 

job or other resources collected over the years. 

1.6 Brief guidelines for meta-analysis 

 

1.6.1 Finding and selecting studies 

 

In some cases, relevant studies have been retrieved in the familiar and convenient environment of 

one's university library or have been located by chance. In order to avoid seriously flawed 

conclusions it is necessary to design the literature search in a more systematic manner. 

 

First, the topic has to be clearly defined, and the criteria should be neither too broad nor too 

limited. In our work on social support and health, for example, we included social integration but 

excluded social conflict, and we included mortality but excluded psychological well-being 

(Schwarzer & Leppin, 1989a, 1989b; Leppin & Schwarzer, 1990). As can be seen, this remains a 

matter of judgment, and the meta-analyst has to make transparent how the research area has been 

defined and what the criteria for the selection of studies have been. 

 

Searching the literature within a given range requires a systematic screening process which may 

start in one's university library but one also has to inquire for resources beyond it. Printed 

materials are, for example, the Psychological Abstracts, the Sociological Abstracts, and such 

periodicals as Annual Review of Psychology, and Review of Educational Research. It is 

indispensable to consult computerized  data bases and retrieval systems such as SOCIAL 

SCISEARCH, ERIC, PsycInfo and MEDLARS. The German reader will find a good introduction 

to literature search in Fricke and Treinies (1985). 

 

The references in these databases, however, are not the most recent ones. The meta-analyst 

should retrieve as much "gray literature" as possible, such as dissertations, conference papers and 

preprints of articles in order to minimize the "file drawer problem". The meta-analyst should not 

rely on published sources exclusively. 

 

Not all of the studies retrieved can be used for a quantitative review. Some deal with the topic in 

a more theoretical or speculative manner without reporting effect sizes, probabilities, or summary 

statistics that could be converted into an effect size. The meta-analyst also will be reluctant to 

include an empirical study that is seriously flawed. If there is evidence that a study's effect size is 

based on a mistake, then its inclusion would pose a threat for the validity of the meta-analysis. 

This raises the difficult question of whether all available empirical studies that report the 

necessary information should be subject to the research synthesis, or whether only the 

methodologically best studies should be chosen. The latter position is taken by Slavin (1986). 

According to his "best-evidence approach" one should give little or no weight to studies of poor 

quality. This is in contrast to Glass, who is more liberal and favors the inclusion of all available 

studies (see Glass, McGaw, & Smith, 1981). 

 

Studies vary in terms of quality, and this variation should be accounted for by a meta-analysis. 

The most appropriate way seems to be to make study quality a category of the coding scheme and 
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to relate it to the effect sizes. If it turns out to be a moderator then low-quality studies arrive at 

different conclusions than high-quality studies, and there would be no question which 

conclusions to follow. 

 

 

 

1.6.2 Identifying and coding study characteristics 

 

The database of a quantitative review has to be described in some detail. Therefore, the meta-

analyst has to capture all the essential information such as publication year, publication source, 

instruments used, and type of sample. In addition, such information can be valuable when it 

comes to the search for moderators. If the results obtained are heterogeneous, the meta-analyst 

has to identify the reason for it and will turn to study features that might account for the 

unexplained variation. For the purpose of describing study features within categories, coding 

sheets are used. The beginning of such a coding scheme could look like the example in Table 5. 

 

This is computerized and serves as a set of variables to be correlated with effect sizes. Some 

meta-analysts pay special attention to the detailed description of study features (Glass et al., 

1981; Seipp, 1989a; Wittmann & Matt, 1986) but others deemphazise it. We have used a coding 

scheme with 23 categories and many subcategories (Schwarzer & Leppin, 1989a) but did not 

benefit from it very much. Creating such a database of study characteristics and relating it to 

effect sizes requires a great deal of time and effort and very often is not cost-effective. "Such 

coding can be 99 percent of the work in the research integration process. Yet this coding work 

may be entirely wasted" (Hunter et al., 1982, p. 32). If variation in the data turns out to be due to 

sampling error only, all the effort has been futile. Only in case of heterogeneity are the study 

features relevant for a moderator search. Sampling error is the major source of variation in meta-

analytic data. According to our experience it amounts to 10-100%. On the other hand, a 

moderator usually accounts for a much smaller percentage -- if it can be identified at all. 

"Variance of study findings is only modestly predictable from study characteristics; in nearly all 

instances, less than 25% of the variance in study results can be accounted for by the best 

combination of study features..." (Glass et al,, 1981, p. 230). 

 

For a parsimonious approach it is suggested to prepare a coding sheet with the available pertinent 

information, but before computerizing it, a meta-analysis should be run for the total as well as for 

some subgroups splitted by theoretical deliberations. Then, the state of affairs allows a better 

judgment of how many additional resources are worth investing in employing additional coders 

(for inter-coder reliability) and for computerizing the database. The narrower the defined topic 

and the smaller the resulting number of studies, the less vital the coding work is. 
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Table 5 

Example for some categories of a coding scheme 
______________________________________________________________ 

Column Feature 
______________________________________________________________ 

 1 - 3 STUDY ID 

 4 - 5 YEAR OF PUBLICATION 

 01 1901 

 . 

 89 1989 

 99 missing value 

 6 - 8 TYPE OF PUBLICATION 

 100  Journal 

 101  Health Psychology 

 200  Book 

 210  Book Chapter 

 300  Dissertation 

 400  Conference Paper 

 500  Research Report 

 9 GENDER OF SAMPLE 

 1 male 

 2 female 

 3 mixed 

 4 missing value 

10 - 14 SAMPLE SIZE 

etc. 
______________________________________________________________ 

 
 

1.6.3 Reporting meta-analytic findings 

 

It is desirable that a reader learns about all aspects of the meta-analytic process, but journal space 

is scarce and the meta-analyst has to face these constraints by selecting the most crucial findings. 

The author should make all decisions transparent such as the definition of the research area, the 

time period covered, the countries or languages included, the number of studies located 

compared to those selected, and the selection criteria. The database has to be described, including 

publication sources, samples studied, and instruments and statistics used. It is also useful to 

illustrate the total set of effect sizes visually by a histogram, a stem-and-leaf display or a funnel 

display (see Light & Pillemer, 1984). 

 

The minimum information to be provided on the meta-analytic results include the number of 

effect sizes, the number of subjects, the population effect size, and measures of variation or 

homogeneity -- individually for each result. Usually, as a first step, all available effect sizes are 

subject to an overall analysis which turns out to yield heterogeneity and thus, requires a number 

of subanalyses. A meta-analysis, therefore, is in fact a series of meta-analyses of subordinate data 

sets. A result table for two such meta-analyses could look like the following (Table 6). 
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Table 6 

Example: Gender-specific relationships between anxiety and self-concept 

________________________________________________________ 

 

Study feature k N r w    so      se      sp 

________________________________________________________ 

 

females 35 1,302 .42  .060     .040   .020 

males  42 2,150 .37  .080  .020  .060 

________________________________________________________ 

 

In this example, correlation studies have been investigated. There were 35 effect sizes r for a 

total of 1,302 females, which yield a weighted average (population effect size) of .42, an 

observed variance of .06, variance due to sampling error of .04, and remaining population 

variance of .02. That means that one third of the variance is not explained by sampling error. 

 

More detailed result tables could be used which also include unweighted mean effect sizes, their 

credibility interval, and further indices of homogeneity (see Kleine, 1990; Seipp, 1989a, 1989b). 

 

An appendix should be provided that lists all studies reviewed. If space is available, another 

appendix should be given that comprises all effect sizes cross-referenced with studies. This 

typically requires lots of remarks and footnotes because many effect sizes are the result of 

averaging and transformations. The authors of the original studies sometimes have a hard time 

recognizing effect sizes which they never had published in this way. 

 

 

1.7 Criticism of meta-analysis 

 

Meta-analysis has been criticized in a number of ways (see Glass, McGaw & Smith, 1981, for 

comments that the research synthesis is too dependent on published studies, while unpublished 

studies remain). First, it has been argued hidden in the "file drawers". Published findings are 

highly selective and, therefore, do not represent the "state of the art" accurately. Researchers are 

inclined to report findings that are statistically significant and to neglect those that are not. In 

addition to this reporting bias, journal editors tend to reject submitted manuscripts which do not 

include statistically significant findings, due to the high competition for journal space. This 

implies a publication bias. Manuscripts which were either rejected or not submitted in the first 

place may disappear in the "file drawers" or may be distributed as conference papers or "gray 

report literature" only. This file drawer problem leads to an overestimation of population effect 

sizes. 

 

It is not proven, however, in how far this inference is valid. If, for example, an outcome statistic 

fails to become significant, this might be due to small sample size but the corresponding effect 

size may be large; if, on the other hand, statistics become significant, this might be attributed 

mainly to large sample size, and the corresponding effect size may be negligible. It is possible, 

therefore, that some findings in the "file drawers" include higher effect sizes than those in 

published studies. Nowadays, journal editors have become more aware of effect sizes and more 
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often disregard minute effects that are associated with "significant" findings based on hundreds 

or thousands of subjects. 

The file drawer problem can not be understood as a criticism pertinent to meta-analysis only. 

Instead, it is a more general issue that applies to all kinds of literature reviews, qualitative as well 

as quantitative ones. Only those data that are available can be integrated . Meta-analysis achieved 

a great deal in having made this difficulty transparent and in searching for ways to deal with it. 

