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Preface

The present text contains notes on my course “Algebra I” at Freie Universität Berlin dur-

ing the winter term 2012/2013. The course “Algebra I” is part of a cycle of three courses

providing an introduction to algebraic geometry. It is also meant as a continuation of my

course “Algebra und Zahlentheorie” (see [30]).

The basic objects we will be studying are commutative rings and their ideals. There

are many different motivations for looking at these objects. A ring can be, for example,

viewed as a domain of numbers with which we would like to compute. In certain situa-

tions, ideals are valuable generalizations of numbers.1 A ring can also consist of regular

functions on an affine algebraic variety. If we consider algebraic varieties over an alge-

braically closed field such as the field of complex numbers, then this algebra completely

determines the variety. Ideals in the algebra correspond to subvarieties, e.g., points of the

variety. It is one of the merits of commutative algebra that it provides a unified framework

for, among other things, arithmetic and algebro-geometric investigations.

The first chapter presents the language of rings and their ideals. Many operations on

rings and ideals which will be used throughout the text are presented. I would like to

highlight two topics: The first one is the section on factorial rings. It shows how we may

generalize the main theorem of elementary number theory, i.e., the unique factorization of

natural numbers into powers of prime numbers, to other settings and problems which will

usually occur. The second one is the spectrum of a ring. It attaches to a commutative ring

a geometric object. This is a fundamental construction of modern algebraic geometry.

Noetherian rings are rings which satisfy a crucial finiteness condition. This condition

is fulfilled by important rings occuring in number theory and algebraic geometry, such

as orders in number fields and coordinate algebras of algebraic varieties. A central result

is the decomposition of ideals in noetherian rings into primary ideals and its uniqueness

properties. This is a vast generalization of the main theorem of elementary number theory

and has also an important geometric interpretation.

As the main topic of the courses “Algebra I-III” is algebraic geometry, the remaining

two chapters deal with subjects of a more geometric nature. The third chapter focusses

on Hilbert’s Nullstellensatz. The Nullstellensatz provides the dictionary between finitely

generated algebras over an algebraically closed field k and their (radical) ideals on the

one hand and algebraic varieties defined over k and their subvarieties on the other hand. It

explains the fundamental role of commutative algebra in algebraic geometry. We present

an elementary proof due to Munshi. Another central topic is Noether’s normalization

1This is an idea of Kummer.
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theorem which supplies important information on the structure of algebraic varieties and

will be used over and over again in the fourth chapter. The third chapter also develops the

notion of modules over a ring.

The fourth chapter begins the study of the geometry of algebraic varieties. The Krull

dimension of a ring is introduced and investigated. If the ring in question is the coordi-

nate algebra of an affine algebraic variety, this provides a basic geometric invariant. We

will check various properties which we intuitively expect from the notion of dimension.

Finally, we will study singularities of algebraic varieties. In this context, we will also

discuss the relation between the intricate notion of normality of rings and affine algebraic

varieties and singularities.

Dr. Juan Pons Llopis and Anna Wißdorf proofread the manuscript and suggested var-

ious corrections and improvements. The biographical data of mathematicians were taken

from Wikipedia. These notes are heavily based on the books [1] and [14]. Other important

sources are [4], [8], and [11].

Alexander Schmitt

Berlin, March 2013
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I
Basic Theory of Rings and their Ideals

In an introductory course on linear algebra, one usually works over fields. In commutative

algebra, fields are replaced by more general objects, namely commutative rings with iden-

tity element. In linear algebra, you rarely talk about the fields themselves. Certainly, you

can do some explicit computations over the field of rational numbers or finite fields, and,

for the theory of the Jordan normal form, you need the ground field to be algebraically

closed. Apart from that, you don’t worry much about the “internal” structure of the field.

In various respects, rings have a much richer structure than fields. To begin with, you

should think of the ring of integers Z or the polynomial ring k[x] over a field k. In these

rings, you may investigate when a number or a polynomial divides another one. This

leads you to certain “indivisible” objects which you call prime numbers or irreducible

polynomials. In fields, there are no counterparts to these concepts, because any non-zero

element is a unit. During the development of algebra, it turned out that it is more useful

to work with ideals than with the ring elements themselves.1 In this section, we will first

define rings and look at some basic examples. Then, we will develop the notion of ideals

and explain how to compute with them. As a motivation in Kummer’s2 spirit, we will also

look at prime factorization. In that context, we will see its failure in some rings and the

class of factorial rings in which prime factorizations do exist.

I.1 Rings

A ring is a tuple (R, 0,+, ·) which consists of an abelian group (R, 0,+) (see [30], Defini-

tion II.1.1 and II.1.4) and a map

· : R × R −→ R

(a, b) 7−→ a · b
1The term ideal goes back to Kummer’s notion of “ideale Zahl”, an extension of the concept of number

or ring element that permits to generalize the prime factorization in the ring of integers to some rings such

as Z[
√
−5] (see Section I.5).

2Ernst Eduard Kummer (1810 - 1893) was a German mathematician.
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I. Basic Theory of Rings and their Ideals

which is associative, i.e.,

∀a, b, c ∈ R : a · (b · c) = (a · b) · c,

such that the distributive laws hold, i.e.,

∀a, b, c ∈ R : a · (b + c) = a · b + a · c,
(a + b) · c = a · c + b · c.

We will refer to “+” as the addition and to “·” as the multiplication. In the sequel, we

will write R rather than (R, 0,+, ·) for the datum of a ring.

A ring R is called commutative, if

∀a, b ∈ R : a · b = b · a.

An element 1 in a ring R is an identity element, if

∀a ∈ R : 1 · a = a = a · 1.

I.1.1 Note. A ring R can have at most one identity element. For, if 1, 1′ ∈ R are identity

elements, we have

1 = 1 · 1′ = 1′.

Let R be a ring. For a ∈ R, we let −a be the additive inverse of a, i.e., the element for

which a + (−a) = 0 holds.

I.1.2 Properties. Let R be a ring.

i) For a ∈ R, we have a · 0 = 0 · a = 0.

ii) For a, b ∈ R, we have (−a) · b = −(a · b) = a · (−b). In particular, (−a) · (−b) = a · b.

Proof. i) We use 0 = 0 + 0, so that

0 · a = (0 + 0) · a = 0 · a + 0 · a.

Add −(0 · a) to both sides to get

0 = 0 + 0 · a = 0 · a.

Similarly, one shows a · 0 = 0.

ii) Using i), we see

a · (−b) + a · b = a · (−b + b) = a · 0 = 0.

Thus, a · (−b) = −(a · b). In the same vein, one shows (−a) · b = −(a · b). �

I.1.3 Examples. i) R = {0}with the only possible addition and multiplication is a ring with

identity element 1 = 0. (It is not a field (compare [30], Definition III.1.1.)!) Note that R

is the only ring with identity element in which 1 = 0 holds. Indeed, let R , {0} be a ring

with identity element 1 and pick a ∈ R \ {0}. Then,

1 · a = a , 0 = 0 · a.

2



I.1. Rings

Hence, 1 , 0.

ii) Let (R, 0,+) be an abelian group and define

· : R × R −→ R

(a, b) 7−→ 0

Then, (R, 0,+, ·) is a ring. If R , {0}, then R has no identity element.

iii) The integers form the ring Z.

iv) Fields are rings, e.g., Q, R, C, Fq, q = pn, n ≥ 1 and p a prime number.

v) Suppose R is a ring and X is a set. We introduce

Map(X,R) :=
{

f : X −→ R | f is a set theoretic map
}
.

For f , g ∈ Map(X,R), we form

f + g : X −→ R

x 7−→ f (x) + g(x)

and

f · g : X −→ R

x 7−→ f (x) · g(x).

Moreover, we set

0 : X −→ R

x 7−→ 0.

The tuple (Map(X,R), 0,+, ·) is a ring. Observe that Map(X,R) is commutative if R is so

and that Map(X,R) possesses an identity element if R does. In fact, if 1 ∈ R is the identity

element of R, then

1: X −→ R

x 7−→ 1

is the identity element in Map(X,R). Note, however, that Map(X,R) will, in general, not

be a field, even if R is one (see Example I.3.1, iv).

vi) Suppose X is a topological space. Then,

C (X,R) :=
{

f : X −→ R | f is continuous
}

together with 0, 1, +, · as in v) is a commutative ring with identity element.

vii) Suppose X ⊂ C is an open subset (compare [31], Definition III.2.1, ii), and

III.3.10, i). Then,

O(X) :=
{

f : X −→ C | f is holomorphic
}

together with 0, 1, +, · as in v) is a commuative ring with identity element.

viii) Let (G, 0,+) be an abelian group. We look at

End(G) :=
{

f : G −→ G | f is a group homomorphism
}

3



I. Basic Theory of Rings and their Ideals

and define

0: G −→ G

g 7−→ 0

and, for f , h ∈ End(G),

f + h : G −→ G

g 7−→ f (g) + h(g).

Composition of maps provides us with the multiplication: For f , h ∈ End(G), we set

f ◦ h : G −→ G

g 7−→ f
(
h(g)

)
.

We leave it to the reader to verify that (End(G), 0,+, ·) is a ring with identity element idG.

It is, in general, not a commutative ring (see Exercise I.1.4).

ix) Let k be a field. The vector space Mn(k) of (n×n)-matrices with entries in k forms a

ring with respect to componentwise addition and matrix multiplication (see [33], Kapitel

III). The unit matrix En is the identity element. Note that Mn(k) is non-commutative if

and only if n ≥ 2.

x) Suppose R1, ..., Rn are rings. The cartesian product R1 × · · · × Rn equipped with

componentwise addition and multiplication is again a ring. It is called the direct product

of the rings R1, ..., Rn.

I.1.4 Exercise. Describe End(Z × Z) in terms of (2 × 2)-matrices and give two elements

of that ring which do not commute with each other.

Let R be a ring with identity element. A subset S ⊂ R is a subring, if S is a subgroup

of (R,+, 0) (see [30], Definition II.4.1), 1 ∈ S and a · b ∈ S , if a, b ∈ S .

From now on, all rings are supposed to be commutative and to possess an

identity element.

Let R, S be two rings. A homomorphism from R to S is a map f : R −→ S , such that

⋆ ∀a, b ∈ R : f (a + b) = f (a) + f (b), i.e., f is a homomorphism of the underlying

abelian groups,

⋆ ∀a, b ∈ R : f (a · b) = f (a) · f (b),

⋆ f (1) = 1.

I.1.5 Remark. One may be tempted to believe that the third condition is a consequence

of the second. However, the proof for the analogous statement in group theory ([30],

Lemma II.3.4, i) requires the existence of inverse elements. This cannot be assumed for

multiplication. Indeed, choosing R = {0} and S , {0}, we see that it may be false. A more

sophisticated example, using the construction in Example I.1.3, x), is the following:

ϕ : Z −→ Z × Z
k 7−→ (k, 0).

4



I.1. Rings

I.1.6 Exercise. Let f : R −→ S be a homomorphism of rings. Check that

Im( f ) :=
{
b ∈ S | ∃a ∈ R : b = f (a)

}

is a subring of S .

Is

Ker( f ) :=
{
a ∈ R | f (a) = 0

}

a subring of R?

Suppose R is a ring and a ∈ R. We set

⋆ a0 := 1,

⋆ an+1 := a · an, n ∈ N.

As usual, the exponential rule

∀a ∈ R∀m, n ∈ N : am+n = am · an

holds true.

Polynomial Rings

Let R be a ring. A polynomial over R in the indeterminate x should be an expression of

the form

p = a0 + a1 · x + · · · + an · xn with a0, ..., an ∈ R.

We have natural rules for adding and multiplying two polynomials. They are based on the

multiplication in R, the distributive laws and

∀m, n ∈ N : xm · xn = xm+n.

In this way, we obtain the polynomial ring R[x]. This description is not satisfactory,

because it uses the mathematically undefined terms “indeterminate” and “formal expres-

sion”. In the following definition, we will characterize the polynomial ring by its (univer-

sal) property rather than by a construction. We advise the reader to pay special attention

to this procedure as this kind of approach will become more and more important during

the course.

A polynomial ring over R in the indeterminate x is a triple (T, x, ι) which consists of a

ring T , an element x ∈ T , and a homomorphism ι : R −→ T , such that the following uni-

versal property holds: For every ring S , every element s ∈ S , and every homomorphism

ϕ : R −→ S , there exists a unique homomorphism Φ : T −→ S , such that

⋆ Φ ◦ ι = ϕ,

⋆ Φ(x) = s.

The stated property may be best remembered by the diagram

R
ι

��⑧⑧
⑧⑧
⑧⑧
⑧⑧ ϕ

��
❅❅

❅❅
❅❅

❅

T
∃!Φ

x7−→s
//❴❴❴❴❴❴❴ S .
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I. Basic Theory of Rings and their Ideals

Notation. We set R[x] := T .

I.1.7 Remark. Given two polynomial rings (T, x, ι) and (T ′, x′, ι′), there are, by definition,

uniquely determined homomorphisms

⋆ Φ : T −→ T ′ with a) Φ ◦ ι = ι′ and b) Φ(x) = x′;

⋆ Φ′ : T ′ −→ T with a) Φ′ ◦ ι′ = ι and b) Φ′(x′) = x.

Observe that, for Φ′ ◦Φ, we have

⋆ (Φ′ ◦Φ) ◦ ι = ι,

⋆ (Φ′ ◦Φ)(x) = x.

The uniqueness statement in the definition of a polynomial ring, applied to S = T , ϕ = ι

and s = x shows

Φ′ ◦Φ = idT .

Similarly, we verify

Φ ◦Φ′ = idT ′ .

We do not only see that T and T ′ are isomorphic, there is also a distinguished isomorphism

between T and T ′ that respects the extra data x, ι and x′, ι′, respectively. One says

The tuples (T, x, ι) and (T ′, x′, ι′) are canonically isomorphic.

This means that, in dealing with a polynomial ring, we need just to remember its uni-

versal property as it is completely determined by it. This aspect will be very useful in

other situations, e.g., the tensor product ([1], p. 24f) or the fibered product of schemes

([11], Chapter II.3) are usually remembered by their universal properties and not by their

(involved) constructions.

I.1.8 Theorem. Let R be a ring. Then, there exists a polynomial ring (T, x, ι) over R.

Furthermore, the homomorphism ι is injective.

Proof. We define

T :=
{

f : N −→ R | f (n) = 0 for all but finitely many n ∈ N
}
,

x : N −→ R

n 7−→
{

0, if n , 1

1, if n = 1
,

and

ι : R −→ T

a 7−→
(
n 7−→

{
0, if n , 0

a, if n = 0

)
.

We define addition as before, i.e., for f , g ∈ T , we set

f + g : N −→ R

n 7−→ f (n) + g(n).

6



I.1. Rings

The product of f , g ∈ T is defined in the following way:

f · g : N −→ R

n 7−→
n∑

k=0

f (k) · g(n − k).

The reader should verify that f + g and f · g do belong to T , i.e., vanish in all but finitely

many points, f , g ∈ T . Furthermore, the following properties are readily verified:

⋆ T is a commutative ring with identity element ι(1).

⋆ ι is an injective ring homomorphism.

Let us write a map f : N −→ R as a sequence (a0, a1, a2, ...) with ak = f (k), k ∈ N. Then,

⋆ x = (0, 1, 0, ...),

⋆ ι(a) = (a, 0, 0, ...), a ∈ R,

⋆ (a0, a1, a2, ...) + (b0, b1, b2, ...) = (a0 + b0, a1 + b1, a2 + b2, ...),

⋆ (a0, a1, a2, ...) · (b0, b1, b2, ...) = (a0 · b0, a0 · b1 + a1 · b0, ...),

⋆ xk = (0, ..., 0, 1, 0, ...) with 1 at the (k + 1)-st place, k ∈ N, i.e.,

xk : N −→ R

n 7−→
{

0, if n , k

1, if n = k
.