One suggestion made is to compute a "fail-safe N" (Rosenthal, 1984), which is the estimated 

number of non-significant results in the file drawers that would be required to turn a significant 

meta-analytic finding into a non-significant one. The fail-safe N is a unique way of pointing to 

the file drawer problem and making it more transparent but it cannot solve the problem itself. 

The meta-analyst has to consider as many unpublished sources of information as possible to cope 

with the imbalance of studies being either published or unavailable. 

 

Second, meta-analysis has been criticized for paying too much attention to studies of low quality. 

If the entire pool of available studies serves as the object of an effect size integration, poor 

studies are assigned the same weight as good studies. If, for example, the treatment groups were 

not selected randomly, if inappropriate statistics were applied, or if the psychometric properties 

of the instruments were not satisfactory or were not reported at all, then such studies hardly 

deserve to be pooled with excellent studies. This problem can be partly solved if the meta-analyst 

includes the technical quality as part of the study features in the coding scheme. Thus, the 

influence of quality on effect sizes could be examined. If quality turns out to be a moderator, the 

subgroup results of low and high quality studies could be either separately reported or the meta-

analyst could assign different weights to studies of different quality. Whatever is preferred, the 

meta-analyst has to make the judgments and decisions transparent to the reader. What has 

formerly come up as a criticism of meta-analysis has turned into an advantage: explicit methods 

of dealing with differences in study quality have been designed which are clearly superior to the 

more implicit ways in which narrative reviews deal with this issue. 

 

Third, the reproach has been made that meta-analysis mixes "apples" and "oranges". In a sense 

this is true because all reviews have to cover a variety of studies which necessarily differ in a 

number of characteristics. Reviews need to have an adequate scope in order to arrive at 

meaningful conclusions about a research domain. If "apples and oranges" are mixed the 

conclusions necessarily refer to "fruit". This issue remains to be a matter of degree. At the one 

extreme, only those studies would be integrated that represent solely a very narrow research 

question, for example inquiring about the influence of continuous teacher praise on first grade 

girls in four hours of arithmetic lessons. Each study here can be seen as an exact replication of 

the previous one, as it is the case in a planned series of experiments. Thus, merely very few 

studies can be summarized. At the other extreme, integration would aim at the entire collection 

of studies which refer to a broad research question, such as examining the impact of risk 

behaviors on illness. Smoking, drinking, poor nutrition, lack of exercise etc. are treated as risk 

behaviors, and blood pressure, time in hospital, self-reported disease symptoms, amount of 

medication etc. are taken together as indicators of illness. In their psychotherapy outcome study, 

for example, Smith and Glass (1977) mixed results from very different types of therapy and from 

very different kinds of outcome variables. 
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The question is how to deal with scope if the research question appears to be too broad for 

meaningful conclusions. The solution to this issue lies in establishing a hierarchy of constructs 

differing in scope. As Hedges (1986, p. 359) suggests, the meta-analyst may start out with a more 

general research question using broad constructs but then should turn to subordinate constructs 

which are more narrow in scope in order to avoid premature or overgeneralized conclusions. 

Findings related to disparate narrow constructs could cancel each other out and therefore have to 

be considered separately. A meta-analysis can arrive at a complex mosaique with different levels 

of different scopes. Awareness of the apples-and-oranges problem may help to identify a pattern 

of appropriate constructs. One set of studies would be nested under one specific category, while 

another set would be nested under another category. 

 

Fourth, meta-analysis has been criticized for lumping together nonindependent results. When 

multiple outcomes are derived from the same studies, those studies are given more weight than 

others, and sample size would increase artificially. For example, in their psychotherapy outcome 

meta-analysis, Smith and Glass (1977) included 475 studies, but some of their computations 

were based on 1,766 effect sizes.  

 

Usually, the number of effect sizes is much higher than the number of studies because authors 

report more than one summary statistic in their articles. The construct under investigation may be 

operationalized by several indicators each of which produces one effect size, or a variable may be 

measured at more than one point in time, or the author has conducted more than one experiment 

with the same subjects.  

 

This issue refers to the unit of analysis. Shall we treat a single study or a single effect size as the 

unit of analysis? Facing this problem in a specific situation, the meta-analyst has to make a good 

judgment about the expected amount of bias which would affect the data, and then decide how to 

proceed. Most meta-analysts today do not agree with the position of Glass who liberally relied on 

the effect size as the unit of analysis, no matter how many studies they were derived from. 

Instead, it is suggested to use either the study or the sample within a study as the unit of analysis 

(see Kulik & Kulik, 1989). The latter procedure was also preferred in our own work (Kleine & 

Schwarzer, 1991; Leppin & Schwarzer, 1990; Schwarzer & Leppin, 1989a, 1989b). If, for 

example, a study included 100 females and 300 males, and separate statistics were available for 

both samples, two strategies were employed: (1) for the overall integration a weighted mean 

effect size was computed, and (2) for the gender-specific meta-analysis both effect sizes were 

taken separately. If, however, data were obtained at three points in time, the three effect sizes for 

females were averaged as well as the three effect sizes for males. An alternative to averaging 

would be to select one of the effect sizes randomly. 
 

If multiple indicators had been used to measure a construct, it also might be adequate to average 

their effect sizes. In this situation, Rosenthal and Rubin (1986) suggested to compute mean effect 

sizes after accounting for the intercorrelation of these indicators, and they provided formulas for 

this purpose. 

 

Another problem arises if several treatment groups are compared to a single control group, and 

the computation of all effect sizes draws multiply from this control group. Most meta-analysts 

neglect this very specific kind of dependency but Hedges and Olkin (1985) discuss possibilities 

to even account for this small bias statistically. 
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Another source of nonindependence lies in multiple publications by the same author. Study II 

may rely on the same sample as Study I did, or the same instruments and designs may have been 

used over and over again. In treating these studies as independent in a meta-analysis, the work of 

one author or research group receives the lion's share of effect sizes, and thus, may bias the 

results in favor of their outcomes. If such a bias becomes apparent, the meta-analyst is advised to 

reduce dependency by averaging those studies or defining other units of analysis. 

 

In sum, the four major criticisms of meta-analysis have stimulated a great deal of creative 

thinking as well as the invention of novel strategies to cope with them. The points of criticism do 

not hold: either they refer generally to all kinds of literature reviews or they point to an 

inappropriate use of meta-analysis. Any statistical procedure can be misused, and meta-analysis 

is no exception. Today there is no longer a serious criticism that rejects meta-analysis 

methodology per se but there are warnings not to misuse the quantitative approaches to research 

synthesis. 
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2. The Meta-Analysis Programs 

 
 

2.1 The Main Menu 

 

When the program is called the main menu pops up. It contains five pull-down submenus (Figure 

3). 

 

GENERAL p VALUES d VALUES r VALUES UTILITIES 

------------------------------------------------------------------------------------------------------------------ 

Editor  Meta-  Meta-  Meta-  Conversion r 

  analysis analysis analysis 

 

Directory r-File  Cluster  Cluster  Effect Size d 

 

 

Change Dir   r-File  StemLeaf Signif. of Corr 

 

 

Info        Weighted M,V,C 

 

 

Calculator       t-Tests 

 

 

Quit 

------------------------------------------------------------------------------------------------------------------ 

 

Figure 3 

The Main Menu 

 

Before starting serious work it is suggested to play around with the example files in order to 

become acquainted with the program system. Select the option "Directory" to view the available 

example files. Their suffix indicates whether they are set up for p values, d values or r values 

meta-analyses. The Editor allows to list and to modify the data as well as to create new data sets 

(see chapter 2.2). "Change Dir" gives access to other directories, but parts of the program rely on 

subroutines stored in the current directory. It is suggested, therefore, to reserve one directory on 

the harddisk for all meta-analytic work. 

 

 

The option "Meta-Analysis" is provided three times, for p-, d-, and r-values, respectively. All 

other options are designed for additional features, such as cluster analyses or stem-and-leaf 

displays. 

 

The Utilities menu does not require any data files, but manual input of statistics or coefficients 

such as t, F, chi2, r, to be transformed, to be weighted, or to be compared. 



Main Menu  -  24  - 

____________________________________________________________________________________________ 

 

 

2.2 Creating and modifying data files with the EDITOR 

 

The present program system is not designed to accept input data from the keyboard. Instead, all 

data have to be typed into specific files on disk. The files are ASCII files, which implies that any 

appropriate editor can be used for data input, such as SideKick, WordStar (non-document mode), 

or the Turbo Pascal editor. In fact, the EDITOR provided with this set of programs is based on 

Borland's Turbo Pascal Editor Toolbox. Familiar keystrokes can be applied, therefore, when 

using this EDITOR. From the Main Menu select File/Editor. Those who are absolute novices will 

find the minimum information, how to save and how to quit, at the bottom of the screen. Do not 

use a Carriage Return (CR or Enter) after entering the last value. 

 

There are three data structures depending on the strategy of meta analysis preferred, those for p, d 

and r values.  

 

2.2.1 Probabilities 

 

Example 1 for p values, structured as: #  n  p 

 

9 100 0.005 

2 60 0.0005 

7 31 0.025 

4 22 0.005 

1 15 0.389 

 

Preparing a data file for a meta analysis with probabilities requires the input of three columns: 

The study ID (any numerical identification that you have assigned to an empirical study), the 

sample size N, and the exact one-tailed probability p. [If sample size is not available assign any 

number, but it has to be the same for all studies.] In the above example, all research results have 

been in the same direction, favoring the research question. Assume, however, that the first two 

studies yielded significant results in the opposite direction, not supporting the research question. 

This will be the normal case in meta-analyses. To account for this, simply assign a minus sign to 

those p values, as demonstrated in the following example: 

 

Example 2 for p values, structured as: #  n  p 

 

9 100     -0.005 

2 60     -0.0005 

7 31      0.025 

4 22      0.005 

1     15      0.389 

 

Of course, the correct notation would be p=.995 for the first, and p=.9995 for the second study, 

but for ease of use the program is designed to handle both ways. There are mostly some results 

that are in favor of the researcher's assumptions and others that are not. Either apply the correct 
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probabilities (1-p) in this instance, or simply assign minus signs to the p values of those results 

that do not support the research question. 

 

 

2.2.2 Effect sizes d or g 

 

Example for d values, structured as: #  ne  nc  g  rtt 

 

 8 100 100 1.2 0.9 

 2 200 200 0.6 0.8 

12 300 300 0.9 0.8 

 4 400 400 0.8 0.9 

 

There is some confusion with respect to g or d as labels for effect sizes. They differ slightly. This 

manual refers to a g value as the standardized difference between two means, and to a d value as 

the corresponding unbiased effect size estimator (see below). 

 

A data file for a meta analysis with effect sizes d requires five columns, as indicated. The sample 

sizes for the experimental group ne and for the control group nc are followed by the effect size. 

The estimator of effect size is based on the standardized mean difference as proposed by Glass 

(1976). The mean Mc of a control group is subtracted from the mean Me of an experimental 

group, and divided by the pooled standard deviation of both groups: 

g = (Me - Mc ) / SD 

To obtain these g values one may use the subroutine "Effect sizes d" from the Utilities Menu. 

These g values will later be transformed by the meta-analysis subroutine into d values. According 

to Hedges and Olkin (1985) d is an unbiased estimator of the effect size. For details, see chapter 

2.3 on the combination of effect sizes from a series of experiments. For technical reasons, the 

data set has to include a column with reliabilities rtt. If not available, insert unity to assume 

unbiased measures. There is no specific treatment of missing values but coefficients of 0 are 

automatically transformed to 1.0. 

 

2.2.3 Effect sizes r 

 

Example for effect sizes r, structured as: #    n    r(xy)   r(xx)  r(yy) 

 

11 100 0.23 0.9 0.8 

20 200 0.20 0.9 0.7 

34 300 0.19 0.8 0.9 

42 400 0.21 0.8 0.8 

 

Correlations are in the third column, reliabilities for variables x and y in the fourth and fifth 

column, respectively. All five columns are required. If no reliabilities are available, these 

columns should contain a vector of 1.0. If, however, only some studies provide reliability 

information but others do not, the correction for attenuation procedure still may produce useful 

results. The program contains a specific missing value treatment based on the artefact 

distributions described by Hunter, Schmidt and Jackson (1982) and allows the necessary 
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corrections in case of incomplete reliability information. In this case, all available reliabilities 

have to be entered and all missing values have to be coded as 0 in columns 4 and 5, but for 

technical reasons, at least one reliability coefficient per column [ e.g., 1.0 ] has to be provided in 

order to run the program. 

 

Do not use a Carriage Return (CR or Enter) after the last value entry in the data set, because this 

would be interpreted as an additional empty data record. 

2.3 Combination of probabilities 

 

If empirical studies do not provide effect sizes or appropriate statistics which allow for 

transformation into effect sizes, the meta-analysis can be reduced to a combination of 

probabilities. P values are usually reported in the literature or can be easily obtained from 

statistical tables. 

 

This program uses the Stouffer method of integrating one-tailed exact p values after 

transformation to the normal distribution Z (see Rosenthal, 1984). For each p the program 

computes the corresponding normal distribution Z and provides an unweighted as well as a 

weighted average Z. Their corresponding significance p is the main result of this kind of meta-

analysis. The corresponding effect size r is computed as r=Z/sqrt(N). For the transformation of p 

to Z see Mullen and Rosenthal (1985, p. 134). 

 

Figure 4 displays the results for the data set "Example1.p" which was shown in Chapter 2.2. 

Combining the probabilities of these five studies leads to a highly significant result (p=.0000022) 

indicating the very small likelihood that a Z this large or larger could be obtained if the null 

hypothesis were true. Although one of the five studies was not significant, the null hypothesis 

can be rejected for all five studies combined. 
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*********************************************************** 
 Results of Meta-Analysis for Probabilities 
 
*********************************************************** 
Filename : example1.p 
Number of Studies: 5 
Total Sample Size:   N = 228 
 
Unweighted average Z-value Z = 4.7785 
Significance (one-tailed)  p = 0.0000013 
Corresponding effect size  r = 0.3164661 
 
Weighted average Z-value  Z = 4.6673 
Significance (one-tailed)  p = 0.0000022 
Corresponding effect size  r = 0.3090964 
Fail-Safe   N(p=.05) = 37.19 
Fail-Safe   N(p=.01) = 16.03 
 
Test of homogeneity  Chi-Square = 5.1911 
Degrees of freedom  df = 4 
Significance   p = 0.268246 
 
*********************************************************** 

 

Figure 4: Results for data set "Example1.p" 

 

The Fail-Safe N informs about the number of nonsignificant "file drawer studies" necessary to 

invalidate a significant overall result at a certain predefined level. In this example 16 

nonsignificant findings would be required to bring the overall p of .0000022 above a critical p of 

.01, and 37 nonsignificant findings would be required to bring it above .05. The formulas can be 

found in Rosenthal (1984, pp. 89, 94, 108). 
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*********************************************************** 
 Results of Meta-Analysis for Probabilities       
*********************************************************** 
Filename : example2.p 
Number of Studies :   5 
Total Sample Size:   N = 228 
 
Unweighted average Z-value Z = -.4691 
Significance (one-tailed)  p = 0.3195105 
Corresponding effect size  r = -0.0310648 
 
Weighted average Z-value  Z = -2.6980 
Significance (one-tailed)  p = 0.0034877 
Corresponding effect size  r = -.1786797 
Fail-Safe   N(p=.05) =  -4.59 
Fail-Safe   N(p=.01) =  -4.80 
 
Test of homogeneity  Chi-Square  = 27.8055 
Degrees of freedom  df = 4 
Significance   p = 0.000014 
*********************************************************** 
Figure 5: Results for data set "Example2.p" 

 

In the second example (Figure 5) two p values were entered with a minus sign to indicate that 

their significant results were in the opposite direction (see chapter 2.2). Since these two entries 

made up the majority of the sample (n=160 out of N=228), there is a considerable difference 

between the unweighted (p=.319) and the weighted solution (p=.003). According to the first one, 

the combination of all five studies does not justify the rejection of the null hypothesis. According 

to the second one, combining all studies suggests rejection, favoring the unexpected direction 

because the Z value is negative. 

 

Under some circumstances the Fail-Safe N can become negative and should be ignored. The test 

of homogeneity indicates high heterogeneity in this second example which derives from the 

minus sign manipulation leading to an extreme pattern of results. 

 

Meta-analyses of effect sizes are superior to combinations of probabilities. The present program 

system also provides additional information for r value data sets such as cluster analyses and 

stem-and-leaf displays. It is, therefore, suggested that, after running the above analyses, the 

probabilities data set is converted to another data set of r values. Choose "p values/r-files" from 

the main menu to create a corresponding data set of effect sizes r. Then, use this new file with the 

suffix ".RRR" as input for the r values procedures. However, keep in mind that transformations 

of this kind may be biased sometimes (see Kulik & Kulik, 1989, p. 254). 
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2.4 Combination of effect sizes taken from a series of experiments 

 

2.4.1 Introduction 

 

This chapter describes how to run a meta-analysis for a number of experimental studies. It refers 

to the book by Hedges and Olkin (1985) which should be the main source for further 

consultations about this method. (For the German readership the book by Fricke and Treinies, 

1985, is recommended). In the following section, some paragraphs are repeated from the general 

introduction of this manual. 

 

A common estimator of effect size is the standardized mean difference as proposed by Glass 

(1976). The mean Mc of a control group is subtracted from the mean Me of an experimental 

group, and divided either by the control group standard deviation or by the pooled standard 

deviation of both groups: 

 

  g = (Me - Mc ) / SD 

 

The latter strategy is generally preferred. In this case s is the square root of the weighted average 

of the two variances: 

 

 s
2
 = ( (ne - 1)(se)

 2
 + (nc - 1)(sc)

 2
 ) / ( ne + nc - 2) 

 

In most of the literature the above effect size is called d instead of g, but in this monograph we 

follow the distinction made by Hedges and Olkin. The index d remains reserved for the unbiased 

effect size estimator (see below). To easily compute these effect sizes g or d, the user can select 

the subroutine "Effect sizes d" from the Utilities Menu. Input of means and standard deviations 

(optional: variances) yield the desired effect sizes. Note, that the subsequent meta-analysis 

routine requires a data file with g values which will automatically be transformed to d values. 