Let f = (a0, a1, a2, ...) ∈ T . If ak = 0 for all k ∈ N, we simply write f = 0. Otherwise, let

n := max
{
k ∈ N | ak , 0

}
.

Then, using the above formulae, we have the identity

f = a0 + a1 · x + a2 · x2 + · · · + an · xn.

This representation is unique.

Using the above notation, we find, for a given homomorphism ϕ : R −→ S , s ∈ S , and

a homomorphism Φ : T −→ S , satisfying Φ ◦ ι = ϕ and Φ(x) = s, that

Φ(a0+a1 · x+ · · ·+an · xn) = ϕ(a0)+ϕ(a1) · s+ · · ·+ϕ(an) · sn, n ∈ N, a0, ..., an ∈ R. (I.1)

This shows that Φ is uniquely determined, if it exists. On the other hand, for given

ϕ : R −→ S and s ∈ S , Equation (I.1) defines a set theoretic map Φ : T −→ S , and it is

readily checked that it is a ring homomorphism with Φ(x) = s and Φ ◦ ι = ϕ. �

We can now recursively define the polynomial ring in the indeterminates x1, ..., xn+1 as

R[x1, ..., xn+1] = R[x1, ..., xn][xn+1]. (I.2)

I.1.9 Exercise. Characterize R[x1, ..., xn+1] by a universal property which is not recursive.

7



I. Basic Theory of Rings and their Ideals

Let S be a ring, R ⊂ S a subring, and y1, ..., yn ∈ S . By the universal property of the

polynomial ring, there is a unique homomorphism

R[x1, ..., xn] −→ S

xi 7−→ yi, i = 1, ..., n.

We say that y1, ..., yn are algebraically independent over R, if this homomorphism is in-

jective.

I.2 Ideals and Quotient Rings

Let R be a ring. A subset I ⊂ R is called an ideal, if

⋆ I is a subgroup of (R, 0,+),

⋆ ∀a ∈ I∀r ∈ R : r · a ∈ I, or, for short, R · I ⊂ I.

The role of ideals in ring theory is somewhat similar to the role of normal subgroups in

group theory (see [30], Abschnitt II.9). We will come back to this below.

I.2.1 Examples and properties. i) For any ring R, the subsets {0} and R are ideals.

ii) Let R be a ring and I ⊂ R an ideal. Then,

I = R ⇐⇒ 1 ∈ I.

The implication “=⇒” is clear. For “⇐=”, let a ∈ R. Since a = a · 1, it follows that a

belows to I.

iii) Suppose k is a field. Then, the only ideals are {0} and k. For, if I , {0} is an ideal

of k, there exists an element a ∈ I \ {0} ⊂ k \ {0}. Since 1 = a−1 · a, we see that 1 ∈ I, and

ii) implies I = k.

iv) If R is a ring and a ∈ R an element, then

〈a〉 :=
{
r · a | r ∈ R

}

is an ideal of R. It is called the principal ideal generated by a and is the smallest ideal of

R which contains a.

v) Suppose R = Z. We first recall that, for integers k,m ∈ Z, the relation m|k means

that there is an integer l ∈ Z with k = l · m which is equivalent to k ∈ 〈m〉. Now, suppose

I ⊂ Z is an ideal. The zero ideal is the principal ideal 〈0〉. If I is a nonzero ideal, it

contains some integer k , 0. By the definition of an ideal, it also contains −k = (−1) · k.

It follows that I contains a positive integer. By the least element principle ([27], Satz

1.3.22), we can define

m := min
{
n ∈ N | n > 0 ∧ n ∈ I

}
.

We claim I = 〈m〉. Suppose k ∈ I is a nonzero element. There are integers x, y ∈ Z (see

[30], Satz I.4.4, ii), such that

x · k + y · m = gcd(k,m).

This shows gcd(k,m) ∈ I. By definition of m, we have m ≤ gcd(k,m). This means

m = gcd(k,m) and is equivalent to m|k, i.e., k ∈ 〈m〉.

8



I.2. Ideals and Quotient Rings

vi) Let R be a ring and X a set. In Example I.1.3, v), we introduced the ring Map(X,R).

Let Y ⊂ X be a subset. Then,

I :=
{

f : X −→ R | ∀y ∈ Y : f (y) = 0
}

is an ideal of Map(X,R).

vii) Let R, S be rings and ϕ : R −→ S a homomorphism. Then, the kernel

Ker(ϕ) :=
{

x ∈ R | ϕ(x) = 0
}

is an ideal of R. More generally, for every ideal J ⊂ S , the preimage ϕ−1(J) ⊂ R is an

ideal. (Note Ker(ϕ) = ϕ−1({0}).)
viii) The inclusion Z ⊂ Q is a ring homomorphism. Its image is not an ideal, i.e., the

image of an ideal is, in general, not an ideal.

ix) Let R, S be rings and ϕ : R −→ S a surjective homomorphism. Then, the image

of an ideal in R is an ideal in S . In fact, let I ⊂ R be an ideal. Then, ϕ(I) is a subgroup

of (S , 0,+) ([30], Lemma II.4.4). Now, let s ∈ S and b ∈ ϕ(I). Then, there exist elements

r ∈ R and a ∈ I with ϕ(r) = s and ϕ(a) = b. We see

s · b = ϕ(r) · ϕ(a) = ϕ(r · a) ∈ ϕ(I).

x) If I, J ⊂ R are ideals, then I ∩ J and

I + J =
{

a + b | a ∈ I ∧ b ∈ J
}

are ideals, too. In particular, we have, for elements a1, ..., as ∈ R the ideal

〈 a1, ..., as 〉 = 〈a1〉 + · · · + 〈as〉.

It is the smallest ideal of R which contains a1, ..., as.

Part iii) and v) illustrate how ideals reflect the algebraic structure of the respective

ring. We will see many more examples of this kind.

Let us spend a few words why ideals are important. For this, let R be a ring and I ⊂ R

an ideal. Then, the set R/I of residue classes inherits the structure of an abelian group

(see [30], Satz II.9.4).

Notation. Write [a] for the class

a + I =
{
a + r | r ∈ I } ∈ R/I, a ∈ R.

Now, we try the following multiplication on R/I:

· : R/I × R/I −→ R/I
(
[a], [b]

)
7−→ [a · b].

We need to verify that this is well-defined. Given a, a′, b, b′ ∈ R, such that [a] = [a′] and

[b] = [b′], there exist elements x, y ∈ I with

a′ = a + x and b′ = b + y.

9
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We get

a′ · b′ = a · b + a · y + b · x + x · y.

By definition of an ideal, we have

a · y + b · x + x · y ∈ I and [a′ · b′] = [a · b].

Note that

π : R −→ R/I

a 7−→ [a]

is a group homomorphism which satisfies

∀a, b ∈ R : π(a · b) = [a · b] = [a] · [b] = π(a) · π(b).

This shows that the multiplication in R/I satisfies associativity and that the distributive

laws hold. So, R/I inherits a ring structure, such that π is a surjective ring homomorphism.

I.2.2 Lemma. The assignment J 7−→ π−1(J) induces an inclusion preserving bijection

between the set of ideals of R/I and the set of ideals of R that contain I.

I.2.3 Exercise. Prove this lemma. In particular, give the map from the set of ideals in R

that contain I to the set of ideals of S that is inverse to the map described in the lemma.

I.2.4 Exercises. i) Let R be a ring and I ⊂ R an ideal. Show that the pair (R/I, π), consist-

ing of the quotient ring R/I and the surjection π : R −→ R/I, a 7−→ [a], has the following

universal property (compare [30], Satz II.9.7): For every ring S and every homomorphism

ϕ : R −→ S , such that

I ⊂ Ker(ϕ),

there is a unique homomorphism ϕ : R/I −→ S with

ϕ = ϕ ◦ π;

R
π

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤ ϕ

��
❄❄

❄❄
❄❄

❄❄

R/I
∃!ϕ

//❴❴❴❴❴❴❴ S .

ii) Let f : R −→ S be a homomorphism of rings. Prove the first isomorphism theo-

rem (compare [30], II.10.1): We have Im( f ) = Im( f ) (compare Exercise I.1.6), f being

the induced homomorphism from Part i), and

f : R/Ker( f ) −→ Im( f )

is an isomorphism.
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I.3 Zero Divisors, Nilpotent Elements, and Units

Let R be a ring. An element a ∈ R is called a zero divisor, if there exists an element b , 0,

such that a · b = 0. The ring R is called an integral domain, if R , {0} and 0 is its only

zero divisor.

I.3.1 Examples. i) The ring Z of integers is an integral domain.

ii) Fields are integral domains.

iii) If R is an integral domain, then the polynomial ring R[x] is also an integral domain.

In particular, if R is a field, then the polynomial ring k[x1, ..., xn] in n variables is an integral

domain.

iv) Assume that X contains at least two distinct elements x1 , x2 and R , {0} is a ring.

Then, Map(X,R) contains non-trivial zero-divisors. For example, we look at

fi : X −→ R

x 7−→
{

0, if x , xi

1, if x = xi
, i = 1, 2.

Then, fi , 0, i = 1, 2, but f1 · f2 = 0.

Let R be a ring. An element a ∈ R is nilpotent, if there exists a natural number n with

an = 0.

I.3.2 Remark. Obviously, a nilpotent element is a zero divisor. The converse does not

hold. E.g., f1 and f2 in Example I.3.1, iv), are zero divisors but not nilpotent.

I.3.3 Example. Let k be a field and n ≥ 2 a natural number. We look at the principal ideal

〈xn〉 ⊂ k[x] and the quotient ring R := k[x]/〈xn〉. Then, [x]k = [xk] , 0, for 1 ≤ k < n, but

[x]n = [xn] = 0, i.e., [x] is a nilpotent element of R.

I.3.4 Exercise. Let n ≥ 2 be a natural number. Describe the zero divisors and nilpotent

elements in the residue ring Z/〈n〉 in terms of the prime factorization (see [30], Kapitel I)

of n.

Let R be a ring. An element a ∈ R is called a unit, if there exists an element b ∈ R,

such that a · b = 1. Observe that the element b is uniquely determined. (Indeed, for

b, b′ ∈ R with a · b = 1 = a · b′, we find b = b · 1 = b · (a · b′) = (b · a) · b′ = 1 · b′ = b′.)

Notation. We write a−1 := b.

I.3.5 Remarks. i) The set

R⋆ :=
{

a ∈ R | a is a unit of R
}

of units in the ring R is an abelian group with respect to multiplication in R with identity

element 1.

ii) An element a ∈ R is a unit if and only if 〈a〉 = R.

I.3.6 Examples. i) The units of the ring Z of integers form the group Z⋆ = {±1}.
ii) Let R be an integral domain, then (R[x])⋆ = R⋆ (compare Exercise I.3.10).

I.3.7 Exercise. Describe the units of Z/〈n〉 for n ≥ 1 (compare [30], Abschnitt III.2).

11
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I.3.8 Exercises (Units and nilpotent elements). i) Let R be a ring and n ∈ R a nilpotent

element. Show that 1 + n is a unit.

ii) Deduce that the sum u + n of a unit u ∈ R and a nilpotent element n ∈ R is a unit.

I.3.9 Lemma. Let R , {0} be a ring. The following conditions are equivalent:

i) R is a field.

ii) The subsets {0} and R are the only ideals of R.

iii) Every homomorphism ϕ : R −→ S to a nonzero ring S , {0} is injective.

Proof. For the implication “i)=⇒ii)”, see Example I.2.1, iii).

“ii)=⇒iii)”: If S , {0}, then 1 < Ker(ϕ) (see Example I.2.1). So, Ker(ϕ) is a proper

ideal of R. The assumption yields Ker(ϕ) = {0}. As for group homomorphisms (see [30],

Lemma II.4.5), this implies that ϕ is injective.

“iii)=⇒i)”: For an element a ∈ R \ {0}, we define S := R/〈a〉. Then, π : R −→ S is a

surjective ring homomorphism with π(a) = π(0) = 0. So, π is not injective. This implies

S = {0} or, equivalently, 〈a〉 = R. In view of Remark I.3.5, ii), this shows that a is a

unit. �

I.3.10 Exercise (Units in polynomial rings). Let R be a ring and f = a0+a1x+ · · ·+anxn ∈
R[x] a polynomial. Show that f is a unit if and only if a0 is a unit and a1, . . . , an are

nilpotent elements.

Instructions.

• For “=⇒”, use Exercise I.3.8.

• For “⇐=”, let g = b0 + b1x + · · · + bmxm ∈ R[x] be a polynomial with f · g = 1.

Prove by induction on r that

ar+1
n · bm−r = 0, r = 0, ...,m. (I.3)

To this end write f · g = c0 + c1 · x + · · · + cm+n · xm+n and look at ar+1
n · cm+n−r−1.

Finally, deduce from (I.3) that an is nilpotent and conclude by induction on n.

I.4 Prime Ideals and Maximal Ideals

Let R be a ring. An ideal I ⊂ R is called a prime ideal, if I , R and

∀a, b ∈ R : a · b ∈ I =⇒ (a ∈ I ∨ b ∈ I),

and a maximal ideal, if I , R and there is no ideal J of R with I ( J ( R.

Notation. It is customary to use gothic letters for prime and maximal ideals, e.g., p, m.

I.4.1 Proposition. Let R be a ring and I ⊂ R an ideal, then

i) I is a prime ideal if and only if R/I is an integral domain.

ii) I is a maximal ideal if and only if R/I is a field.

12
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Proof. i) This is immediate from the definitions.

ii) “=⇒”: Let I , R be a maximal ideal. According to Lemma I.2.2, the ideals of R/I

correspond to the ideals in R which contain I. These are I and R. So, {0} and R/I are the

only ideals of R/I. By Lemma I.3.9, R/I is a field. The converse implication “⇐=” is

obtained by a similar reasoning. �

I.4.2 Corollary. A maximal ideal is a prime ideal.

I.4.3 Remarks. i) Let R be a ring. The zero ideal {0} is a prime ideal if and only if R is an

integral domain.

ii) Let ϕ : R −→ S be a homomorphism of rings. If q ⊂ S is a prime ideal, then

p := ϕ−1(q) is a prime ideal of R. Indeed, we have

1 < q =⇒ 1 < p,

so that p is a proper ideal. By Exercise I.2.4, ii), there is the induced injective homomor-

phism ϕ : R/p −→ S/q, [r] 7−→ [ϕ(r)]. Since S/q is an integral domain, the same holds

for R/p. Now, apply Proposition I.4.1, i).

iii) Let ϕ : R −→ S be, as before, a ring homomorphism. If m ⊂ S is a maximal ideal,

then q := f −1(m) needs not be maximal. Look for example at the inclusion ϕ : Z ⊂ Q.

Then, {0} ⊂ Q is a maximal ideal, because Q is a field, but {0} = ϕ−1({0}) is not a maximal

ideal of Z.

I.4.4 Theorem. In every ring R , {0}, there exist maximal ideals.

I.4.5 Remark (The axiom of choice). i) The proof of this theorem requires the axiom of

choice. Like the theorem that every vector space has a basis, this theorem is actually

equivalent to the axiom of choice (see, e.g., [3]).

ii) Since, by Corollary I.4.2, maximal ideals are prime ideals, Theorem I.4.4 shows

that every non-zero ring contains a prime ideal. It might be interesting to know that the

statement “Every ring R , {0} possesses a prime ideal.” is actually weaker than the

axiom of choice. It is equivalent to the axiom (BPI) that every non-zero boolean ring (see

Exercise I.4.16) contains a prime ideal. We refer the reader to the paper [25] for more

details and references.