 

Hedges and Olkin (1985, p. 80) show that g has a small sample bias. By 

defining a new estimator d, they remove this bias: 

 

 d = ( 1 - ( 3 / 4 * N - 9 )) * g 

 

Although there are several ways to combine effect sizes from a series of experiments, the focus 

here will be on two methods: a) the weighted linear combination of estimators from different 

studies, and b)  the "random effects model". These methods provide accurate estimates if the 

single effect sizes do not exceed the absolute value of 1.5 and if the respective sample sizes for 

each effect size are at least n=10. 

 

2.4.2 The weighted integration method 

 

The variance of a single effect size depends on its sample size (Hedges & Olkin, 1985, p. 86, 

Formula 14): 
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  ne + nc         d
2
  

  est. s
2
 (di) =   -----------  +   ------------------ 

  ne * nc  2 ( ne  +  nc  ) 

Effect sizes based on larger samples are more precise and, therefore, deserve more weight in a 

meta-analysis. The weighted integration method weighs -- in a complicated manner -- each effect 

size with its variance (p. 112, Formula 8). 

 

    ( di / est. s2(di) ) 

    d+ =         ---------------------------------- 

    (  1 / est. s2(di) ) 

 

Example data are given by the authors (Hedges & Olkin, 1985, p. 114) which are saved as a disk 

file "Hedges1.d" for the convenience of the META user. Note, that the authors provide d values 

on page 114 but that the example file contains corresponding g values, necessary as META input 

(taken from Hedges & Olkin, p. 25). 

 

A test of homogeneity (p. 123) serves to examine if all effect sizes can be considered to be 

samples from a common population of effect sizes. If it becomes significant, then the data set is 

rated as being heterogeneous. 

 

2.4.3 The "random effects model" 

 

The previous method is applied with the underlying assumption that the data set is homogeneous, 

i.e., all studies have the same population effect size, and the observed effect sizes differ only as a 

result of sampling error. In many situations, however, this is not the case, and therefore, a more 

general approach is preferred. The variation of observed effect sizes can mirror partly the true 

variation of population effect sizes. If, for example, study characteristics such as different 

treatments, subject groups or stimulus materials account for some variation then there may be 

several population effect sizes underlying the data. "Thus the observed variability in sample 

estimates of effect size is partly due to the variability in the underlying population parameters and 

partly due to the sampling error of the estimator about the parameter value" (Hedges & Olkin, 

1985, p. 191). The program decomposes the observed effect size variance into both parts (see 

Formulas 7, 9 and 10, p. 194). The population variance is computed by subtracting the sampling 

error variance from the observed variance: 

 

 population variance = observed variance - sampling error 

 

The percentage of observed variance made up by sampling error can be computed: 

 

 ? % = sampling error * 100 / observed variance  

 

This illustrates the degree of homogeneity or heterogeneity of the data set. If 100% of the 

observed variance is explained by sampling error (which is desired), the data are homogeneous. 

If, for example, 40% are explained by sampling error, then the residual variation of 60% is due to 

systematic factors. The meta-analyst should then look for moderator variables  such  as study 

characteristics which may account  for  this systematic variation. It is reasonable, therefore, to 
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first examine the results from the "random effects model" to realize if the observed effect size 

variance is already exhausted. Otherwise the meta-analyst may run several further analyses with 

specific data subsets according to some reasonable hypotheses. There is also a test of homo-

geneity (p. 197) which  serves  as  an  additional indicator  for  a  judgment  on  the hetero-

geneity status.  

 

Within the "random effects model" a mean effect size delta is estimated (see p. 199) including 

confidence intervals. In case of homogeneity this would be the final result.  

 

2.4.4 Interpretation of computer output: An example 

 

Example data are given by the authors (Hedges & Olkin, 1985, p.195) which are saved as a disk 

file "Hedges2.d" for the convenience of the META user. This is a data set with 11 records, each 

containing the study number, the sample size of the experimental group, the sample size of the 

control group, the effect size g, and a (fictitious) reliability coefficient. (Note, however, that the 

authors, in their table on p. 195, present unbiased estimators d while here the corresponding g 

values are input as requested by the program).  
 
 

 # ne nc         g                  rtt 
     
 1 131 138    0.15845 0.90 
 2 40 40   -0.25647 0.81 
 3 40 40    0.26354 0.79 
 4 90 90   -0.04318 0.95 
 5 40 40    0.65532 0.91 
 6 79 49    0.50602 0.88 
 7 84 45    0.46073 0.89 
 8 78 55    0.58033 0.92 
 9 38 110 0.59104 0.79 
10 38 93    0.39430 0.84 
11 20 23   -0.05603 0.86 
     
 

When typing your own data with the "Editor" from the File Menu, do not finish your data set 

with an empty line. If reliability coefficients are not available, use 1.0 or 1 instead, pretending 

perfect measurement. 

 

From the Main Menu select "d values" and "Meta-Analysis" and enter the name of a data file 

such as "c:\mypath\Hedges2.d". After a second the screen will be filled with the results. 

 

The first two lines confirm the data set including number of effect sizes and total sample size. 

The next two lines refer to the unmodified effect sizes g, as entered, and present their arithmetic 

mean (.29582), the standard error SE (.0925) and the effect size variance (.09421) with its 

standard deviation SD (.3069). The following two lines give the same information based on the 

unbiased effect size estimator d.  
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 File name: hedges2.d 
 Number of effect sizes:  11   Total sample size: 1401 
 
 Unweighted mean of effect sizes g = 0.29582 SE = 0.09254 
 Observed variance of effect sizes g = 0.09421 SD = 0.30693 
 
 Unweighted mean of adjusted effect sizes d = 0.29400    SE = 0.09185 
 Observed variance of adjusted effect sizes d = 0.09280    SD = 0.30463 
 
 
----------------------"Weighted Integration Method"--------------------- 
 
 Mean effect size d+ =  0.28597 SE = 0.05532 
 Significance Z = 5.14931 p = 0.00000 
 Variance = 0.00306 SD = 0.05532 
 95% Confidence interval from  0.1771  to  0.3948 
 Homogeneity Q =  23.1589 df = 10 p = 0.01018 
 
 
--------------------------"Random Effects Model"------------------------ 
 
 Mean effect size DELTA = 0.30075 SE = 0.09009 
 95% Confidence interval from  0.1242  to  0.4773 
 Significance Z  = 3.33826 p = 0.00042 
  Observed variance = 0.09280 
  Error variance  = 0.04183 
  Population variance = 0.05097 
 Homogeneity Q  = 23.13359 df = 10 p = 0.01026 
 Amount of variance explained by sampling error:  45.08 % 
 
Figure 6 

Screen display for combination of effect sizes d 

 

The second third of the screen contains the results obtained with the "weighted integration 

method". The mean effect size d+ (.28597) is only slightly different here from the prior 

unweighted results. The significance of this coefficient is tested by the normal distribution Z and 

its corresponding probability p. The 95%-confidence interval of the mean ranges from .1771 to 

.3948. The coefficient Q of 23.1589 is significant (p = .01) and emphasizes the heterogeneity of 

the data set. 

 

Moving on to the "random effects model", the mean effect size delta is .30 with a confidence 

interval from .124 to .477. The observed variance (.0928) is decomposed into sampling error 

variance (.0418) and population variance (.0509). That means that only 45% of the observed 

variance is made up by sampling error. The residual variance component of 55% must be due to 

systematic factors. The data set is heterogeneous and, therefore, the meta-analyst should search 

for moderators. By the way, due to the approximative character of the method it may happen that 
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the population variance becomes slightly negative. In this case the program interprets it as zero 

and, thus, the amount of explained variance becomes 100%. 

 

2.4.5 The case of unreliability: Correction for attenuation 

 

The optional printed output or the disk file output contains some additional information. If the 

data set has been completed with accurate reliability information it is worth while to examine the 

results after correction for attenuation. Each effect size d has been divided by the square root of 

its corresponding reliability. (Note that for technical reasons, the data set has to include a column 

with reliabilities. If not available, insert unity instead to assume unbiased measures. There is no 

specific treatment of missing values but coefficients of 0 are automatically transformed to 1.0). 

There will be a printout of two pages or, if disk file output is desired, two separate files with 

different suffixes, "filename.OUT" and "filename.REL", the latter one comprising the results 

after correction for attenuation. Inspecting the output of the present example reveals that all 

estimates, of course, are somewhat higher after this correction. The less reliable the measures are, 

the higher will be the "true" effect sizes or correlations. Such results should not be reported 

without disclosing the previous uncorrected results. 

 

2.4.6 Equivalence to effect sizes r (correlations) 

 

Additional information is given on the method suggested by Kraemer (1983). The author has 

described an algorithm that first transforms all effect sizes g into effect sizes r (correlations) and 

their Fisher's z counterparts, then determines the weighted mean of all z values which equals 

(after backtransformation) the population effect size rho. Finally, rho is backtransformed into the 

population effect size d. 

 

 ************* Kraemer (1983) method *******************  
 
 Mean effect size d = 0.30200 
 95% Confidence interval from  0.1952 to  0.4097 
 Population effect size Rho = 0.14931 
 Variance of rho  = 0.00073 
 95% Confidence interval from  0.0971 to  0.2007 
 Homogeneity Chi-square = 24.14141 
 

In this example, the amount of the mean effect size d equals Hedges' delta. This illustrates that 

most methods converge to similar results. It also underscores the equivalence of meta-analyses 

using either effect sizes d or effect sizes r. 
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2.4.7 Estimating the "Fail-Safe N" 

 

The file-drawer problem (Rosenthal, 1984) addresses the sampling bias in meta-analysis which 

poses a serious threat to the validity of results. It is assumed that an unknown number of studies 

with effect sizes of zero remain somewhere in file-drawers because they have either not been 

submitted for publication or have been rejected. The fail-safe N informs about the number of file-

drawer studies required to bring the mean effect size down to a defined level. Orwin (1983) has 

adapted Rosenthal's formula for probabilities to effect sizes d: 

 

 Nfs = (Ntotal (meanD - Dcrit)) / Dcrit  

 

Suggested critical d levels in meta-analysis are .80 (large),  .50 (medium) and .20 (small).  
 

 ** Orwin"s Fail Safe N based on "random effects model" DELTA ** 
 
 Fail safe for critical delta of .20  =  5.54135 
 Fail safe for critical delta of .50  = -4.38346 
 Fail safe for critical delta of .80  = -6.86466 
 
In this example, six file drawer studies with effect sizes of zero are necessary to reduce the 

population effect size delta of .30 to a mean effect size of .20. The results for critical values of 

.50 or .80 are meaningless here, because they exceed the empirical value of .30 anyway.  

 

2.4.8 Cluster analysis for effect sizes d 

 

The distribution of effect sizes in a number of experimental studies may be rather heterogeneous. 

If there is a hypothesis that particular study characteristics (such as old vs. new studies, male vs. 

female samples) contribute to the observed variation one will subdivide the data set accordingly 

and will run separate meta-analyses. If homogeneous subsets with different population effect 

sizes emerge then the hypothesized study characteristics are established as moderators. But in 

many circumstances the researcher has no idea which characteristic may be responsible for the 

remaining variation after some moderators have been found. Here an inductive approach may 

help, and one is advised to inspect the rank-ordered effect sizes directly to obtain an impression 

of possible groupings. In order to make a sound judgment it is even better to compute a cluster 

analysis. 

 

Cluster analyses decompose a number of effect sizes into smaller subsets. Two clustering 

methods have been discussed by Hedges and Olkin (1985,p. 265-283), and the reader is referred 

to this source for more detailed information. Overlapping clustering is contrasted to nonover-

lapping (=disjoint) clustering. The present program includes the latter method. It is based on the 

clustering method for approximatory standard normal variates. The u-values are determined 

differently for effect sizes and for correlations. In case of correlations, r is transformed into 

Fisher's z; This is multiplied by the square root of the sample size in the following way: 

 

 u = ( )n 3  * z 
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In case of effect sizes g, a more complicated transformation is necessary to obtain the 

corresponding u-values (Hedges & Olkin, 1985, p. 272). 

 

As a next step, the u-values are rank-ordered, and the gap between each pair of consecutive u-

values is compared to a predetermined critical value. These critical values, taken from a table, 

differ for the 10%-, 5%- and 1%-levels of significance. The more liberal the significance level 

(e.g., .10), the more clusters will show up. A conservative significance level (e.g., .01) will result 

in fewer clusters. For each level of significance the printout of results contains all clusters with 

their rank-ordered effect sizes. The formulas for the critical values and the computer algorithm 

for the disjoint cluster analysis as well have been taken from Mullen and Rosenthal (1985). 

However, these formulas do only approximate the critical values published by Hedges and Olkin 

(p. 268). The fit is better for smaller numbers of studies. 

 

Clusters usually show up in very heterogeneous data sets only. The data example chosen above 

did not yield any clusters. The data file "Example.d" results in the following screen display: 
  

 CLUSTERS AT 10 % LEVEL OF SIGNIFICANCE  
 ******************************************* 
 
  CLUSTER  1: 
  StudyID=   1   Effect Size=   1.2000 
 
  CLUSTER  2: 
  StudyID=   3   Effect Size=   0.9000 
  StudyID=   4   Effect Size=   0.8000 
 
  CLUSTER  3: 
  StudyID=   2   Effect Size=   0.6000 
 
 

The four effect sizes g have been rank-ordered and split into three groups according to similarity 

of values. The printout and the disk file output also contain the corresponding solutions for the 

5% and 1% levels of significance, respectively. 

 

If the results section for the 10%-level -- as shown quickly on the screen -- does not contain any 

disjoint clusters, it is not worthwhile to save an output disk file for more information because 

there will be no clusters at the 5%- and 1%-levels as well. A rank-order of all effect sizes, 

however, yields an impression of possible overlapping groupings. For that purpose it may appear 

useful to save the results on disk or to print a hardcopy of it. 

 

As an add-on, this procedure contains the mean and standard deviation of the sample sizes 

usually to be reported in a research publication, and the product-moment correlation between the 

sample sizes and the effect sizes for further exploration. 

 

Limitations: The implemented algorithm provides fair approximations, especially for a smaller 

number of effect sizes. The clustering works well for equal sample sizes, less satisfactorily 
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however, when sample sizes are very different, for which the decomposition into subsets is 

biased. 

 

2.4.9 Creating an r value file 

 

The present program system provides stem-and-leaf displays only for r value data sets. In case of 

need one can, after running the above analyses, convert the g data file to another data set of r 

values. Choose "d values/R-files" from the main menu to create a corresponding data set of effect 

sizes r. Then, use this new file with the suffix ".RRR" as input for the r values procedures. 
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2.5 Combination of effect sizes from correlational studies 

 

2.5.1 Population effect size and population variance 

 

This program runs a meta-analysis for effect sizes r obtained either directly from correlational 

studies or from other coefficients after transformation to r. (Some paragraphs in the following 

section are repeated from chapter 1.5.) 

 

The statistical procedures are mostly based on Hunter, Schmidt and Jackson (1982) and Hedges 

and Olkin (1985). The aims of this meta-analysis are the determination of (1) the population 

effect size and (2) the homogeneity. Given that all effect sizes belong to the same universe, it is 

assumed that each sample effect size r represents a deviation from its population effect size rho. 

Effects sizes of studies with large sample sizes should deviate less from the population effect size 

than small N effect sizes. Therefore, in combining all effect sizes, it is fair to assign more weight 

to large N studies. Thus, the best estimate of the population effect size is the weighted average of 

all correlations.  

 

A sampling error of an effect size from a study with a small N is relatively high, whereas a 

sampling error of an effect size from a large N study is small. When averaging correlations, one 

also averages the sampling errors. The sampling error of an individual correlation may be very 

high but the sampling error of the average correlation over many studies becomes small -- 

depending on the total sample size. This happens because positive and negative sampling errors 

cancel themselves out in summation. 

 

This is different, however, for the variance of correlations because the sign of the sampling error 

is eliminated by squaring the deviations. The variance across studies appears to be systematically 

larger due to sampling error. The relationship between sampling error variance and population 

variance is additive, and therefore, the observed variance of correlations can be regarded simply 

as the sum of both components.  

 

 

The Schmidt-Hunter method allows a good approximation of the sampling error variance s2e by  

 

 s
2
 e = ((1 - r

2
)
 2

  * k) / N 

 

where 2 is the squared weighted mean of the effect sizes, k the number of studies, and N the total 

sample size (Hunter et al., 1982, 44). 

 

After this is known one can easily determine the population variance s2res by subtracting the 

sampling error s2e from the observed variance s2r: 

 

s
2
 res = s

2
 r - s

2
 e 

 

The population variance s
2

res is also called the residual variance, and its square root is called the 

residual standard deviation sres. 
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It is desirable that all the observed variance s
2

r is accounted for by the sampling error s
2

e, and 

that the residual variance s
2

res would become zero. Then the "percentage of observed variance 

accounted for by sampling error" would be 100% as an indication of homogeneity. Very often, 

however, only a small percentage can be explained by artifacts, leaving a state of heterogeneity 

which requires further searches for moderator variables.  

 

The residual standard deviation also serves as the multiplier in the formula for the confidence 

interval: 

 

 P ( r - 1.96 * sres < rho < r + 1.96 * sres ) =.95 

 

When the observed variance is totally explained by sampling error, the confidence interval 

becomes zero. 

 

2.5.2 Accounting for measurement error 

 

In addition to sampling error one can account for measurement error. Most variables under study 

have not been measured perfectly, i.e., they have reliabilites below 1. Therefore, the observed 

scores differ from the true scores. Determination of the "true population effect size" and the "true 

population variance" requires a correction for attenuation procedure.  

 

This procedure is based on formulas described by Hunter et al. (1982, pp. 76-80). Inputs of zero 

are interpreted by the program as missing values. The authors have developed artifact 

distributions based on the number of reliability coefficients available to the meta-analyst. It is 

therefore appropriate to look for correction for attenuation even when the reliability information 

is not complete.  

 

The "true" population effect size is the weighted mean r of the effect sizes which have been 

corrected for attenuation. It is always higher than any other uncorrected means of effect sizes 

because it is not strained by measurement error. All statistics in this section have the same 

meaning as described above, but they relate to effect sizes after consideration of the artifact 

distributions. 