The axiom of choice, in turn, is equivalent to Zorn’s3 lemma that we shall now for-

mulate. Let (S ,≤) be a partially ordered set. This means that S is a set and “≤” a relation

on S which satisfies the following properties:

⋆ Reflexivity: ∀s ∈ S : s ≤ s.

⋆ Antisymmetry: ∀s1, s2 ∈ S : (s1 ≤ s2 ∧ s2 ≤ s1)⇐⇒ s1 = s2.

⋆ Transitivity: ∀s1, s2, s3 ∈ S : s1 ≤ s2 ∧ s2 ≤ s3 =⇒ s1 ≤ s3.

I.4.6 Note. The relation “≤” corresponds to a subset U ⊂ S × S , such that

∀s1, s2 ∈ S : s1 ≤ s2 ⇐⇒ (s1, s2) ∈ U.

3Max August Zorn (1906 - 1993) was a German mathematician who emigrated to the USA because of

the Nazi policies.
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A chain in S is a subset T ⊂ S , such that, for t1, t2 ∈ T , one has t1 ≤ t2 or t2 ≤ t1, i.e., “≤”

induces a total ordering on T .

An upper bound for a chain T is an element u ∈ S , such that t ≤ u holds for all t ∈ T .

Observe that it is not required that u belongs to T .

A maximal element of S is an element m ∈ S , such that, for s ∈ S , m ≤ s implies

m = s.

I.4.7 Zorn’s lemma. Let (S ,≤) be a nonempty partially ordered set, such that every chain

T in S has an upper bound. Then, S contains at least one maximal element.

Proof. See [35], Satz 5.13. �

Proof of Theorem I.4.4. We look at the set

S :=
{

I ⊂ R | I , R and I is an ideal
}
.

This set contains {0} and is therefore nonempty, and it is partially ordered by inclusion

“⊂”. Let T be a chain in S and define

J :=
⋃

I∈T
I.

Claim. The set J is an upper bound for T , i.e., J ∈ S .

We first verify that J , R. This follows, because 1 < I, I ∈ T . Next, we show that J is

an ideal. To see that J is a subgroup of R, note first that 0 ∈ J, because 0 ∈ I for all I ∈ T .

Next, assume a1, a2 ∈ J. Then, there are ideals I1, I2 ∈ T with a1 ∈ I1 and a2 ∈ I2. Since

T is a chain, we have I2 ⊂ I1 or I1 ⊂ I2. We assume the latter. Then, a1 + a2 ∈ I2 ⊂ J.

Finally, let a ∈ J and r ∈ R. Then, there is an ideal I ∈ T with a ∈ I. Since I is an ideal,

r · a ∈ I and, thus, r · a ∈ J. For r = −1, this gives −a ∈ J (see Property I.1.2, ii) and

completes the proof. X

By Zorn’s lemma I.4.7, S contains a maximal element m. By definition, m is a maxi-

mal ideal. �

I.4.8 Corollary. i) Every ideal I ⊂ R is contained in a maximal ideal.

ii) Every element a ∈ R which is not a unit is contained in a maximal ideal.

Proof. i) We may apply the theorem to the ring R/I and use Lemma I.2.2 or modify the

above proof.

ii) If a is not a unit, then 〈a〉 ( R. Hence, we may conclude by i). �

A ring R with exactly one maximal ideal is called a local ring. In this case, the

field R/m is called the residue field. A ring with only finitely many maximal ideals is a

semilocal ring.

I.4.9 Example. A field is a local ring with maximal ideal {0}.

I.4.10 Proposition. i) Let R , {0} be a ring and m ( R an ideal, such that every element

a ∈ R \m is a unit. Then, R is a local ring with maximal ideal m.

ii) Let R , {0} be a ring and m ⊂ R a maximal ideal, such that 1 + m ⊂ R⋆. Then, R

is a local ring.
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Proof. i) Let I ( R be an ideal. Then, no element of a ∈ I is a unit. By assumption,

I ⊂ m.

ii) Let a ∈ R \ m. Then, 〈a〉 + m = R, because m is a maximal ideal. So, there exist

r ∈ R and b ∈ m, such that

r · a + b = 1.

We see that r · a ∈ 1 +m, so that r · a is a unit. It follows that a is a unit. (To see this, note

((r · a)−1 · r) · a = 1.) We now conclude by i). �

I.4.11 Examples. i) In Z, every ideal is principal, i.e., of the form 〈m〉 for some integer

m ∈ Z. Here, 〈m〉 is a prime ideal if and only if m = 0 or m is a prime number. For a

prime number p, Fp = Z/〈p〉 is the field with p elements. In particular, every non-zero

prime ideal in Z is a maximal ideal.

ii) An integral domain R in which every ideal is principal is called a principal ideal

domain. Examples for principal ideal domains include the ring of integers Z and the

polynomial ring k[x] over a field k (see Exercise I.4.15, i). In a principal ideal domain,

every nonzero prime ideal is maximal. Indeed, let 〈a〉 be a nonzero prime ideal, i.e.,

a , 0, and 〈b〉 be an ideal with

〈a〉 ( 〈b〉.

Thus, there exists an element r ∈ R with r · b = a. If b < 〈a〉, we must have r ∈ 〈a〉.
Choose s ∈ R with r = s · a. So, b · s · a = a, i.e., (b · s − 1) · a = 0. Since a , 0 and R is

an integral domain, we infer b · s = 1. So, b is a unit and 〈b〉 = R.

iii) Power series rings. Let R be a ring. We look again at

Map(N,R) =
{
Sequences (a0, a1, a2, ...) | ak ∈ R, k ∈ N

}
.

The arithmetic operations are as follows:

⋆ As addition, we use again componentwise addition:

(a0, a1, a2, ...) + (b0, b1, b2, ...) = (a0 + b0, a1 + b1, a2 + b2, ...).

⋆ As multiplication, we use, as for polynomial rings, the Cauchy4 product:

(a0, a1, a2, ...) · (b0, b1, b2, ...) = (c0, c1, c2, ...)

with

cn :=

n∑

k=0

ak · bn−k, n ∈ N. (I.4)

Notation. We write a sequence (a0, a1, a2, ...) in Map(N,R) as
∞∑

k=0

ak · xk. Such an expres-

sion is called a formal power series over R. The ring of all formal power series over R is

denoted by R[[x]].

Remark. Note that the polynomial ring R[x] is a subring (see Page 4) of R[[x]].

4Augustin-Louis Cauchy (1789 - 1857), French mathematician.
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Proposition. A formal power series
∞∑

k=0

ak · xk is a unit in R[[x]] if and only if a0 is a unit

in R.

We leave it to the reader to verify this easy consequence of (I.4).

Corollary. If k is a field, then k[[x]] is a local ring with maximal ideal

〈x〉 =

∞∑

i=1

ai · xi
∣∣∣∣ ai ∈ k, i = 1, 2, 3, ...

 .

Assume k = C. A formal power series
∞∑

i=0

ai · xi is convergent, if its radius of conver-

gence (see [31], Definition II.3.8) is positive. We set

C{x} :=

 p =

∞∑

i=0

ai · xi ∈ C[[x]]
∣∣∣∣ p is convergent

 .

Proposition. i) C{x} ⊂ C[[x]] is a subring.

ii) C[x] ⊂ C{x}.
iii) C{x} is a local ring with maximal ideal 〈x〉.

iv) Let k be a field. For a ∈ k, the principal ideal 〈x − a〉 is a maximal ideal of k[x].

If a1 , a2, then 〈x − a1〉 , 〈x − a2〉. This means that k[x] is not a local ring. If k is

algebraically closed (see [31], Satz IV.5.11), then all maximal ideals are of the form

〈x − a〉, a ∈ k.

Note. If k is algebraically closed, a non-constant polynomial p ∈ k[x] is irreducible5 if

and only if its degree is 1.

I.4.12 Exercises6. The ring C{x} may be interpreted in terms of complex functions. Let

S :=
{
(U, f ) |U ⊂ C open, 0 ∈ U, f : U −→ C holomorphic

}
.

We introduce the following relation on S:

(U, f ) ∼ (V, g) :⇐⇒ ∃0 ∈ W ⊂ U ∩ V open : f|W ≡ g|W .

i) Prove that “∼” is an equivalence relation on S.

The equivalence classes are germs of holomorphic functions at 0. We write the equiv-

alence class of (U, f ) ∈ S as [U, f ].

ii) Show that addition and multiplication of complex functions endow the set S of

germs of holomorphic functions at 0 with the structure of a ring and that

ev : S −→ C

[U, f ] 7−→ f (0)

is a ring homomorphism.7

5See Page 20 for the definition of an irreducible element in an integral domain.
6The necessary prerequisites for these exercises are contained [31], especially Kapitel IV
7Note that 0 is the only point at which it makes sense to evaluate a germ.
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iii) For a germ [U, f ] ∈ S, let T f ,0 be its Taylor series with expansion point 0. Show

that

T : S −→ C{x}
[U, f ] 7−→ T f ,0

is an isomorphism of rings, such that

T−1(〈x〉) = {
[U, f ] ∈ S | ev( f ) = 0

}
.

This exercise illustrates the name “local”: It comes exactly from the context of such

rings of germs of functions at a point, here the origin. Germs are, roughly speaking, the

local functions at the given point.

I.4.13 Exercises (Prime ideals). Determine all prime and maximal ideals of the following

rings: i) R, ii) Z, iii) C[x], and iv) R[x].

I.4.14 Exercise. Let R , {0} be a ring. Show that the set Σ of prime ideals of R has a

minimal element with respect to inclusion.

I.4.15 Exercises. Let k be a field.

i) Prove that the polynomial ring k[x] over k is a principal ideal domain.

ii) Prove that k is algebraically closed if and only if, for every maximal idealm ⊂ k[x],

there exists an element a ∈ k with m = 〈x − a〉.
I.4.16 Exercises (Boolean rings). i) Let R be a ring such that every element x ∈ R satisfies

xn = x for some n > 1. Show that every prime ideal p of R is a maximal ideal.

ii) A ring R is called boolean8, if every element x ∈ R verifies x2 = x. Show that

2x = x + x = 0 holds true for every element x in a boolean ring R.

iii) Let R , {0} be a boolean ring and p ⊂ R a prime ideal. Show that p is a maximal

ideal and that R/p is a field of two elements.

The Spectrum of a Ring

The following set of exercises contains the first steps of associating with a ring a geometric

object which contains all the information about the ring.

I.4.17 Exercises (The spectrum of a ring). Let R , {0} be a ring. We define

Spec(R) :=
{
p ⊂ R | p is a prime ideal

}
.

For an ideal I ⊂ R, we set

V(I) :=
{
p ∈ Spec(R) | I ⊂ p

}
.

Establish the following properties:

i) V(0) = Spec(R), V(R) = ∅.

ii) Let Ik, k ∈ K, be a family of ideals in R. Their sum
∑

k∈K

Ik is the ideal of all linear

combinations
∑

k∈K

ak with ak ∈ Ik, k ∈ K, almost all zero (see also Page 33). Then,

V

(∑

k∈K

Ik

)
=

⋂

k∈K

V(Ik).

8George Boole (1815 - 1864), English mathematician, philosopher and logician.
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iii) For two ideals I and J of R,

V(I ∩ J) = V(I) ∪ V(J).

Remark. Call a subset Z ⊂ Spec(R) Zariski9 closed, if there is an ideal I ⊂ R with Z = V(I)

and a subset U ⊂ Spec(R) Zariski open, if the complement Z = Spec(R) \ U is Zariski

closed. The above properties say:

i’) The empty set and Spec(R) are Zariski open.

ii’) The union of an arbitrary family of Zariski open subsets is Zariski open.

iii’) The intersection of two Zariski open subsets is Zariski open.

So,

T :=
{
U ⊂ Spec(R) |U is Zariski open

}

is a topology (see [18], Section 1.2) on Spec(R), the Zariski topology.

iv) Let f : R −→ S be a homomorphism of rings. Define

f # : Spec(S ) −→ Spec(R)

p 7−→ f −1(p).

Show that f # is continuous in the Zariski topology.

I.4.18 Exercises (Principal open subsets). Let R be a ring and X := Spec(R). For f ∈ R,

set X f := X \ V(〈 f 〉).
i) Show that the X f , f ∈ R, form a basis for the Zariski topology, i.e., for every Zariski

open subset U ⊂ X, there is a subset F ⊂ R, such that

U =
⋃

f∈F

X f .

Hint: For an ideal I ⊂ R, one has I =
∑
f∈I

〈 f 〉.

ii) Prove that X f ∩ Xg = X f ·g, f , g ∈ R.

iii) Check that X f = X holds if and only if f is a unit.

iv) Show that X is quasi-compact, i.e., every open covering of X possesses a finite

subcovering.

I.4.19 Exercises. Let R be a ring and X := Spec(R).

i) Show that, for an ideal I ∈ R, one has V(I) = V(
√

I).

ii) For a subset Z ⊂ X, define the ideal

I(Z) :=
⋂

p∈Z
p.

Show that

I
(
V(I)

)
=
√

I

holds for every ideal I ⊂ R.

iii) Let Z ⊂ X be a closed subset. Prove that

V
(
I(Z)

)
= Z.

9Oscar Zariski (1899 - 1986), was an American mathematician of Russian origin.
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I.4.20 Exercises (Boolean rings). Let R be a boolean ring (see Exercise I.4.16). Set X :=

Spec(R).

i) Show that, for f ∈ R, the set X f is both open and closed (in the Zariski topology).

ii) Let f1,..., fn ∈ R and

I := 〈 f1, ..., fn 〉 := 〈 f1〉 + · · · + 〈 fn〉.

Prove that I is a principal ideal.

iii) Suppose f1,..., fn ∈ R. Demonstrate that there is an element f ∈ R, such that

X f := X f1 ∪ · · · ∪ X fn .

I.4.21 Exercises (The spectrum of Z[x]). The aim of this exercise is to determine all prime

and maximal ideals of Z[x].

i) Show that a prime ideal p which is not principal contains two irreducible polyno-

mials f1 and f2 with f1 ∤ f2 and f2 ∤ f1.

ii) Explain why the greatest common divisor of f1 and f2 in Q[x] is 1, so that there are

polynomials g1, g2 ∈ Q[x] with f1 · g1 + f2 · g2 = 1.

iii) Deduce from ii) that the intersection Z ∩ p is non-zero and therefore of the form

〈p〉 for some prime number p ∈ Z.

iv) Infer that a non-principal prime ideal p ⊂ Z[x] is of the form 〈 p, f 〉where p ∈ Z is

a prime number and f ∈ Z[x] is a primitive polynomial (see Page 28) of positive degree,

such that its class f ∈ Fp[x] is irreducible. Is such an ideal maximal?

v) Now, describe all prime and all maximal ideals of Z[x].

Remark. A picture of Spec(Z[x]) may be found in the books [21], Example H, page 74f,

and [6], Section II.4.3.

I.4.22 Exercise (The spectrum of a product). Let R1,R2 be non-zero rings. Describe the

spectrum of R1 × R2 in terms of the spectra of R1 and R2. (Don’t forget to think about the

topology of the respective spaces.)

I.5 Irreducible Elements and Prime Elements

In this section, R is assumed to be an integral domain. The prime factorization in the

ring of integers ([30], Kapitel I) is the most important tool of elementary number theory.

To state it, we just need the relation of divisibility among two integers. This can equally

well be defined and studied in any integral domain.

I.5.1 Question. Is there a prime factorization in R?