 

A word of caution is necessary. Accounting for measurement error creates an illusionary 

situation. Running the procedures on the basis of very low reliabilities leads to very high 

estimates. Generally, it is superior to apply sound measures with high reliabilities in the first 

place instead of corrections for attenuation afterwards. But the meta-analyst cannot improve the 

original studies. In a review article, it is not sufficient to report the "true" estimates only; they 

should only be reported as additional information to the regular outcomes. 

 

Remember that a complete set of reliability coefficients need not be entered but at least one 

reliability r(xx) and one reliability r(yy) have to be entered for technical reasons. In the latter case 

it does not make sense, however, to inspect the part of the output that deals with unreliability. 
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2.5.3 Homogeneity 

 

A population effect size can only be interpreted reliably if the underlying data set is sufficiently 

homogeneous. If most of the variance of the observed correlations is accounted for by sampling 

error, then this requirement is met. As a rule of thumb, Hunter et al. (1982) suggest that at least 

75% of the observed variance should be "explained" by artifacts such as sampling error. The 

remaining 25% of "unexplained" variance are seen as negligible: it would not be worth while to 

search for moderators. 

 

The authors also provide a chi-square test of homogeneity with a very high statistical power. 

"Thus if the chi-square is not significant, this is strong evidence that there is no true variation 

across studies; but if it is significant, the variation may still be negligible in magnitude" (Hunter 

et al., 1982, p. 47). 

 

Finally, there is a third indicator of homogeneity which seems to be the most important one. The 

absolute amount of residual variance also counts. If there is almost no variance left after 

subtracting the sampling error variance, then homogeneity is assumed. ".. it is the actual amount 

of remaining variance that is important, not the percentage remaining..." (McDaniel, Hirsh, 

Schmidt, Raju & Hunter, 1986). But how small does the actual amount of residual variance have 

to be? As a rule of thumb, a residual standard deviation which does not exceed 25% of the 

population effect size con be considered as small (Stoffelmayr, Dillavou & Hunter, 1983, p. 343). 

 

In sum, there are three indicators of homogeneity:  

 

(1) the residual standard deviation should be smaller than ¼ of the population effect size, 

(2) the percentage of observed variance accounted for by sampling error should be at least 75%, 

(3) the chi-square test should not become significant. 

According to the above-cited literature, the relative importance of these three indicators seems to 

be in descending order (see also Seipp, 1989a). 

 

2.5.4 Moderator search 

 

If the meta-analyst has made the judgment that the data set is heterogeneous, he or she is advised 

to search for moderators that may account for the remaining systematic variation. This is 

performed by breaking down the data into at least two subsets with respect to a theoretically 

relevant variable (such as gender or socio-economic status). For these subsets separate meta-

analyses are computed. In order to classify as a moderator, the following requirements have to be 

met: (1) the population effect size varies from subset to subset, and (2) the residual variance 

averages lower in the subsets than for the data as a whole (Hunter et al., 1982, p. 48). 

 

Let us assume that the total residual variance has been .006, and three age-related subsets have 

yielded the following pattern of results (example taken from Seipp, 1989a, p. 135). 
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  young  middle  old 

------------------------------------------------------------ 

young  .004  .07  .11 

middle    .003  .04 

old      .004 

 

In the diagonal, the residual variances of the three subsets are given. They are all lower than the 

comparison value of .006. It would be sufficient if the average of these three residual variances 

were lower than the total residual variance. Off-diagonal are the mean differences of .07, .11 and 

.04. As it is, the assumptions are met, and age can be regarded as a moderator in this example. 

 

However, these requirements are usually hard to meet, and one often can be satisfied if at least 

one homogeneous subset has emerged which allows to estimate reliably the corresponding 

population effect size. 

 

2.5.5 Significance of population effect sizes 

 

There is no consensus in how to determine whether a population effect size differs significantly 

from zero. The Utility subroutine "Significance of Correlations" can be used for individual 

correlations but is misleading for averaged correlations. If, for example, the test is based on N as 

the total sample size, a type I error is likely; if it is based on k as the number of correlations, a 

type II error is likely. 

 

There are two other ways of solving this problem, both of them making use of the residual 

standard deviation. First, the 95%-credibility interval gives  an  impression of the possible 

variation after  accounting  for sampling  error. Second, there is a rule of thumb saying that the 

population effect size should be at least twice as high as the residual standard deviation (see 

Seipp, 1989, p. 130). 

 

 

2.5.6 Computer output: An example 

 

Figure 7 contains the brief screen output. The complete results can be sent to printer or to a disk 

file. 

 

The unweighted average correlation (.2075) is given in order to allow a comparison with the 

population effect size (.204). Sometimes they differ considerably, and this would disclose the 

influence of sample sizes on the parameter estimation. If, for example, the least qualified study 

would include the largest sample size, it would hardly be justified to report the weighted solution 

only. 

 

The observed variance (.00014), the sampling error variance (.00367) and the residual variance  

(-.00353) are computed. Variances cannot be negative, and as this example shows, such an 

estimate is a result of the approximative character of the procedures. Consequently, the residual 

standard deviation has been set to zero and the percentage to 100%. 
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****************************************************************************** 
File Name: example.r    
Total N = 1000    
Number of Studies: k = 4 
 
Unweighted mean r = 0.20750 
Population effect size (weighted mean r) = 0.20400  r-square = 0.04162 
 
Observed variance of effect sizes = 0.00014 obs. SD = 0.01200 
 95% credibility interval of pop. effect size: from  0.204000  to  0.204000 
 
 Variance due to sampling error =  0.00367 
 Population or residual variance = -0.00353 
 Residual standard deviation =  0.00000 
   <  than 1/4 of population ES = 0.051     ---> homogeneous  
 Percentage of observed variance accounted for by sampling error = 100.00 % ---> 
homogeneous  
 Test of homogeneity   Chi-square = 0.15678  ---> homogeneous  
 Degrees of freedom   df = 3 
 Significance    p = 0.984245 
 
 Mean standardized difference  g = 0.41676 
***************************************************************************** 
 

Figure 7:  Screen output for meta-analysis of r values 

 

Therefore, the 95% credibility interval became zero, and the population effect size has been 

reliably determined. All three indicators of homogeneity arrive at the same conclusion. 

 

A mean standardized difference of .416 is computed. In case there is an independent variable x 

which influences a dependent variable y, it can be concluded that the effect of x on y has the 

strength of almost half a standard deviation. 

 

Many users may be satisfied with the amount of information given by this brief screen output. 

The printed or filed output contains more detailed information. Some authors prefer to have all r 

values transformed into Fisher's z (e.g., Hedges & Olkin), while others do not (e.g., Hunter et 

al.). Some prefer unweighted, but most prefer weighted integrations of effect sizes either with or 

without correction for attenuation. In order to provide a maximum of information, the printed 

output is designed with the following structure: 

 

  1. Results without Fisher's z transformation 

  1.1 Unweighted and weighted analyses 

  1.2 Weighted analysis after correction for attenuation 

  2. Results with Fisher's z transformation 

  2.1 same as 1.1 

  2.2 same as 1.2 
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The analysis with Fisher's z transformation (Hedges & Olkin, 1985, pp. 229-236)  repeats the 

above analyses with transformed  effect  sizes, providing also an additional population effect size 

and another test of homogeneity by Hedges and Olkin. 

 

2.5.7 Cluster analysis for effect sizes r 

 

The distribution of effect sizes in a number of studies may be rather heterogeneous. Grouping 

smaller numbers of studies into more homogeneous subsets is achieved by a disjoint cluster 

analysis.  

 

Moderator variables can be detected by employing this strategy and  by inspecting  the  resulting  

subgroups. This can be  called  an  "inductive moderator search". In addition to those potential 

moderators which are deducted from theory, empirical subsets of effect sizes may hint to a 

further moderator responsible for heterogeneous effect size distributions. 

 

CLUSTERS AT  1 % LEVEL OF SIGNIFICANCE 
********************************************* 
 
CLUSTER  1: 
#  40 r = 0.2350 
 
CLUSTER  2: 
#   1 r = 0.1500 
#  41 r = 0.1500 
#  27 r = 0.1151 
#  34 r = 0.0850 
#  43 r = 0.0407 
#   7 r = 0.0328 
#  32 r = 0.0050 
 
CLUSTER  3: 
#   3 r = -0.6000 
 
********************************************* 
 

Figure 8 

Cluster Output for r Values 

 

According to Hedges and Olkin (1985), all effect sizes are rank-ordered, and their differences are 

compared to critical values at the .10, .05 and .01 significance levels. The more liberal the 

significance level (e.g., .10), the more clusters will show up. A conservative significance level 

(e.g., .01) will result in fewer clusters. For each level of significance the printout of results 

contains all clusters with their rank-ordered effect sizes. The formulas for the linear 

approximations of critical values and the computer algorithm for the disjoint cluster analysis as 

well have been taken from Mullen and Rosenthal (1985). 
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2.5.8 Stem-and-leaf display for effect sizes r 

 

In dealing with effect sizes r, the meta-analyst can take advantage of a convenient display 

technique which provides more information than a histogram: the stem-and-leaf display, 

introduced by Tukey (1977) within the framework of his "exploratory data analysis" (EDA). The 

previously used example with four effect sizes yields the following display: 
 
 -.9 |  
 -.8 |  
 -.7 |  
 -.6 |  
 -.5 |  
 -.4 |  
 -.3 |  
 -.2 |  
 -.1 |  
 -.0 |  
 +.0 |  
 +.1 | 9 
 +.2 | 013 
 +.3 |  
 +.4 |  
 +.5 |  
 +.6 |  
 +.7 |  
 +.8 |  
 +.9 |  
 

Figure 9: Stem-and-Leaf-Display for 4 Effect Sizes in Data Set: example.r 

 

The Y-axis or the "stem" is made up by the first digit of correlations from - .9 to + .9. The 4 

second digits are in the "leafs". They are ordered according to size within each category. The 

correlations displayed here are +.19, +.20, +.21, and +.23. For small numbers of effect sizes this 

display is neither necessary nor impressive, but for large numbers it can be very helpful und 

illustrative to characterize the data base, as the following example shows. 
 