We will see that the answer is no, in general. This motivates two developments. First,

we may single out the class of rings for which the answer is yes, so-called factorial rings,

and study some examples and properties of these rings. Second, we can generalize the

concept of prime factorization by allowing also ideals in the factorization. This will lead

to the primary decomposition of ideals (see Section II.4).

Let a, b ∈ R. We say that b divides a, if there exists an element c ∈ R, such that

a = b · c.
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I.5.2 Notation. b|a.

The reader may check the following properties of the divisibility relation (see [30],

Eigenschaften I.2.2, for the corresponding statements in the ring Z.)

I.5.3 Properties. i) Let a ∈ R. Then, 1|a and a|a.

ii) Let a, b, c ∈ R. If c|b and b|a, then also c|a.

iii) Let a1, ..., an, b ∈ R be elements with b|ai, i = 1, ..., n. For all r1, ..., rn ∈ R, we have

b
∣∣∣(r1 · a1 + · · · + rn · an).

iv) Let b ∈ R be an element with b|1. Then, b is a unit of R.

v) Let a ∈ R and u ∈ R⋆ be a unit. For every b ∈ R, the relation b|a implies (b · u)|a
and b|(a · u).

vi) Let a, b ∈ R. Then,

b|a ⇐⇒ 〈a〉 ⊂ 〈b〉.

Two elements a, b ∈ R are associated, if there exists a unit u ∈ R⋆, such that

a = b · u.

I.5.4 Notation. a ∼ b.

I.5.5 Lemma. i) The relation “∼” is an equivalence relation.

ii) Let a, b ∈ R. Then, the following conditions are equivalent: ⋆) a ∼ b, ⋆⋆) a|b∧b|a,

and ⋆ ⋆ ⋆) 〈a〉 = 〈b〉.

Proof. i) This is very easy to check directly. It is also an immediate consequence of ii).

ii) Condition ⋆) clearly implies ⋆⋆). Condition ⋆⋆) and ⋆ ⋆ ⋆) are equivalent by

Property I.5.3, vi). So, assume that a|b and b|a and let r, s ∈ R be such that a = b · r and

b = a · s. Then,

a = (r · s) · a.

This is equivalent to

(1 − r · s) · a = 0.

Since R is an integral domain,10 we have a = 0 or 1 = r · s. In the first case, b = a · s = 0.

In the second case, r and s are units of R. In both cases, a and b are associated. �

We have now two options to generalize the notion of a prime number in the ring of

integers (compare [30], Definition I.3.1 and Satz I.4.5): An element p ∈ R is called a

prime element, if p , 0, p < R⋆, and

∀a, b ∈ R: p|(a · b) =⇒ p|a or p|b.

An element q ∈ R is irreducible, ifp , 0, p < R⋆, and

∀a, b ∈ R: q = a · b =⇒ a ∈ R⋆ or b ∈ R⋆.

In other words, the only divisors of q are units or associated elements.

10Here, our general assumption becomes important.
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I.5.6 Examples. i) Let k be a field. Then, there are no prime or irreducible elements in k.

ii) An integer m ∈ Z is an irreducible element if and only if it is a prime number. A

prime number is a prime element, by [30], Satz I.4.5. Since a prime element is irreducible

(Proposition I.5.7, i), every prime element in Z is a prime number.

I.5.7 Proposition. Let p ∈ R be an element.

i) If p is a prime element, then p is irreducible.

ii) The element p is a prime element if and only if 〈p〉 is a prime ideal

iii) The element p is irreducible if and only if there is no element a ∈ R with

〈p〉 ( 〈a〉 ( R,

i.e., if 〈p〉 is maximal among the proper principal ideals of R.

Proof. i) Let a, b ∈ R be such that p = a · b. Since p|p, we have p|(a · b) and p|a or p|b.

Let us assume p|a and let c ∈ R be such that a = p · c. We find p = (b · c) · p. Since p , 0

and R is an integral domain, it follows that b · c = 1 and that b is a unit.

ii) “=⇒”: For a, b with a · b ∈ 〈p〉, we have p|(a · b). Since p is a prime element, this

implies p|a or p|b, i.e., a ∈ 〈p〉 or b ∈ 〈p〉. The converse is similar.

iii) “=⇒”: Suppose a ∈ R is an element with 〈p〉 ⊂ 〈a〉, i.e., a|p. Let b ∈ R be such

that a · b = p. Then, a ∈ R⋆ or b ∈ R⋆, that is 〈a〉 = R or 〈a〉 = 〈p〉.
“⇐=”: For a, b ∈ R with p = a · b, we have 〈p〉 ⊂ 〈a〉. By assumption, 〈a〉 = 〈p〉 or

〈a〉 = R. In the first case b ∈ R⋆, and, in the second case, a ∈ R⋆. �

I.5.8 Corollary. Suppose R is a principal ideal domain. Then, any irreducible element

p ∈ R is a prime element.

I.5.9 Important example. We look at the ring

R := Z
[√
−5

]
:=

{
k + l ·

√
−5 ∈ C

∣∣∣ k, l ∈ Z
}
.

It is a subring of the field C of complex numbers and therefore an integral domain. In

order to study divisibility among elements in R, we introduce the norm map

N : R −→ Z

k + l ·
√
−5 7−→ k2 + 5 · l2.

It satisfies

∀a, b ∈ R : N(a · b) = N(a) · N(b). (I.5)

We can list elements of small norm:

⋆ An element of a ∈ R has norm 1 if and only if a = ±1.

⋆ There are no elements a ∈ R of norm 2 or 3.

⋆ The elements of norm 9 are ±3 and ±(2 ±
√
−5).

This has already several interesting consequences:

Claim. The units of R are ±1.
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The elements ±1 are clearly units of R. Conversely, (I.5) shows that a unit u ∈ R

satisfies N(u) = 1. Our previous observation says that this is equivalent to u = ±1. X

Claim. The elements ±3 and ±(2 ±
√
−5) are irreducible.

We explain the argument for 3. Equation (I.5) shows that a divisor a of 3 has norm 1

or 9, because there is no element of norm 3. If N(a) = ±1, then a = ±1. If N(a) = 9, then

a = ±3 or a = ±(2 ±
√
−5). The elements ±(2 ±

√
−5) do not divide 3. X

Claim. The elements ±3 and ±(2 ±
√
−5) are not prime.

Again, we show the assertion for 3. We use the equation

9 = 3 · 3 = (2 −
√
−5) · (2 +

√
−5). (I.6)

It shows 3|9. By our previous discussion, 3 ∤ (2 ±
√
−5). X

I.5.10 Exercise. Prove that every element a ∈ R which is neither zero nor a unit can be

written as a product of irreducible elements.

I.5.11 Remark. i) There are several related observations resulting from our discussion, in

particular, Equation (I.6). Every element in R may be written as a product of irreducible

elements, but this factorization is, in general, not unique up to associated element. For

example, 9 has two essentially distinct factorizations. Not every irreducible element is

a prime element. There are elements such as 9 which cannot be written as products of

prime elements. We will clarify these matters in the following section.

ii) The fact that there are numbers which cannot be written as products of prime el-

ements led to the idea of “ideal numbers” and eventually of ideals which may be used

to obtain such a factorization nevertheless. An example looks as follows (see Exercise

I.8.9): The ideals

p1 := 〈 3, 2 +
√
−5 〉 and p2 := 〈 3, 2 −

√
−5 〉

are prime ideals in R with

〈9〉 = p2
1 · p2

2 = p
2
1 ∩ p2

2.

iii) The ring R is the ring of integers in the number field Q(
√
−5). Every number

field K has such a ring of integers OK . The question whether there is a prime factorization

or not in OK is of great importance for algebraic number theory. It is, for example, related

to the famous equation xp + yp = zp, p a prime number, of Fermat.11 Chapter I of [23]

contains detailed information on these topics.

I.6 Factorial Rings

In this section, R will be an integral domain. We will study the following properties:

(F1) For every element a ∈ R\({0}∪R⋆), there are a natural number r ≥ 1 and irreducible

elements q1, ..., qr ∈ R with

a = q1 · · · · · qr.

11Pierre de Fermat (1601 or 1607/8 - 1665) was a French lawyer and mathematician.
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(F2) For every element a ∈ R \ ({0} ∪ R⋆), there are a natural number r ≥ 1 and prime

elements p1, ..., pr ∈ R with

a = p1 · · · · · pr.

(F3) If we are given natural numbers r, t ≥ 1 and irreducible elements q1, ..., qr, s1, ..., st ∈
R with

q1 · · · · · qr = s1 · · · · · st,

then r = t and there is a permutation σ : { 1, ..., r } −→ { 1, ..., r }, such that

∀i ∈ { 1, ..., r } : qi ∼ sσ(i).

(F4) Every irreducible element of R is a prime element.

I.6.1 Theorem. The following conditions on the integral domain R are equivalent:

i) The properties (F1) and (F3) hold in R.

ii) The properties (F1) and (F4) hold in R.

iii) Property (F2) holds in R.

Proof. “i)=⇒ii)”. Let q be an irreducible element and a, b ∈ R ring elements with q|a · b.

If a = 0 or b = 0, there is nothing to show. If a ∈ R⋆, it follows that q|b, and, if b ∈ R⋆,

we have q|a. So, we may assume a, b ∈ R \ ({0} ∪ R⋆). Let c ∈ R be such that

a · b = q · c.

Since q is irreducible, we must have c < R⋆ and, obviously, c , 0. By (F1), there are

natural numbers r, t, v ≥ 1 and irreducible elements q1, ..., qr, s1, ..., st, u1, ..., uv ∈ R with

a = q1 · · · · · qr, b = s1 · · · · · st, and c = u1 · · · · · uv.

The identity

q1 · · · · · qr · s1 · · · · · st = q · u1 · · · · · uv

and (F3) show that there is an index i0 ∈ { 1, ..., r } or an index j0 ∈ { 1, ..., t } with

q ∼ qi0 or q ∼ s j0 ,

so that

q|a or q|b.

“ii)=⇒iii)”. This is trivial.

“iii)=⇒i)”. By Proposition I.5.7, i), every prime element of R is irreducible. This

implies that (F1) holds true in R.

Claim. Property (F4) is verified by R.

In fact, let q ∈ R be an irreducible element. There are a natural number r ≥ 1 and

prime elements p1, ..., pr with

q = p1 · · · · · pr.

Since prime elements aren’t units, the irreducibility of q implies r = 1 and q = p1. X
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Now, let q1, ..., qr, s1, ..., st ∈ R be irreducible elements with

q1 · · · · · qr = s1 · · · · · st.

We proceed by induction on r. If r = 1, then t = 1, because q1 is irreducible. In general,

there is an index i ∈ { 1, ..., r } with s1|qi, because, according to (F4), s1 is a prime element.

Since qi is irreducible, this implies s1 ∼ qi. We may clearly assume i = 1. There is a unit

u ∈ R with s1 = u · q1. We infer

q1 · q2 · · · · · qr = q1 · (u · s2) · s3 · · · · · st.

Using the fact that R is an integral domain, this equation implies

q2 · · · · · qr = (u · s2) · s3 · · · · · st,

and we may conclude by induction. �

A factorial ring is an integral domain which satisfies Conditions (F1) - (F4).

I.6.2 Exercise (Chains of ideals in principal ideal domains). Let R be a principal ideal

domain.

i) Let

〈r1〉 ⊂ 〈r2〉 ⊂ · · · ⊂ 〈rk〉 ⊂ 〈rk+1〉 ⊂ · · ·

be an ascending chain of (principal) ideals. Show that this sequence becomes stationary,12

i.e., there is an index k0 ∈ N, such that

〈rk〉 = 〈rk0
〉 for all k ≥ k0.

ii) Use Part i) to show that (F1) (see Page 22) holds in a principal domain (compare

[8], Chapter II, Lemma 4.3.4) and conclude that a principal ideal domain is factorial.

I.6.3 Example. Let k be a field. By Exercise I.4.15, i), the polynomial ring k[x] is a

principal ideal domain and, therefore, by the previous exercise a factorial ring.

The next aim is to prove the existence of more factorial rings.

I.6.4 Theorem (Gauß). Let R be a factorial ring. Then, the polynomial ring R[x] is

factorial, too.

By Example I.6.3, the theorem is true, if R is a field. We would like to use this result.

This is possible, because we may associate with any integral domain in a canonical way

a field.

Quotient Fields

In order to define what a quotient field is, we will recur again to a universal property.

Let R be an integral domain. A quotient field of R is a pair (Q(R), ι) which consists of

a field Q(R) and an injective homomorphism ι : R −→ Q(R) and satisfies the following

12This property will be studied in detail in Chapter II.1.

24



I.6. Factorial Rings

property: For every field K and every injective homomorphism ϕ : R −→ K, there is a

unique homomorphism Φ : Q(R) −→ K with

Φ ◦ ι = ϕ.

The corresponding diagram looks as follows:

R
ι

}}③③
③③
③③
③③ ϕ

��
❄❄

❄❄
❄❄

❄❄

Q(R)
∃!Φ

//❴❴❴❴❴❴❴ K.

The universal property expresses that Q(R) is the smallest field that contains R. In order to

construct it, we obviously have to invert the elements of R \ {0}. The formal construction

proceeds along the lines of the construction of the field Q of rational numbers from the

ring Z of integers ([27], Abschnitt 1.5).

For (a, b), (c, d) ∈ R × (R \ {0}), we write

(a, b) ∼ (c, d) :⇐⇒ a · d = b · c.

I.6.5 Proposition. The relation “∼” is an equivalence relation on R × (R \ {0}).

Proof. We leave this as an exercise. �

In the following, we write
a

b

for the equivalence class [a, b] of (a, b) ∈ R × (R \ {0}). We will also abusively write a for

the class a/1, a ∈ R. In this notation, we declare the addition

+ : Q(R) × Q(R) −→ Q(R)(
a

b
,

c

d

)
7−→ a · d + b · c

b · d
and the multiplication

· : Q(R) × Q(R) −→ Q(R)(
a

b
,

c

d

)
7−→ a · c

b · d
.

I.6.6 Theorem. i) The tuple (Q, 0,+, ·, 1) is a field.

ii) The map

ι : R −→ Q(R)

a 7−→ a =
a

1

is an injective ring homomorphism.13

iii) The pair (Q(R), ι) is a quotient field of R.

Proof. Everything works as for Z and Q. So, we leave the proof as an exercise. �

13This justifies our abusive notation.
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Greatest Common Divisors

We need some more concepts in factorial rings which generalize their counterparts in the

ring Z of integers in order to compare factorizations in the rings R[x] and Q(R)[x].

For ring elements a1, ..., an ∈ R, a common divisor of a1, ..., an is an element d ∈ R

with

d|ai, i = 1, ..., n,

and

cd(a1, ..., an) :=
{
d ∈ R | d is a common divisor of a1, ..., an

}

is the set of common divisors of a1, ..., an.

I.6.7 Properties. Let n ≥ 1 be a positive natural number, a1, ..., an ∈ R ring elements and

u ∈ R⋆ a unit.

i) For every ring element d ∈ R we have

d ∈ cd(a1, ..., an) ⇐⇒ 〈d〉 ⊃ 〈a1〉 + · · · + 〈an〉.

ii) It is always true that R⋆ ⊂ cd(a1, ..., an).

iii) We have cd(a1, ..., an, u) = R⋆.

iv) We have cd(a1, ..., an, 0) = cd(a1, ..., an).

v) The property 0 ∈ cd(a1, ..., an) holds if and only if a1 = · · · = an = 0.

Proof. For i), observe that, for a ∈ R, d|a holds if and only if 〈d〉 ⊃ 〈a〉 (Property I.5.3,

vi). So,

d ∈ cd(a1, ..., an) ⇐⇒ 〈d〉 ⊃
(
〈a1〉 ∪ · · · ∪ 〈an〉

)
.

The fact that 〈d〉 is an ideal implies

〈d〉 ⊃
(
〈a1〉 ∪ · · · ∪ 〈an〉

)
⇐⇒ 〈d〉 ⊃ 〈a1〉 + · · · + 〈an〉.

The rest of the asserted properties is straightforward to verify, and we leave the proofs

to the reader. �

The elements a1, ..., an ∈ R are coprime, if

cd(a1, ..., an) ⊂ R⋆.

By Property I.6.7, ii), this condition is equivalent to cd(a1, ..., an) = R⋆.

Given a1, ..., an ∈ R, a greatest common divisor of a1, ..., an is an element d ∈ cd(a1, ...,

an) with the property

∀d′ ∈ cd(a1, ..., an) : d′|d.

We let

gcd(a1, ..., an) =
{
d ∈ R | d is a greatest common divisor of a1, ..., an

}

be the set of greatest common divisors of a1, ..., an.
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I.6.8 Properties. Let a1, ..., an ∈ R be ring elements.

i) Let d, d′ ∈ R be elements with d ∈ gcd(a1, ..., an) and d ∼ d′. Then, d′ ∈ gcd(a1, ...,

an).

ii) If d, d′ ∈ gcd(a1, ..., an) are greatest common divisors of a1, ..., an, then d ∼ d′, i.e.,

a greatest common divisor is determined up to units.

iii) Suppose there is an index i0 ∈ { 1, ..., n } with ai0 , 0 and d ∈ gcd(a1, ..., an). Then,

the elements a′
1
, ..., a′n ∈ R with ai = d · a′

i
are coprime.

Proof. i) This is obvious. ii) This is a direct consequence of Property I.5.3, v). iii) Let

t ∈ cd(a′
1
, ..., a′n) and write a′

i
= a′′

i
· t for a suitable ring element a′′

i
∈ R, i = 1, ..., n. It

follows that d · t ∈ cd(a1, ..., an). By definition of a greatest common divisor, (d · t)|d. As

usual, we infer that t ∈ R⋆ is a unit. So, we have shown cd(a′1, ..., a
′
n) ⊂ R⋆ as required. �

The concept of a greatest common divisor has been defined in any integral domain. In

general, it need not exist.

I.6.9 Example. We look again at the ring Z[
√
−5]. The element a = 9 has the divisors ±1,

±3, ±(2±
√
−5), ±9, and the element b := 3 · (2+

√
−5) has the divisors ±1, ±3, ±(2+

√
−5)

and ±3 · (2 +
√
−5). Since the elements 3 and (2 +

√
−5) are not associated, it follows that

the elements a and b do not have a greatest common divisor.

I.6.10 Proposition. Assume that R is a factorial ring. Then, for n ≥ 1, ring elements

a1, ..., an which are not all zero do have a greatest common divisor.

Proof. By Property I.6.7, iv) and v), we may suppose ai , 0, i = 1, ...., n, and by Property

I.6.7, iii), we may assume ai < R⋆, i = 1, ..., n. Since R is factorial, we may find prime

elements p1, ..., pr with pi / p j for 1 ≤ i < j ≤ r and natural numbers k j(ai), j = 1, ..., r,

i = 1, ..., n, with

ai ∼ p
k1(ai)

1
· · · · · pkr(ai)

r , i = 1, ..., n.

Now, set

m j := min
{
k j(ai) | i = 1, ..., n

}
, j = 1, ..., r.

It is readily verified that

d := p
m1

1
· · · · · pmr

r

is a greatest common divisor of a1, ..., an. �

I.6.11 Lemma. Let R be a factorial ring. Then, every element x ∈ Q(R) can be written

as x = a/b with a ∈ R and b ∈ R \ {0} coprime.

Proof. We pick α ∈ R and β ∈ R \ {0}. By Proposition I.6.10, α and β have a greatest

common divisor. Let d be one, a ∈ R and b ∈ R \ {0} be elements with α = a · d and

β = b · d. According to Property I.6.8, iii), a and b are coprime. It is also clear that

x = α/β = a/b. �
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Primitive Polynomials

For the rest of this section, we assume that R is a factorial ring. We need to compare

irreducible elements in the rings R[x] and Q(R)[x]. The key concept for doing so is the

one of a primitive polynomial: A polynomial f ∈ R[x] is primitive, if its coefficients are

coprime.

I.6.12 Example. If k is a field, then every polynomial f ∈ k[x] \ {0} is primitive.

I.6.13 Lemma. i) Let f ∈ R[x] be a polynomial of positive degree. If f is irreducible,

then f is primitive.

ii) If f ∈ R[x] is a primitive polynomial and f is irreducible in Q(R)[x], then f is

irreducible in R[x].

In i), we need to assume that f is non-constant, because the element 2 ∈ Z[x] is

irreducible but not primitive. Part ii) does not work, if we don’t assume that f is primitive.

In fact, the polynomial 2x+2 ∈ Q[x] is irreducible. In Z[x], the equation 2·(x+1) = 2x+2

expresses 2x+2 as a product of two non-units, so that 2x+2 is not an irreducible element

of Z[x]. (This is the only subtlety of the lemma.)

Proof of Lemma I.6.13. i) Let d be a greatest common divisor of the coefficients of f .

(This exists by Proposition I.6.10.) By Property I.6.8, iii), there is a primitive polynomial

g ∈ R[x] with f = d · g. Since f is irreducible and g ∈ R[x] is not a unit, because

deg(g) = deg( f ) > 0, d must be a unit.

ii) Let g, h ∈ R[x] polynomials with f = g · h. This is also an equation in Q(R)[x]. By

assumption, g ∈ Q(R)[x]⋆ = Q(R) \ {0} or h ∈ Q(R)⋆. It suffices to treat the first case. We

have g ∈ R \ {0}, and g clearly is a common divisor of the coefficients of f . Since f is

primitive, we have g ∈ R⋆ = R[x]⋆ as required. �

I.6.14 Lemma (Gauß). Let f , g ∈ R[x] be primitive polynomials. Then, f · g ∈ R[x] is

primitive, too.

Proof. For every prime element p ∈ R, we have the surjection

̺p : R[x] −→ (R/〈p〉)[x]

a0 + a1 · x + · · · + an · xn 7−→ [a0] + [a1] · x + · · · + [an] · xn.

Formally, it is associated with the homomorphism πp : R −→ R/〈p〉 and the element

x ∈ (R/〈p〉)[x] (see Page 5). Using prime factorization in R, we have the following:

∀ f ∈ R[x] : f is primitive ⇐⇒ ∀ prime elements p ∈ R : ̺p( f ) , 0. (I.7)

By assumption, we have ̺p( f ) , 0 and ̺p(g) , 0, p ∈ R a prime element. Now, 〈p〉 is

a prime ideal (Proposition I.5.7, ii). So, R/〈p〉 and (R/〈p〉)[x] are integral domains. The

inequality

∀ prime elements p ∈ R : ̺p( f · g) = ̺p( f ) · ̺p(g) , 0

gives the result. �
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I.6.15 Remark. We can rephrase the above proof also in terms of ideals. The kernel p of

̺p is a prime ideal (see Proposition I.4.1, i), p ∈ R a prime element. In the proof, we have

exploited the property

f < p ∧ g < p =⇒ f · g < p

of the prime ideal p.

I.6.16 Lemma. i) For every polynomial g ∈ Q(R)[x] \ {0}, there is a number a ∈ Q(R),

such that the polynomial a · g belongs to R[x] and is primitive.

ii) If f , g ∈ R[x] are polynomials, g is primitive, and a ∈ Q(R) is a number with

f = a · g, then a ∈ R.

Proof. i) We write g = α0 + α1 · x + · · · + αn · xn with α0, ..., αn ∈ Q(R) and pick elements

ri ∈ R, si ∈ R \ {0} with αi = ri/si, i = 0, ..., n. Set s := s0 · · · · · sn. Then, we obviously

have s · g ∈ R[x] \ {0}. Since R is factorial, we may find a greatest common divisor d of

the coefficients of s · g. There exists a polynomial f ∈ R[x] with s · g = d · f . By Property

I.6.8, iii), f is primitive. Altogether, we may choose a = s/d.

ii) The case f = 0 is trivial. Otherwise, we may write a = r/s with r, s ∈ R coprime

(see Lemma I.6.11). The equation f = a · g may be rewritten as

s · f = r · g.

This shows that s divides all the coefficients of r · g. Since s is coprime to r, prime

factorization in R implies that s divides all the coefficients of g. The primitivity of g

implies that s is a unit. So, a = r/s ∈ R as asserted. �

The following result finally relates the irreducible elements of R[x] and Q(R)[x].

I.6.17 Proposition. i) Let f ∈ R[x] be a non-constant primitive polynomial and g ∈ R[x].

If the relation f |g holds in Q(R)[x], then it holds in R[x], too.

ii) If f ∈ R[x] is a non-constant irreducible polynomial, then f is irreducible as an

element of Q(R)[x].

Proof. i) If g = 0, there is nothing to show. Otherwise, there is a polynomial h ∈ Q(R)[x]\
{0} with g = f · h. By Lemma I.6.16, i), there is a number a ∈ Q(R), such that a · h is a

primitive polynomial in R[x]. Now, we look at the equation

g =
1

a
· f · (a · h).

By Lemma I.6.14, f · (a · h) is primitive. According to Lemma I.6.16, ii), 1/a ∈ R, so that

h = (1/a) · (a · h) ∈ R[x].

ii) Suppose we could write f = g · h with g, h ∈ Q(R)[x]. We pick a ∈ Q(R), such that

a · h ∈ R[x] is a primitive polynomial, and look at the equation

f =

(
1

a
· g

)
· (a · h).

By Part i), we have (1/a) · g ∈ R[x]. Since f is irreducible as an element of R[x], we

conclude that (1/a) · g ∈ R⋆ or a · h ∈ R⋆. This implies g ∈ Q(R)⋆ or h ∈ Q(R)⋆. �
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Proof of Theorem I.6.4. We will verify Conditions (F1) and (F3) (see Page 22f).

Step 1. We show that (F1) holds, i.e., that every element of R[x] \ ({0} ∪ R⋆) may be

written as a product of irreducible elements. We do this by induction on the degree n.

n = 0. Let f ∈ R[x] \ ({0} ∪ R⋆) be a non-zero constant. Since R is factorial, f can be

written as a product of irreducible elements in R. Finally, every irreducible element of R

is an irreducible element of R[x].

n −→ n+ 1. Let f ∈ R[x] be a polynomial of degree n + 1. There are a ring element

a ∈ R and a primitive polynomial g ∈ R[x] with f = a · g. Since the assertion holds

for a, it suffices to factorize g. If g is irreducible, there is nothing to show. If g is not

irreducible, there exist elements g1, g2 ∈ R[x] \ ({0} ∪ R⋆) with g = g1 · g2. Since g is

primitive and g1, g2 aren’t units, g1 and g2 cannot be constant. It follows deg(g1) < deg(g)

and deg(g2) < deg(g). By induction hypothesis, g1 and g2 may be written as products of

irreducible polynomials. The same is true for g = g1 · g2.

Step 2. Here, we check (F3). Let c1, ..., cm, d1, ..., dn ∈ R be irreducible elements and

p1, ..., ps, q1, ..., qt ∈ R[x] \ R be irreducible polynomials of positive degree, such that

c1 · · · · · cm · p1 · · · · · ps = d1 · · · · · dn · q1 · · · · · qt. (I.8)

By Lemma I.6.13, i), the polynomials p1, ..., ps and q1, ..., qt are primitive. By Lemma

I.6.14, the polynomials p1 · · · · · ps and q1 · · · · ·qt are primitive, too. It is easy to infer from

Equation (I.8) that

c1 · · · · · cm ∼ d1 · · · · · dn.

Since R is a factorial ring, m = n and there is a permutation σ : { 1, ..., n } −→ { 1, ..., n }
with

ci ∼ dσ(i), i = 1, ..., n.

We conclude

p1 · · · · · ps ∼ q1 · · · · · qt. (I.9)

Now, we look at this relation in the ring Q(R)[x]. By Proposition I.6.17, ii), the poly-

nomials p1, ..., ps, q1, ..., qt are irreducible in Q(R)[x]. We already know that Q(R)[x] is

factorial (see Example I.6.3). From (I.9), we now infer that s = t and that there is a

permutation τ : { 1, ..., t } −→ { 1, ..., t } with

pi ∼ qτ(i) in Q(R)[x], i = 1, ..., t.

With Lemma I.5.5, ii), we rewrite this as

pi|qτ(i) and qτ(i)|pi in Q(R)[x], i = 1, ..., t.

Next, Proposition I.6.17 shows

pi|qτ(i) and qτ(i)|pi in R[x],

and, thus, by Lemma I.5.5, ii),

pi ∼ qτ(i) in R[x], i = 1, ..., t.

This gives the assertion and concludes the proof. �
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I.7 The Nilradical

I.7.1 Proposition. Let R be a ring and

N :=
{
a ∈ R | a is nilpotent

}
.

i) The subset N of R is an ideal.

ii) The quotient ring R/N has no nilpotent element other than 0.

Proof. i) Clearly, 0 ∈ N. Suppose a, b ∈ N and choose exponents m ≥ 1 and n ≥ 1 with

am = 0 and bn = 0. For 0 ≤ i < m, we have m + n − 1 − i ≥ n. This shows that every

summand of the right hand sum in

(a + b)m+n−1 =

m+n−1∑

i=0

(
m + n − 1

i

)
· ai · bm+n−1−i

is zero, so that (a + b)m+n−1 = 0 and a + b ∈ N. Assume r ∈ R and a ∈ N and let n ≥ 1

be an exponent with an = 0. Then, (r · a)n = rn · an = 0 and r · a ∈ N. In the special case

r = −1, we get −a ∈ N.

ii) Let a ∈ R be such that [a] ∈ R/N is nilpotent. Let n ≥ 1 be such that [an] = [a]n = 0.

This means an ∈ N. Hence, we may find an exponent m ≥ 1 with

am·n = (an)m = 0.

This shows a ∈ N and [a] = 0. �

The ideal N is called the nilradical of R.

I.7.2 Proposition. Let R , {0} be a ring. Then, the nilradical is the intersection of all

prime ideals in R:

N =
⋂

p⊂R
prime ideal

p.

Proof. We first show that the nilradical is contained in every prime ideal. To this end, let

a ∈ N be a nilpotent element, n ≥ 1 an exponent with an = 0, and p ⊂ R a prime ideal.

We obviously have an ∈ p. So, we may define

l := min
{
m ≥ 1 | am ∈ p

}
.

Assume l > 1. Then, al = a · al−1 ∈ p. By definition, a ∈ p or al−1 ∈ p. Both conclusions

contradict the choice of l. The only way out is l = 1 and a ∈ p.
Now, let a ∈ R be an element which is not nilpotent. We will prove the existence of

a prime ideal which does not contain a. Denote by Σ the set of ideals I ⊂ R with the

property that an
< I for all n ≥ 1. This set contains the zero ideal {0} and is, therefore,

non-empty. By Zorn’s lemma I.4.7 (compare the proof of Theorem I.4.4), it contains a

maximal element. Let p ∈ Σ be a maximal element. If we can show that p is a prime

ideal, we are clearly done. Suppose b, c ∈ R \ p. Then, p ( p + 〈b〉 and p ( p + 〈c〉. By

definition of p, there are exponents m ≥ 1 and n ≥ 1 with am ∈ p + 〈b〉 and an ∈ p + 〈c〉.
We infer

am+n ∈ p + 〈b · c〉.
So, p + 〈b · c〉 < Σ and p ( p + 〈b · c〉. This shows b · c < p as required. �
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I.7.3 Remark. In the above proof, we have used Zorn’s lemma, i.e., the axiom of choice

in its full strength. In Section II.3, we will see that the statement that Proposition I.7.2

holds for every non-zero ring is equivalent to the fact that every non-zero ring has a prime

ideal (compare Remark I.4.5). Note the fact that, in a non-zero ring, 1 < N, so that R must

contain a prime ideal, if Proposition I.7.2 holds.14

I.8 Operations on Ideals

Here, we will discuss various ways to construct new ideals from given ones. These con-

structions and their properties will be used throughout the following text.