 -.9 | 
 -.8 | 
 -.7 | 
 -.6 | 0 
 -.5 | 7 
 -.4 | 012677 
 -.3 | 1144555667 
 -.2 | 012223445566777788 
 -.1 | 0001122222233344444555566677777899999999 
 -.0 | 001111222223333333444445555555666666777777788888889 
 +.0 | 000111222333444555566679999 
 +.1 | 001225899 
 +.2 | 258 
 +.3 | 
 +.4 | 
 +.5 | 
 +.6 |  
 +.7 | 
 +.8 | 
 +.9 | 
 

Figure 10: Stem-and-Leaf-Display for 164 Effect Sizes 
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Figure 10 gives an example of 164 effect sizes. The lowest value in this example is  -.60, the 

highest is  +.28. 

2.6 Utilities 
 
 

2.6.1 Conversions to r 

 

Not all studies found in the literature provide the appropriate effect sizes. Instead, some may 

report t-values, F-values, chi-squares or other statistics. In such cases a transformation is 

necessary (Figure 11). 

 

 

************************************************************************ 

 

  TRANSFORMATIONS    

 

************************************************************************ 

 

Select a coefficient to be transformed: 

 

 

Pointbiserial correlation coefficient  ---> p)oint 

t-value for 2 independent samples  ---> t)value 

F-value for 2 or more independent samples ---> F)value 

Chi square value for contingency tables ---> x)square 

Four cells frequencies    ---> c)ells 

U-value (Mann-Whitney)   ---> U)value 

exact one-tailed probability p   ---> e)xact p 

effect size g (standardized mean difference) ---> g)value 

r to Fishers z transformation: r ---> z ---> r) to z 

Backtransformation    z ---> r ---> z) to r 

Normal distributon Z to probability p ---> N)ormal 

 

Quit Transformation Program  ---> Q)uit 

 

************************************************************************ 

 

Figure 11:  Transformation menu 

 

Formulas can be found in Fricke and Treinies (1985), Mullen and Rosenthal (1985) and 

Rosenthal (1984). Some of them are printed below. The following algorithms were used to obtain 

an effect size r: 

 

 

a) Pointbiserial Correlation 
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Some authors recommend to transform r(pb) to r, others prefer to use r(pb) as their effect size 

estimate. 

 

 r = 1.25 * r(pb) 

b) t value 

 

 

 r = [ t  /  (t  +  df ) ]2 2  

 

 

c) F for 2 groups 

 

 t  =  F   (continue with b) 

 

d) F for more than 2 groups 

 

 r =   SSj / (SSj + SSi)     or: 

 

 r =   Fj dfj  / (Fj dfj + dfi) 

 

  SSj is the Sum of Squares of factor j 

  SSi is the Sum of Squares of the error 

  dfj is the degrees of freedom of the factor j 

  dfi is the degrees of freedom of the error 

 

e) Contingency tables 

 

 r =  [ chi   /  (chi   +   N) ]2 2  

 

 

f) Four cells frequencies 

 

 r = phi = |AD - BC|  /  [ (A + B)(C + D)(A +C)(B+ D) ]  

 

Make sure to assign the correct sign after transformation. 

 

 

g) Mann-Whitney's U 

 

 r = 1 - 2 * U / (N1 * N2) 

 

 

h) Effect size d 

 

 r = d /  [ d  +  4 ]2  
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 If experimental and control groups have very unequal sample sizes, see   Rosenthal 

(1984, p. 25). 

 

 

i) Probability p 

 

 p   Z  (see Mullen & Rosenthal, 1985, 134) 

 

 r =  Z / N  

 

In addition, p values can be derived from the normal distribution Z (Mullen & Rosenthal, 1985, 

133), and r can be transformed into Fisher's z (p. 135). 

 

2.6.2 Effect sizes d 

 

This program computes a number of effect sizes and additional statistics for up to 10 groups. 

Input are the mean, the variance (or standard deviation), and the sample size for each group.  

Comparisons  are examined for all samples, i.e., for k=10 groups there will be k  *  (k-1)/2=45 

comparisons. Typically, one group is seen  as  the experimental group with a mean of Me, 

variance of se2 and sample size of ne, the other as the control group. The screen will be filled 

with a pair of groups such as: 

 

 Group statistics: 
 Group 1   Mean= 8.5000 SD= 3.0000 Variance= 9.0000  N=     10 
 Group 2   Mean= 7.5000 SD= 4.0000 Variance= 16.0000 N=    100 
 
 Mean Difference  D = 1.0000 Pooled Variance = 15.4167 
 Effect Size g based on pooled variance = 0.2547 
 Hedges` unbiased estimator d = 0.2529 
 Effect Size  r = 0.0730 
 Homogeneity of Variance F = 1.7778 
 
 RESULTS [Formula for heterogeneous variances]: 
 t = 0.9713 
 Z = 0.9692 
 Significance [one-tailed] p = 0.1662316 
 Significance [two-tailed] p = 0.3324632 
 Omega Square  = -0.0005  Effect Size r = 0.0931 
 
 RESULTS [Formula for homogeneous variances]: 
 t = 0.7679 
 Z = 0.7669 
 Significance [one-tailed] p = 0.2215830 
 Significance [two-tailed] p = 0.4431659 
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 Omega Square  = -0.0037  Effect Size r = 0.0737 
 

The pooled variance is determined by: 

 

   s
2
 = (  (ne - 1)(se)

 2
 + (nc - 1)(sc)

 2
) / ( ne + nc - 2) 

 

 

The effect size g (according to Glass, 1976) is determined by: 

 

 g = (Me - Mc ) / SD 

 

Usually the above estimator is called "d" in the literature, but according to Hedges and Olkin 

(1985), here g and d are distinguished. The coefficient d is defined as an unbiased estimator of 

effect size: 

 

   d = ( 1 - ( 3 / 4 * N - 9 ))  * g 

 

The effect size r is derived from g by transformation see Rosenthal, 1984, p. 25): 

 

    r = g / (g  +  4)2  

 

The F values for testing the homogeneity of variances is given by  

 

    F = s
2
 max / s

2
 min 

 

and the user should consult the F table in a statistics book to determine whether the variances can 

be considered homogeneous. Dependent on this, two results sections follow. The t-test for two 

independent samples based on heterogeneous variances: 

 

  t = (Me - Mc)/ (s  /  ne  +  s  /  n )
e c c2 2

 

 

The t - test, when variances are homogeneous, is: 

 

  t = (Me - Mc)/  ((n + n ) / n  *  n   *  s )e c e c
2  

 

where s2 is the pooled variance. 

 

These two results sections also display the omega2 which is a measure of practical significance, 

and the effect size r, but this time derived from the t-tests.  

 

2.6.3 Significance of correlations 

 

When the user wants to know whether a correlation coefficient is significantly different from 

zero, or whether several coefficients from independent samples differ significantly from each 

other, this program provides the necessary information. Example: 
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Sample 1 : 

 r = 0.60   N = 80 

 

Results for sample 1 : 

 r = 0.6000 

 N = 80 

Fishers z = 0.6931 

 t = 6.6238 

 Z of normal distribution = 5.3666 

 Probability p = 0.00000004 

 95% interval from  0.438 to  0.724  

 

 

Sample 2 : 

 r = 0.40   N = 50 

 

Results for sample 2 : 

  r = 0.4000 

  N = 50 

  Fishers z = 0.4236 

  t = 3.0237 

  Z of normal distribution = 2.8284 

  Probability p = 0.00233874 

  95% interval from  0.137 to  0.610 

Comparison of 2 correlations from independent samples: 

Z of normal distribution = 1.4559 

Probability p = 0.07270638 
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2.6.4 Weighted means, variances and correlations 
 
This is a utility program that combines values based on different sample sizes. For 
example, in determining the pooled variance for two groups, the following kind of 
screen display would result. 
 
Input window: 
 
Element1:    Value = 12.5 N = 100 
Element2:    Value = 13.8 N = 900 
 
 
Output window: 
 
 The weighted average of 2 elements is: 13.6710 
 The weighted standard deviation is:  3.6974 
Total sample size:  1000 
 
The two variances are input when the program prompts for the value. The resulting pooled 

variance is 13.67. The same routine can be used for correlations. In this case, the user will be 

informed about the Fisher's z transformation immediately when input data are typed in. Example: 

 

Element1:    Value = -0.3 N = 100 Fisher`s z = -0.3095 

Element2:    Value = -0.5 N = 200 Fisher`s z = -0.5493 

Element3:    Value = -0.7 N = 300 Fisher`s z = -0.8673 

 

 Fisher`s z backtransformation to r has been used. 