Intersections, Sums, and Products

Let R be a ring, S an index set and (Is)s∈S a family of ideals in R indexed by the set S .

Then, it is a straightforward task to verify that the intersection

⋂

s∈S
Is

is also an ideal. This basic observation makes possible the following important construc-

tion:

I.8.1 Lemma. Let R be a ring and X ⊂ R. The ring R possesses one and only one ideal

I(X) which contains X and is contained in any ideal containing X.

Proof. Obviously, the ideal

I(X) :=
⋂

I⊂R ideal
X⊂I

I

does the trick. �

The reader should compare this to the corresponding construction in group theory

([30], Satz II.4.10). The ideal I(X) is the ideal generated by X.

Definition. We will often write 〈X〉 for I(X).

I.8.2 Remark. The ideal I(X) is identical to the ideal of all finite R-linear combinations of

elements in X:

I(X) =

{∑

a∈X

ra · a
∣∣∣ ra ∈ R, a ∈ X, all but finitely many are zero

}
.

I.8.3 Examples. i) The ideal generated by the empty set is the zero ideal, 〈∅〉 = {0}.
ii) For a ∈ R, the ideal I({a}) agrees with the principal ideal 〈a〉 generated by a (see

Example I.2.1, iv).

iii) More generally, for finitely many elements a1, ..., an ∈ R, we have (compare Ex-

ample I.2.1, x)

I
(
{ a1, ..., an }

)
= 〈 a1, ..., an 〉 = 〈a1〉 + · · · + 〈an〉.

14The intersection over an empty index set is, by definition, the whole ring R.
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We say that an ideal I ⊂ R is finitely generated, if there are a natural number n and

elements a1, ..., an ∈ R with I = 〈 a1, ..., an 〉.
The above construction has an important special case: For S an index set and a family

of ideals (Is)s∈S in R indexed by the set S , the sum is the ideal

∑

s∈S
Is :=

〈⋃

s∈S
Is

〉
=

{∑

s∈S
as | as ∈ Is, s ∈ S , all but finitely many zero

}
.

I.8.4 Examples. i) For a subset X ⊂ R, we find I(X) =
∑

a∈X

〈a〉.
ii) The union of ideals is, in general, not an ideal. This means that we get, in general,

⋃

s∈S
Is (

∑

s∈S
Is.

For example, 〈2〉 ∪ 〈3〉 ⊂ Z is not an ideal. We have 2 ∈ (〈2〉 ∪ 〈3〉) and 3 ∈ (〈2〉 ∪ 〈3〉),
but 5 < (〈2〉 ∪ 〈3〉). Note also that

〈2〉 + 〈3〉 = Z,

because 1 = −2 + 3 ∈ 〈2〉 + 〈3〉.
For ideals I, J ⊂ R, the product is the ideal

I · J = I
(
{ a · b | a ∈ I, b ∈ J }

)
=

{ n∑

i=1

ai · bi

∣∣∣ n ∈ N, ai ∈ I, bi ∈ J, i = 1, ..., n

}
.

The powers of an ideal I ⊂ R are defined recursively via

⋆ I0 := R,

⋆ In+1 := I · In, n ∈ N.

I.8.5 Examples. i) Let R = Z and a, b ∈ Z integers. We find the following description of

the above constructions:

⋆ 〈a〉 + 〈b〉 = 〈c〉 with c the greatest common divisor of a and b.

⋆ 〈a〉 ∩ 〈b〉 = 〈c〉 with c the least common multiple of a and b (see [30], Definition

I.4.12).

⋆ 〈a〉 · 〈b〉 = 〈a · b〉.

ii) Let k be a field, k[x1, ..., xn] the polynomial ring in n variables (see Equation (I.2)

and the following exercise) and I := 〈 x1, ..., xn 〉. Then, for m ≥ 1,

Im =
{
polynomials which contain only monomials of degree at least m

}

=

{ ∑

(i1,...,in )∈N×n:

i1+···+in≥m

ai1,...,in · x
i1
1
· · · · · xin

n

∣∣∣ ai1 ,...,in ∈ R, (i1, ..., in) ∈ N×n : i1 + · · · + in ≥ m

}
.

Note that R/Im contains nilpotent elements different from zero, if m ≥ 2.
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I.8.6 Example. Let R be a ring and I, J ⊂ R ideals. We always have

I · J ⊂ I ∩ J.

In general, this inclusion is strict. For example, the discussion in Example I.8.5, i), shows

that, for integers a, b ∈ Z, the equation

〈a〉 · 〈b〉 = 〈a〉 ∩ 〈b〉

holds if and only if a and b are coprime.

We say that I and J are coprime, if I + J = R, and claim that, for coprime ideals

I, J ⊂ R, we have

I · J = I ∩ J.

We have to verify the inclusion “⊃”. Pick r ∈ I and s ∈ J with r + s = 1 and let a ∈ I ∩ J.

Then, the equations

a = a · 1 = a · (r + s) = a · r︸︷︷︸
∈I·J

+ a · s︸︷︷︸
∈I·J

shows that a is an element of I · J.

I.8.7 Remarks. i) The operations of taking intersections, sums, and products of ideals are

commutative and associative, and the following distributive law holds:

For ideals I, J,K ⊂ R : I · (J + K) = I · J + I · K.

The reader may verify this as an exercise.

ii) Let I, J,K be ideals of the ring R and assume J ⊂ I or K ⊂ I. Then, we also have

I ∩ (J + K) = (I ∩ J) + (I ∩ K).

Here, the inclusion “⊃” is obvious. For the converse inclusion, we assume J ⊂ I. Let

b ∈ J and c ∈ K be elements with b + c ∈ I. Together with b ∈ I, this implies c ∈ I.

I.8.8 Examples. i) Let k be a field and R = k[x, y, z] the polynomial ring in three variables

over k. We assert

〈 x · y, x · z, y · z 〉 = 〈 x, y 〉 ∩ 〈 x, z 〉 ∩ 〈 y, z 〉.

The inclusion “⊂” is immediate. For the converse, we apply the rules from Remark I.8.7.

We have

〈 x, y 〉 ∩ 〈 x, z 〉 =
(
〈x〉 + 〈y〉

)
∩ 〈 x, z 〉

=
(
〈x〉 ∩ 〈 x, z 〉

)
+

(
〈y〉 ∩ 〈 x, z 〉

)
.

Since 〈y〉 and 〈 x, z 〉 are not coprime, the rules do not give the intersection 〈y〉 ∩ 〈 x, z 〉.
Here, we apply prime factorization. Let f ∈ 〈 x, z 〉. Write f as a product of irreducible

factors. Since y is irreducible, it must be associated with one of these irreducible factors,

provided f ∈ 〈y〉. We see f ∈ 〈 x · y, y · z 〉 and, thus, 〈y〉 ∩ 〈 x, z 〉 ⊂ 〈 x · y, y · z 〉. The

converse inclusion is obvious. We continue as follows:

(
〈x〉 ∩ 〈 x, z 〉

)
+

(
〈y〉 ∩ 〈 x, z 〉

)
= 〈x〉 + 〈 x · y, y · z 〉 = 〈 x, y · z 〉.
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Next

〈 x, y · z 〉 ∩ 〈 y, z 〉 =
(
〈x〉 + 〈y · z〉

)
∩ 〈 y, z 〉

=
(
〈x〉 ∩ 〈 y, z 〉

)
+

(
〈y · z〉 ∩ 〈 y, z 〉

)

= 〈x · y, x · z〉 + 〈 y · z 〉
= 〈 x · y, x · z, y · z 〉.

ii) If we have two finitely generated ideals I = 〈 f1, ..., fs 〉 and J = 〈 g1, ..., gt 〉 in a ring

R, then one easily sees

I · J = 〈 f1 · g1, ..., f1 · gt, ..., fs · g1, ..., fs · gt 〉.

A similar result holds, if the ideals are specified by possibly infinite sets of generators.

We may apply this to the setting of the previous example:

〈 x, y 〉 · 〈 x, z 〉 · 〈 y, z 〉 = 〈 x2 · y, x2 · z, x · y2, x · y · z, x · z2, y2 · z, y · z2 〉.

We infer

〈 x, y 〉 · 〈 x, z 〉 · 〈 y, z 〉 ( 〈 x, y 〉 ∩ 〈 x, z 〉 ∩ 〈 y, z 〉.

I.8.9 Exercise (A primary decomposition in Z[
√
−5]). Define

p1 := 〈 3, 2 +
√
−5 〉 and p2 := 〈 3, 2 −

√
−5 〉

i) Show that p1 and p2 are prime ideals.

ii) Verify that the ideals p2
1 and p2

2 are coprime.

iii) Demonstrate that 〈9〉 = p2
1
· p2

2
= p2

1
∩ p2

2
.

The Chinese Remainder Theorem

We generalize Example I.8.6.

I.8.10 Lemma. Let R be a ring and I1, ..., In ⊂ R ideals, such that Ik and Il are coprime

for 1 ≤ k < l ≤ n. Then,15

n∏

k=1

Ik := I1 · · · · · In =

n⋂

k=1

Ik.

Proof. We proceed by induction on n. The case n = 2 has already been dealt with in

Example I.8.6.

n− 1 −→ n.We set

J :=

n−1∏

k=1

Ik.

By induction hypothesis, we have

J =

n−1⋂

k=1

Ik.

15The associativity of the product shows that the definition is independent of the brackets one implicitly

has to insert into the middle term, or, in other words, grants that the middle term is well-defined.
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It suffices to show that J and In are coprime. By assumption, there are elements rk ∈ Ik

and sk ∈ In with

rk + sk = 1, k = 1, ..., n − 1.

There is an element s ∈ In with

n−1∏

k=1

rk =

n−1∏

k=1

(1 − sk) = 1 − s.

Since the element on the left hand side belongs to J, we see that 1 ∈ J + In. �

Now, we would like to generalize the Chinese remainder theorem from elementary

number theory in the formulation [30], III.1.4. We place ourselves in the situation of the

lemma. To make the notation more precise, we denote the class of a ∈ R in the quotient

ring R/Ik by [a]k, k = 1, ..., n. For k = 1, ..., n, there is the canonical surjection

πk : R −→ R/Ik

a 7−→ [a]k.

Using the cartesian product of rings (Example I.1.3, x), we define

ϕ : R −→
n

�

k=1

R/Ik

a 7−→
(
[a]1, ..., [a]n

)
.

Note that

ker(ϕ) =

n⋂

k=1

Ik.

By the isomorphism theorem, we get an induced injective homomorphism

ϕ : R/

n⋂

k=1

Ik −→
n

�

k=1

R/Ik.

Next, we would like to study when ϕ or, equivalently, ϕ is surjective. Let

ei := (0, ..., 0, 1, 0, ..., 0) ∈
n

�

k=1

R/Ik

be the element which has the entry 1 at the i-th place, i = 1, ..., n. Then, it is readily

checked that

ϕ is surjective ⇐⇒ ∀i ∈ { 1, ..., n } : ei ∈ im(ϕ).

Let us look at the condition e1 ∈ im(ϕ) in more detail. If it is satisfied, then there is an

element a ∈ R with [a]1 = 1, i.e., 1 − a ∈ I1, and [a]k = 0, that is a ∈ Ik, for k = 2, ..., n. In

particular, we have

1 = (1 − a) + a ∈ I1 + Ik, k = 2, ..., n.

Conversely, assume that I1 and Ik are coprime, for k = 2, ..., n. Then, there are elements

rk ∈ I1 and sk ∈ Ik with

1 = rk + sk, k = 2, ..., n.
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Set

a :=

n∏

k=2

sk =

n∏

k=2

(1 − rk).

The second description of a shows [a]1 = 1 and the first [a]k = 0, k = 2, ..., n. It follows

ϕ(a) = e1. Our discussion shows:

I.8.11 Lemma. The homomorphism ϕ is surjective if and only if the ideals Ik and Il are

coprime, for 1 ≤ k < l ≤ n.

We combine this observation with Lemma I.8.10:

I.8.12 Chinese remainder theorem. Let R be a ring and I1, ..., In ⊂ R ideals, such that Ik

and Il are coprime for 1 ≤ k < l ≤ n. Then,

R/

n⋂

k=1

Ik = R/

n∏

k=1

Ik �

n
�

k=1

R/Ik.

I.8.13 Example. Let a ∈ Z be an integer and

a = p
ν1

1
· · · · · pνn

n

its prime factorization. Then,

Z/〈a〉 � Z/〈pν1

1
〉 × · · · × Z/〈pνn

n 〉.

I.8.14 Exercise (The Chinese remainder theorem). i) What is the smallest (positive) mul-

tiple of 10 which has remainder 2 when divided by 3, and remainder 3 when divided by

7?

ii) Let k be a field. Describe the ring k[x]/〈x2 − 1〉.

Ideal Quotients

Let R be a ring and I, J ⊂ R ideals. Then, the ideal quotient of I by J is set to be

(I : J) :=
{
a ∈ R | a · J ⊂ I

}
.

It is straightforward to check that (I : J) is an ideal. For an ideal I ⊂ R, we call (〈0〉 : I)

the annihilator of I.

Notation. ⋆ Ann(I) := (〈0〉 : I).

⋆ For a ∈ R, we set Ann(a) := Ann(〈a〉).

I.8.15 Remark. The union

D :=
⋃

a∈R\{0}
Ann(a)

is the set of zero divisors of the ring R.
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I.8.16 Example. Let R = Z and a, b ∈ Z be integers. We look at the prime factorizations

a =
∏

p prime number

pµp and b =
∏

p prime number

pνp .

There exists a positive integer c with

(
〈a〉 : 〈b〉

)
= 〈c〉.

Its prime factorization

c =
∏

p prime number

pγp

is determined by

γp = max{ µp − νp, 0 } = µp −min{ µp, νp }, p a prime number.

We see

c =
a

gcd(a, b)
.

I.8.17 Properties. Let R be a ring, S and T index sets, and I, J, K, Is, s ∈ S , and Jt,

t ∈ T, ideals in R. Then, the following properties are verified:

i) I ⊂ (I : J).

ii) (I : J) · J ⊂ I.

iii)
(
(I : J) : K

)
=

(
I : (J · K)

)
=

(
(I : K) : J

)
.

iv)

(⋂

s∈S
(Is : J)

)
=

⋂

s∈S
(Is : J).

v)

(
I :

∑

t∈T
Jt

)
=

⋂

t∈T
(I : Jt).

The verifications are left as an exercise to the reader.

Radicals of Ideals

Let R be a ring and I ⊂ R an ideal. The radical of I is
√

I :=
{
a ∈ R | ∃k ≥ 1 : ak ∈ I

}
.

Note that
√

I is the preimage of the nilradical N of the ring R/I under the canonical pro-

jection π : R −→ R/I. Proposition I.7.2, therefore, gives the following

I.8.18 Corollary. The radical
√

I is the intersection of all prime ideals which contain I.

I.8.19 Properties. Let R be a ring, I, J ⊂ R ideals, and p ⊂ R a prime ideal of R. Then,

we have the following properties:

i) I ⊂
√

I.

ii)

√√
I =
√

I.

iii)
√

I = R if and only if I = R.

iv)
√

I · J =
√

I ∩ J =
√

I ∩
√

J.

v)
√

I + J =

√√
I +
√

J.

vi) For every n > 0, one has
√
pn = p.
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The proof is again left to the reader.

I.8.20 Examples. i) Let R = Z and a ∈ Z an integer. As usual, we look at the prime

factorization

a = p
ν1

1
· · · · · pνn

n .

This means, in particular, that νi > 0, i = 1, ..., n. Then, it is readily checked that

√
〈a〉 = 〈p1 · · · · · pn〉.

ii) We return to Example I.8.8, ii). More precisely, we look at the ideal

I = 〈 x2 · y, x2 · z, x · y2, x · y · z, y2 · z, y · z2 〉.

Note x · y < I, but (x · y)2 = x · (x · y2) ∈ I.

An ideal I ⊂ R which is its own radical, I =
√

I, is a radical ideal. Radical ideals play

an important role in algebraic geometry (see Section I.9).

Extension and Contraction of Ideals

Let R, S be rings and ϕ : R −→ S a homomorphism. It is important to compare the ideals

of R and S .16 Recall from Example I.2.1, viii), that the image ϕ(I) of an ideal I ⊂ R need

not be an ideal. For this reason, we have to resort to the construction in Lemma I.8.1: Let

I ⊂ R. Then, the ideal

Ie := I
(
ϕ(I)

)

of S generated by the image ϕ(I) of I is the extension of I via ϕ. We have

Ie =

{ n∑

i=1

si · f (ai)
∣∣∣ n ∈ N, si ∈ S , ai ∈ I, i = 1, ..., n

}
.

I.8.21 Remarks. If p ⊂ R is a prime ideal, then pe ⊂ S need not be a prime ideal.17

For example, for the inclusion ι : Z −→ Q, the extension of 〈p〉, p a prime number,

is always Q which is not a prime ideal. Another example is the canonical projection

π : k[x, y] −→ k[x, y]/〈x · y〉, k a field. Since k[x, y] is an integral domain, 〈0〉 is a prime

ideal of k[x, y]. Obviously, 〈0〉e = 〈0〉. But the quotient ring k[x, y]/〈x·y〉 has zero divisors,

e.g., [x] and [y]. Therefore, 〈0〉 ⊂ k[x, y]/〈x · y〉 is not a prime ideal.

In the above setting, let J ⊂ S be an ideal. Then,

Jc := ϕ−1(J)

is always an ideal of S . It is called the contraction of J via ϕ. Recall that qc is a prime

ideal of R, if q is a prime ideal of S .

16In Exercise I.4.17, iv), you have already encountered the induced continuous map ϕ# : Spec(S ) −→
Spec(R).

17So, there is, in general, no induced map ϕ⋆ : Spec(R) −→ Spec(S ).
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I.8.22 Remark. By Exercise I.2.4, we can factorize ϕ : R −→ S as

R
π−→ T := R/ker(ϕ)

ι
֒→ S .

Here, π is the canonical projection and ι := ϕ is injective. Regarding the surjection

π : R −→ T,

we have

⋆ If I ⊂ R is an ideal, then π(I) ⊂ T is an ideal (Example I.2.1).

⋆ The map K ⊂ R/ker(ϕ) 7−→ π−1(K) ⊂ R induces an inclusion preserving bijection

between the set of ideals of R/ker(ϕ) and the set of ideals of R containing ker(ϕ).18

The above discussion reveals that most of the complications encountered in the exten-

sion and contraction of ideals show up for injective ring homomorphisms. Here is a nice

classical example from number theory.

I.8.23 Example. We look at the ring of Gaußian integers:

Z[i] =
{
k + l · i ∈ C | k, l ∈ Z

}
.

This ring is euclidean (see [8], Chapter II, Definition 2.2.4, for the definition of a euclidean

ring and [8], Beispiel 2.2.5, 3), or [23], I.(1.2), for the proof of the above-mentioned fact).

In particular, it is a principal ideal domain ([8], Satz 2.2.6). The prime elements of Z[i]

are described in [23], I.(1.4).

Let ϕ : Z −→ Z[i] be the natural inclusion. Using the classification of prime elements

in Z[i], one finds the following:

⋆ 〈2〉e = 〈(1 + i)2〉.

⋆ If p ≡ 1 mod 4, then 〈p〉e is the product of two prime ideals. For example, 〈5〉e =
〈2 + i〉 · 〈2 − i〉.

⋆ If p ≡ 3 mod 4, then 〈p〉e is a prime ideal.

This is just the ideal theoretic description of the classical result of number theory that an

odd prime number can be written as the sum of two squares if and only if it is congruent

to 1 modulo 4 (see [23], Chapter I, §1).

We list further rules for the extension and contraction of ideals which the reader should

prove on her or his own.

I.8.24 Properties. Let R, S be rings, I, I1, I2 be ideals in R, J, J1, J2 ideals in S , and

f : R −→ S a ring homomorphism. Then:

i) I ⊂ Iec, J ⊃ Jce.

ii) Ie = Iece, Jc = Jcec.

iii) (I1 + I2)e = Ie
1
+ Ie

2
, (J1 + J2)c ⊃ Jc

1
+ Jc

2
.

iv) (I1 ∩ I2)e ⊂ Ie
1
∩ Ie

2
, (J1 ∩ J2)c = Jc

1
∩ Jc

2
.

v) (I1 · I2)e = Ie
1
· Ie

2
, (J1 · J2)c ⊃ Jc

1
· Jc

2
.

vi) (I1 : I2)e ⊂ (Ie
1

: Ie
2
), (J1 : J2)c ⊂ (Jc

1
: Jc

2
).

vii) (
√

I)e ⊂
√

Ie, (
√

J)c =
√

Jc.

18Be aware that, for distinct ideals I and I′ which do not both contain ker(ϕ), it may very well happen

that ϕ(I) = ϕ(I′). Can you think of an easy example?
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I.9 Algebraic Sets

So far, we have developed the calculus of ideals. In addition, we studied the problem

of prime factorizations in integral domains. The failure of it led to Kummer’s idea that

ideals are generalizations of numbers which should help to save the prime factorization.

This is a strong motivation for introducing ideals. The main motivation to study ideals

in this course comes, however, from algebraic geometry. We will now illustrate how

basic notions concerning systems of polynomial equations may be elegantly treated in the

language of ideals. To do this, we will need some of the operations on ideals that we have

discussed. This is why we treat this material at such a late stage.

Roughly speaking, algebraic geometry is the study of solutions of systems of polyno-

mial equations over a field or even a ring. Let us formalize this. Let k be a field. The

n-dimensional affine space over k is19

A

n
k :=

{
(a1, ..., an) | ai ∈ k, i = 1, ..., n

}
.

Let F ⊂ k[x1, ..., xn] be a subset. The set

V(F) :=
{

p = (a1, ..., an) ∈ An
k | ∀ f ∈ F : f (p) = f (a1, ..., an) = 0

}

is the vanishing locus of F. Its points are those which simultaneously solve all the poly-

nomial equations f = 0, f ∈ F. Note that F may be an infinite set.

A subset Z ⊂ An
k

is algebraic, if there is a subset F ⊂ k[x1, ..., xn] with

Z = V(F).

For a subset S ⊂ An
k
, we introduce

I(S ) :=
{

f ∈ k[x1, ..., xn] | ∀p ∈ S : f (p) = 0
}
.

Note that I(S ) is an ideal (compare Example I.2.1, vi). It is the ideal of regular functions

vanishing on S or simply the ideal of S .

I.9.1 Properties. Let S , Y, Z ⊂ An
k

and F,G,H ⊂ k[x1, ..., xn] be subsets. Then, one has:

i) The ideal I(S ) of S is a radical ideal.

ii) I(Y ∪ Z) = I(Y) ∩ I(Z).

iii) If Y ⊂ Z, then I(Y) ⊃ I(Z).

iv) If G ⊂ H, then V(G) ⊃ V(H).

v) Let 〈F〉 be the ideal generated by F (see Lemma I.8.1). Then,

V
(
〈F〉

)
= V(F).

Proof. i) Let f ∈ k[x1, ..., xn] and l ≥ 1 be such that f l ∈ I(S ). This means that f l(p) =

( f (p))l = 0 for all p ∈ S . Since the field k has no nilpotent element besides 0, this

condition is equivalent to f (p) = 0 for all p ∈ S , i.e., to f ∈ I(S ).

ii), iii), and iv) are trivial.

19One uses this notation rather than kn to indicate that we are not interested in the k-vector space structure

of that set.

41



I. Basic Theory of Rings and their Ideals

v) Since F ⊂ 〈F〉, we have V(F) ⊃ V(〈F〉). Now, let p ∈ V(F) and h ∈ 〈F〉. We

have to show that h(p) = 0. There are a natural number s, elements f1, ..., fs ∈ F and

r1, ..., rs ∈ k[x1, ..., xn] with

h =

s∑

i=1

ri · fi.

It follows that

h(p) =

s∑

i=1

ri(p) · fi(p) = 0,

because fi(p) = 0, i = 1, ..., s. �

Property I.9.1, v), tells us that, when dealing with algebraic sets, we may restrict to

vanishing loci of ideals. The set theoretic operations on algebraic sets reflect very nicely

in the operations on ideals.

I.9.2 Properties. i) The empty set ∅ and the affine space An
k

are algebraic sets.

ii) Let I, J ⊂ k[x1, ..., xn] be ideals. Then,

V(I) ∪ V(J) = V(I ∩ J) = V(I · J).

iii) Let K be an index set and (Ik)k∈K be a family of ideals in k[x1, ..., xn]. Then,
⋂

k∈K

V(Ik) = V

(∑

k∈K

Ik

)
.

Proof. i) We have ∅ = V(〈1〉) and An
k
= V(〈0〉).

ii) Since I ∩ J ⊂ I and I ∩ J ⊂ J, we have V(I ∩ J) ⊃ V(I) ∪ V(J), by Property

I.9.1, iv). We also have I · J ⊂ I ∩ J, so that V(I · J) ⊃ V(I ∩ J). Let us show that

V(I · J) ⊂ V(I) ∪ V(J). To this end, let p ∈ V(I · J) and assume p < V(I). Then, we find a

polynomial f ∈ I with f (p) , 0. For every g ∈ J, we obviously have f · g ∈ I · J, so that

∀g ∈ J : f (p) · g(p) = ( f · g)(p) = 0.

Since f (p) , 0 and k is a field, this means

∀g ∈ J : g(p) = 0

and shows that p ∈ V(J).

iii) It is readily verified that
⋂

k∈K

V(Ik) = V

(⋃

k∈K

Ik

)
.

By definition (see Page I.8),
∑

k∈K

Ik is the ideal generated by
⋃
k∈K

Ik. So, we conclude by

Property I.9.1, v). �

Property I.9.2 tells us that the algebraic subsets of An
k

fullfil the axioms of the closed

subsets of a topological space (see [18], Abschnitt 1.3). Therefore, we say that a subset

Z ⊂ A

n
k

is Zariski closed, if it is algebraic. A subset U ⊂ A

n
k

is Zariski open, if its

complement An
k
\ U is Zariski closed.

By Property I.9.2

T :=
{

U ⊂ An
k |U is Zariski open

}

is a topology on An
k
, the Zariski topology.
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I.9.3 Remark. i) We already see some of the nice features of algebraic geometry emerge:

the subtle interplay of topological, geometric and algebraic tools. The reader should be

careful about the topology. It is very distinct from, e.g., the usual topology on Rn or Cn

(see the following exercise).

ii) In Property I.9.2, ii), we give two ideals which yield the union V(I) ∪ V(J), I, J ⊂
k[x1, ..., xn] ideals, namely, I ∩ J and I · J. The first description has the advantage that

I ∩ J will be a radical ideal, if I and J are radical ideals (Property I.8.19, iv). The second

description allows to determine easily equations for V(I) ∪ V(J) from known generators

for I and J. In fact, if ( fk)k∈K generate I and (gl)l∈L generate J, then ( fk ·gl)(k,l)∈K×L generate

I · J (compare Example I.8.8, ii).

I.9.4 Exercises. i) Describe the Zariski open subsets of A1
k
. (Recall that k[x] is a principal

ideal domain.)

ii) Check that the Zariski topology on A2
k

is not the product topology (see [18], Section

2.1) on A1
k
× A1

k
, the factors being endowed with the Zariski topology.

Let (X,T ) be a topological space and S ⊂ X a subset. Recall ([18], Definition, p. 11)

that the closure S of S is the smallest closed subset of X that contains S , i.e.,

S =
⋂

Z⊂X closed:
S⊂Z

Z.

I.9.5 Lemma. i) For every ideal I ⊂ k[x1, ..., xn], one has
√

I ⊂ I
(
V(I)

)
.

ii) Let S ⊂ An
k

be a subset. Then,

S = V
(
I(S )

)
.

Proof. i) Clearly, I ⊂ I(V(I)). Hence,

√
I ⊂

√
I
(
V(I)

)
= I

(
V(I)

)
.

For the last equation, we used Property I.9.1, i).

ii) We clearly have S ⊂ V(I(S )). Since V(I(S )) is closed, we also find S ⊂ V(I(S )).

Let S ⊂ Z ⊂ An
k

be a closed subset. There is an ideal I ⊂ k[x1, ..., xn] with Z = V(I). We

see

Z = V(I) ⊃ V
(
I(Z)

)
⊃ V

(
I(S )

)
.

The first inclusion is a consequence of I ⊂ I(Z) and the second one of I(Z) ⊂ I(S ) which,

in turn, follows from Z ⊃ S . �

We have maps

Φ :
{

Algebraic sets in An
k

}
−→

{
Radical ideals in k[x1, ..., xn]

}

Z 7−→ I(Z)

and

Ψ :
{

Radical ideals in k[x1, ..., xn]
}
−→

{
Algebraic sets in An

k

}

I 7−→ V(I).
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Lemma I.9.5, ii), shows

Ψ ◦Φ = id .

In particular, Φ is injective and Ψ is surjective.

Hilbert’s20 Nullstellensatz III.3.4 asserts that, if k is algebraically closed, then also

Φ ◦ Ψ = id .

Then, we have translated the theory of algebraic sets into the theory of ideals in rings.

If k is not algebraically closed, we cannot expect such a result. Look, for example,

at the prime ideal21 I := 〈x2 + y2 + 1〉 ⊂ k[x, y]. Obviously, V(I) = ∅ and I(V(I)) = 〈1〉.

I.9.6 Examples. i) We look at the ideals Ix = 〈 y, z 〉, Iy = 〈 x, z 〉, and Iz = 〈 x, y 〉 inside

k[x, y, z]. Then, V(Ix) is the x-axis, V(Iy) the y-axis, and V(Iz) the z-axis. The ideals Ix ·Iy ·Iz

and Ix ∩ Iy ∩ Iz were computed in Example I.8.8. By Property I.9.2, ii), both V(Ix · Iy · Iz)

and V(Ix ∩ Iy ∩ Iz) consist of the union of the coordinate axes.

∪ ∪ =

Note that

Ix · Iy · Iz ( Ix ∩ Iy ∩ Iz ⊂ I
(
V(Ix ∩ Iy ∩ Iz)

)
= I

(
V(Ix · Iy · Iz)

)
.