 The weighted average of 3 elements is:  -0.5839 

 

 Total sample size:  600 

 

 

2.6.5 t - tests 

 

This option calls the same procedure as "Effect sizes d". Independent of meta-analyses it serves 

the purpose to compute pairwise t-tests based on means and standard deviations or variances. 

 



References   -   50  - 

____________________________________________________________________________________________ 

 

References 
 
 

Cohen, J. (1977). Statistical power analysis for the behavioral sciences. New York: Academic 

Press. 

Cooper, H. (1984). The integrative research review: A social science approach. Beverly Hills, 

CA: Sage. 

Fricke, R., & Treinies, G. (1985). Einführung in die Metaanalyse. Bern: Huber. 

Glass, G. V. (1976). Primary, secondary and meta-analysis of research. Educational Researcher, 

10, 3-8. 

Glass, G. V., McGaw, B., & Smith, M. L. (1981). Meta-analysis in social research. Beverly 

Hills, CA: Sage. 

Hedges, L. V. (1982). Estimation of effect size from a series of independent experiments. 

Psychological Bulletin, 92, 490-499. 

Hedges, L. V. (1986). Issues in meta-analysis. Review of Research in Education, 13, 353-403. 

Hedges, L. V. & Olkin, I. (1980). Vote-counting methods in research synthesis. Psychological 

Bulletin, 88, 359-369. 

Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. New York: Academic 

Press. 

Hunter, J. E., Schmidt, F. L., & Jackson, G. B. (1982). Meta-analysis. Cumulating research 

findings across studies. Beverly Hills, CA: Sage. 

Kleine, D. (1990). Anxiety and sport performance: A meta-analysis. Anxiety Research, 2, 113-

131. 

Kleine, D. & Schwarzer, R. (1991). Angst und sportliche Leistung - Eine Meta-Analyse. 

Sportwissenschaft, 20, 9-28.  

Kraemer, H. C. (1983). Theory of estimation and testing of effect sizes: Use in meta- analysis. 

Journal of Educational Statistics, 8, 93-101. 

Kulik, J. A., & Kulik, C.-L. C. (1989). Meta-analysis in education. International Journal of 

Educational Research, 13, 221-340. 

Leppin, A., & Schwarzer, R. (1990). Social support and physical health: An updated meta- 

analysis. In L. R. Schmidt, P. Schwenkmezger, J. Weinman, & S. Maes (Eds.), Health 

Psychology: Theoretical and applied aspects. London: Harwood (in press). 

Light, R. J., & Pillemer, D. B. (1984). Summing up. The science of reviewing research. 

Cambridge: Harvard University Press. 

McDaniel, M. A., Hirsh, H. R., Schmidt, F. L., Raju, N. S., & Hunter, J. E. (1986). Interpreting 

the results of meta-analytic research: A comment on Schmitt, Gooding, Noe, and Kirsch 

(1984). Personnel Psychology, 39, 141-148. 

Mullen, B., & Rosenthal, R. (1985). Basic meta-analysis: Procedures and programs. Hillsdale, 

NJ: Erlbaum. 

Orwin, R. G. (1983). A fail safe N for effect size in meta-analysis. Journal for Educational 

Statistics, 8, 157-159. 

Rosenthal, R. (1984). Meta-analytic procedures for social research. Beverly Hills, CA: Sage. 

Rosenthal, R., & Rubin, D. B. (1986). Meta-analytic procedures for combining studies with 

multiple effect sizes. Psychological Bulletin, 99, 400-406. 

Schwarzer, R., & Leppin, A. (1989a). Social support and health: A meta-analysis. Psychology 

and Health: An International Journal, 3, 1-15. 



References   - 51 - 

 

Schwarzer, R., & Leppin, A. (1989b). Sozialer Rückhalt und Gesundheit: Eine Meta-Analyse 

[Social support and health: A meta-analysis]. Göttingen: Hogrefe. 

Seipp, B. (1989a). Angst und Leistung in Schule und Hochschule: Eine Meta-Analyse. [Anxiety 

and achievement: A meta-analysis]. Unpublished Dissertation. Düsseldorf, West 

Germany: University of Düsseldorf. 

Seipp, B. (1989b). Ansia e rendimento in situazione scolastica e universitaria: Una meta- 

analisi. VII Colloquio, 28-30 Settembre 1989. Università degli Studi di Napoli Federico 

II, Facoltà di Lettere e Filosofia. 

Slavin, R. E. (1986). Best-evidence synthesis: An alternative to meta-analysis and traditional 

reviews. Educational Researcher, 15, 5-11. 

Smith, M. L., & Glass, G. V. (1977). Meta-analysis of psychotherapy outcome studies. American 

Psychologist, 752-760. 

Smith, M. L., & Glass, G. V. (1980). Meta-analysis of research on class size and its relationship 

to attitudes and instruction. American Educational Research Journal, 17, 419-433. 

Smith, M. L., Glass, G. V., & Miller, T. J. (1980). The benefits of psychotherapy. Baltimore: 

Johns Hopkins University Press. 

Stoffelmayr, B. E., Dillavou, D., & Hunter, J. E. (1983). Premorbid functioning and outcome in 

schizophrenia: A cumulative analysis. Journal of Consulting and Clinical Psychology, 

51, 338-352. 

Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison-Wesley. 

Wittmann, W. W., & Matt, G. E. (1986). Meta-Analyse als Integration von Forschungsergebnis-

sen am Beispiel deutschsprachiger Arbeiten zur Effektivität von Psychotherapie. 

Psycholo-gische Rundschau, 37, 20-40. 

Wolf, F. M. (1986). Meta-analysis: Quantitative methods for research synthesis. Beverly Hills, 

CA: Sage. 



Appendix   -   52  - 

____________________________________________________________________________________________ 

 

Appendix A 

 

History of the META-Programs 

 
Differences between version 3.0 and version 4.0  

 

The META programs have been upgraded from Turbo Pascal 3 to Turbo Pascal 4 and have 

received a number of substantial and technical improvements, among others: 

 

1.The program now reads ASCII data files. Instead of the previous filer a full-screen editor is 

built in which is compatible to the WordStar (non-document mode), SideKick, and Turbo 

Pascal editors. Thus, however, old data sets are no longer compatible. Use the external 

procedure "OldNew" to convert your old data sets to ASCII data files. 

2. It supports input pathes. 

3. It allows to write results to an output file on disk. 

4. It supports color monitors. 

5. The d values routine now includes the "variance partitioning approach".6. A routine on effect 

sizes and t-tests has been added to compute effect sizes and additional statistics from a number 

of group means and variances. 

 

Differences between version 4.3 and version 4.4  

 

1. META 4.4 supports a numerical coprocessor, but does not require one. 

2. A bug in the cluster procedures for 1% and 10% significance levels has been found and 

repaired. Now also the study ID is printed. 

3. The cluster programs compute the correlation between effect sizes and sample sizes. 

4. There are three additional utility programs: - OldNew transforms data sets created with 

Version 3.x to ASCII data sets required by the updated versions. 

 - p-to-r converts a data set of p values into a data set of  r-values. 

     - g-to-r converts a data set of g values into a data set of  r values. 

 

 

Differences between version 4.5 and version 4.6 

 

The subroutine "Effect Sizes and t-Tests" has produced a wrong g value, due to a missing square 

root. Thanks to Bettina Seipp for identifying this mistake! 

 

 

Differences between versions 4.6 and 5.0 

 

The program has acquired a completely new structure including a new main menu with pull 

down submenus. It allows to check the directory entries, to change the directory and to use a pop-

up calculator. 

 

Some other minor technical improvements have been added. 

The manual has been completely revised. 
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Appendix B 
 

Error Handling 

 

1. The results contain one sample more than has been input. 

 

Check the number of cases (studies) that your data set has compared to the k which is presented 

in the results section. Your data set may contain an empty record as the last input line. Delete that 

line. 

 

2. The program or subprogram quits without doing its job. 

 

- Check all individual sample sizes: the minimum N is 4 subjects in a study. 

 

- If r values are used: are you sure that you have provided at least one reliability for columns rxx 

as well as ryy? 

 

- Does your data set exceed 500 effect sizes? If so, please request another program version by 

indicating what precisely you are going to compute. We will try to tailor the program to your 

specific needs. 

 

 

Appendix C 
 

Help Section 

 

This appendix shall answer the question "What to do when?" 

 

 

1."There are multiple outcomes in a study and I want to combine them to one effect size." 

 

Computing a weighted average is the most frequent way to solve this problem but there are also 

others (cf. Rosenthal & Rubin, 1986). Select "Utilities/Weighted M, V & Corr" from the main 

menu and type in your data. You will get an average, weighted by sample sizes in case the 

subsamples differ. 

 

 

2. "How can I get some of the results directly into my research report without retyping?" 

 

If results such as the stem-and-leaf display are to be reported, they can easily be stored on disk as 

an ASCII-file and later be retrieved by any word processing software. Use the disk option instead 

of the print option. 

 

 