We remark that Ix · Iy · Iz , I(V(Ix · Iy · Iz)) is already implied by the fact that Ix · Iy · Iz is

not a radical ideal (see Example I.8.20, ii).

ii) We look at the ideals I1 := 〈 y2 − x3, z 〉 and I2 := 〈 x, y 〉 in the ring k[x, y, z]. The

vanishing locus V(I1) is Neil’s parabola ([28], Beispiel 4.1.2, iv) inside the (x, y)-plane

and V(I2) is, as before, the z-axis. The union of these two objects is V(I1 · I2). By Example

I.8.8, ii),

I1 · I2 = 〈 x · z, y · z, x · y2 − x4, y3 − x3 · y 〉.

Again, I1 · I2 is not a radical ideal. For example, y2 − x3
< I1 · I2 but

(y2 − x3)2 = y · y · (y2 − x3) − x2 · x · (y2 − x3) = y · (y3 − x3 · y) − x2 · (x · y2 − x4) ∈ I1 · I2.

We see I1 · I2 ( I(V(I1 · I2)).

20David Hilbert (1862 - 1943), German mathematician.
21 x2 + y2 + 1 is an irreducible polynomial, because, if it could be written as the product of two linear

polynomials, it would have zeroes.
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∪ =

I.9.7 Remark. Let Z ⊂ An
k

be an algebraic set and I(Z) ⊂ k[x1, ..., xn] its ideal. The ring

k[Z] := k[x1, ..., xn]/I(Z)

is called the coordinate algebra of Z. It describes Z as an “abstract object”, i.e., without

reference to the inclusion ι : Z ֒→ A

n
k
. We will elaborate on this later (see, e.g., the

following exercise).

I.9.8 Exercises (Maps between algebraic sets). Let k be a field and Z ⊂ An
k

an algebraic

set. Its algebra of regular functions is

k[Z] := k[x1, ..., xn]/I(Z).

Note that an element f ∈ k[Z] defines indeed a function f : Z −→ k. Let W ⊂ Am
k

and

Z ⊂ An
k

be algebraic sets and F : W −→ Z a map. Write the induced map F : W −→ Z ⊂
A

n
k

as w 7−→ ( f1(w), ..., fn(w)). We say that F is regular, if fi is a regular function on W,

i = 1, ..., n.

i) Show that a regular map F : W −→ Z induces a homomorphism

F⋆ : k[Z] −→ k[W]

of k-algebras.

ii) Suppose ϕ : k[Z] −→ k[W] is a homomorphism of k-algebras. Show that there is a

unique regular map F : W −→ Z with F⋆ = ϕ.

Let I ⊂ k[x1, ..., xn] be an ideal. Then, we have its vanishing locus V(I). As a subset

of An
k
, it is endowed with an induced Zariski topology. On the other hand, we introduced

Spec(k[x1, ..., xn]/I). It carries a topology that was also called the Zariski topology. It is

important not to confuse these two objects.

I.9.9 Remark. By Lemma I.2.2 and Exercise I.2.3, the surjection

π : k[x1, ..., xn] −→ k[x1, ..., xn]/I

induces an injective map

π# : Spec(k[x1, ..., xn]/I) ֒→ Spec(k[x1, ..., xn]),

and the Zariski topology on Spec(k[x1, ..., xn]/I) agrees with the subspace topology (see

[18], Section 2.1).
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In order to get an idea about the difference of these two objects, let us first relate them

to each other. First, note that, for a point p = (a1, ..., an) ∈ An
k
,

mp := 〈 x1 − a1, ..., xn − an 〉

is a maximal ideal.22 This provides us with the map

Φ : An
k −→ Spec

(
k[x1, ..., xn]

)

p 7−→ mp.

I.9.10 Lemma. For every point p = (a1, ..., an) and every ideal I ⊂ k[x1, ..., xn], we have

p ∈ V(I) ⇐⇒ I ⊂ 〈 x1 − a1, ..., xn − an 〉.

Proof. Let p ∈ V(I). Then, 〈 x1−a1, ..., xn−an 〉 ⊂ I({p}) ( 〈1〉. Since 〈 x1−a1, ..., xn−an 〉
is a maximal ideal, we must have equality. Thus, we see

〈 x1 − a1, ..., xn − an 〉 = I({p}) ⊃ I
(
V(I)

)
⊃ I.

Conversely, I ⊂ 〈 x1 − a1, ..., xn − an 〉 yields

{p} = V
(
〈 x1 − a1, ..., xn − an 〉

)
⊂ V(I).

This completes the proof. �

For any ideal I ⊂ k[x1, ..., xn], the sets V(I) ⊂ An
k

and V(I) ⊂ Spec(k[x1, ..., xn]) are,

thus, related by

V(I) = Φ−1(V(I)
)
. (I.10)

In particular, Φ is continuous in the Zariski topology.

I.9.11 Exercise. Let R be a ring. A point p ∈ Spec(R) is closed, if {p} is a Zariski closed

subset of Spec(R). Show that p ∈ Spec(R) is a closed point if and only if p is a maximal

ideal.

In order to get a precise understanding of Φ and, therefore, of the relation between An
k

and Spec(k[x1, ..., xn]), we need to understand the maximal ideals of k[x1, ..., xn].

If k is algebraically closed, Hilbert’s Nullstellensatz III.3.4 shows that all maximal

ideals of k[x1, ..., xn] are of the form 〈 x1−a1, ..., xn−an 〉, (a1, ..., an) ∈ An
k
. So, Φ identifies

A

n
k

with the set of closed points of Spec(k[x1, ..., xn]). Note that Spec(k[x1, ..., xn]) contains

non-closed points, e.g., 〈0〉, and, if n ≥ 2, 〈xi〉, i = 1, ..., n and, more generally, 〈 f 〉,
f ∈ k[x1, ..., xn] an irreducible polynomial.

If k is not algebraically closed, then Spec(k[x1, ..., xn]) contains in some way the

points of An
K

, K/k a finite extension field. Let us look at the extension C/R. The set

{ (±i, 1) ∈ A2
C

} corresponds to the maximal ideal 〈 x2 + 1, y − 1 〉 ⊂ R[x, y]. Indeed,

R[x, y]/〈 x2 + 1, y − 1 〉 � R[x]/〈x2 + 1〉 � C.
22The canonical map (see Page 5 and Exercise I.1.9) k[x1, ..., xn] −→ k that sends xi to ai, i = 1, ..., n,

factorizes over an isomorphism k[x1, ..., xn]/〈 x1 − a1, ..., xn − an 〉 −→ k.
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The fact that 〈 x2 + 1, y − 1 〉 gives two points is reflected by the fact that we have two

R-linear isomorphisms between R[x]/〈x2 + 1〉 and C, namely, we may map x either to i or

to −i.

The above discussion carries over to V(I) and Spec(k[x1, ..., xn]/I), I ⊂ k[x1, ..., xn] an

ideal. If k is not algebraically closed, it may happen that V(I) is empty (see Page 44).

For a non-zero ring R, the set Spec(R) is not empty, because R contains a prime ideal

(Theorem I.4.4).
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In this chapter, we present the concept of a noetherian ring.1 Noetherian rings are char-

acterized by a finiteness condition which may be phrased in several ways. Each of the

characterizations is given in terms of ideals of the ring. These rings are the most impor-

tant ones appearing in algebraic geometry. For example, all coordinate algebras of alge-

braic varieties are noetherian rings. We also introduce a major tool for constructing new

rings, namely localization. The main theorem of this chapter is the existence of primary

decompositions of ideals in noetherian rings which has already been alluded to several

times. It vastly generalizes prime factorizations and has also a geometric flavour: It is

closely related to the decomposition of an algebraic set into its irreducible components.

Primary decompositions are not unique, in general, but many important ingredients in a

primary decomposition are determined by the respective ideal. In order to prove these

uniqueness statements, we carefully investigate the extension and contraction of ideals

under localization.

II.1 Chain Conditions

A ring R is noetherian, if every ideal I ⊂ R is finitely generated, i.e., there are a natural

number n ≥ 1 and elements a1, ..., an ∈ I, such that

I = 〈 a1, ..., an 〉.

Let R be a ring. An ascending chain in R is a sequence (Ik)k∈N of ideals with the

property

∀k ∈ N : Ik ⊂ Ik+1.

Likewise, a descending chain in R is a sequence (Ik)k∈N of ideals, such that

∀k ∈ N : Ik ⊃ Ik+1.

1Emmy Noether (1882 - 1935), German mathematician.
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II. Noetherian Rings

Let (Ik)k∈N be an ascending or descending chain in R. It is stationary, if there is an index

k0 with

∀k ≥ k0 : Ik = Ik0
.

Here are two alternative characterizations of noetherian rings.

II.1.1 Theorem. Let R be a ring. Then, the following conditions on R are equivalent:

i) The ring R is noetherian.

ii) The ring R satisfies the ascending chain condition (ACC), that is, every ascending

chain in R is stationary.

iii) Every non-empty subset Σ of ideals in R contains an element which is maximal

with respect to inclusion.

Let R , {0} be a notherian ring. Then, we can define Σ as the set of all proper ideals

of R. Thus, the theorem asserts, in particular, that every non-zero noetherian ring has

a maximal ideal. This statement is weaker than Theorem I.4.4 which asserts that every

non-zero ring has a maximal ideal. In the proof of Theorem II.1.1, we use the following:

II.1.2 Axiom of dependent choice. Let X be a non-empty set and R ⊂ X × X a relation,

satisfying the following property:

∀x ∈ X∃y ∈ X : (x, y) ∈ R.

Then, there is a sequence (xk)k∈N, such that

∀k ∈ N : (xk, xk+1) ∈ R.

If we do not assume the axiom of choice, this is really an axiom: One might try

to define the sequence (xk)k∈N by recursion. Having already constructed x0, ..., xk, there

is an element y ∈ X with (xk, y) ∈ R. But y is, in general, not uniquely defined. We

have to choose one. The choice, of course, depends on the previous element. So, the

construction of (xk)k∈N requires countably many choices and these are not possible without

some axiom. For a deeper discussion of this axiom, we refer the reader to [12], Chapter

2.

Proof of Theorem II.1.1. “i)=⇒ii)”. Let (Ik)k∈N be an ascending chain of ideals. Then,

I :=
⋃

k∈N
Ik

is also an ideal. By assumption, it is finitely generated. Pick n ≥ 1 and a1, ..., an ∈ I with

〈 a1, ..., an 〉 = I. There are natural numbers k1, ..., kn with ai ∈ Iki
, i = 1, ..., n. Set

k0 := max{ k1, ..., kn }.

Then, ai ∈ Ik0
, i = 1, ..., n. We see:

∀k ≥ k0 : Ik0
⊂ Ik ⊂ I ⊂ Ik0

.

This shows that Ik0
= Ik, k ≥ k0.
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“ii)=⇒iii)”. Suppose that iii) does not hold, and let Σ be a non-empty set of ideals in

R without maximal element. Then, there exists an ascending chain (Ik)k∈N with

∀k ∈ N : Ik ∈ Σ ∧ Ik ( Ik+1.

We found an ascending chain in R which is not stationary, a contradiction.

“iii)=⇒i)”. Let I ⊂ R be an ideal. We define Σ as the set of all finitely generated ideals

of R which are contained in I. Note that 〈0〉 ∈ Σ, so that Σ , ∅. Let J ∈ Σ be a maximal

element. We have J ⊂ I, and J is finitely generated. We have to show that J = I. If this

were wrong, we could pick an element a ∈ I \ J. Then,

J ( J + 〈a〉.

This implies that J + 〈a〉 is not finitely generated. On the other hand, there exist n ≥ 1

and a1, ..., an ∈ J with 〈 a1, ..., an 〉 = J. But then

J + 〈a〉 = 〈 a1, ..., an, a 〉,

a contradiction. �

II.1.3 Exercise. Where was the axiom of dependent choice used in the above proof? Spec-

ify the set X and the relation R to which it was applied.

II.1.4 Corollary. Let R, S be rings and ϕ : R −→ S a surjective ring homomorphism. If

R is noetherian, then so is S .

Proof. Let J ⊂ S be an ideal of S . Then,

J = ϕ(I), I := ϕ−1(J).

Since I is an ideal of R and R is noetherian, there exists a natural number n ≥ 1 and

elements a1, ..., an ∈ I with I = 〈 a1, ..., an 〉. Obviously, J is generated by the images

ϕ(a1), ..., ϕ(an).

We can also argue by using ACC: By Exercise I.2.4, ii),

S � R/ker(ϕ).

The ideals of S are in inclusion preserving bijection to the ideals of R containing ker(ϕ)

(Lemma I.2.2). So, the ascending chain condition in R clearly implies the ascending chain

condition in S . �

II.1.5 Examples. i) Fields are noetherian rings.

ii) Principal ideal domains are noetherian rings. Recall that Z and the polynomial ring

k[x] over a field k are examples for principal ideal domains and, thus, for noetherian rings.

iii) We let R := C
0([0, 1]) be the ring of continuous functions on the interval [0, 1]

(compare Example I.1.3, vi). Set

Ik :=
{

f ∈ R
∣∣∣ f|[0,1/k] ≡ 0

}
, k ≥ 1.

Then, (Ik)k≥1 is an ascending chain which is not stationary. In particular, R is not a noethe-

rian ring.
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II.1.6 Hilbert’s basis theorem. If R is a noetherian ring, then the polynomial ring R[x]

is also a noetherian ring.

Proof. Assume that R[x] is not noetherian. Let I ⊂ R[x] be an ideal which is not finitely

generated and X the set of all finite subsets of I. It is obviously non-empty. For x, y ∈ X,

we write x < y, if x ⊂ y, #y = #x + 1, and the unique element f ∈ y \ x satisfies

f < 〈x〉 ∧ ∀g ∈ I \ 〈x〉 : deg(g) ≥ deg( f ).

Since I is not finitely generated, it is clear that we find for each x ∈ X an element y ∈ X

with x < y. By the axiom of dependent choice II.1.2, there is a sequence (xk)k∈N with

xk ∈ X and xk < xk+1, k ∈ N. This defines the sequence ( fk)k≥1 with

{ fk} = xk \ xk−1, k ≥ 1.

Finally, we obtain the sequence (ak)k≥1 in R in which ak is the leading coefficient of fk,

i.e., the coefficient of xdeg( fk) in fk, k ≥ 1.

Claim. ∀k ≥ 1 : 〈 a1, ..., ak 〉 ( 〈 a1, ..., ak, ak+1 〉.

If we had 〈 a1, ..., ak 〉 = 〈 a1, ..., ak, ak+1 〉, then there were elements r1, ..., rk ∈ R with

ak+1 =

k∑

i=1

ri · ai.

The definition of the relation “<” implies

∀k : deg( fk) ≤ deg( fk+1).

Therefore, we can define

g := fk+1 −
k∑

i=1

ri · xdeg( fk+1)−deg( fi) · fi. (II.1)

But then,

deg(g) < deg( fk+1).

By construction of “<”, fk+1 has the least degree among all elements of I that are not

contained in 〈x0〉+ 〈 f1, ..., fk 〉. So, we must have g ∈ 〈x0〉+ 〈 f1, ..., fk 〉. Now, (II.1) shows

fk+1 ∈ 〈x0〉 + 〈 f1, ..., fk 〉, and this is a contradiction. X

This claim shows that (〈 a1, ..., ak 〉)k≥1 is a non-stationary ascending chain in R. This

contradicts the assumption that R is noetherian. �

II.1.7 Corollary. Let R be a noetherian ring, e.g., a field. Then, the polynomial ring

R[x1, ..., xn] is noetherian, n ≥ 1.

II.1.8 Remark (An application to algebraic sets). Let k be a field, n ≥ 1 a natural number,

k[x1, ..., xn] the polynomial ring in n variables, and F ⊂ k[x1, ..., xn] a possibly infinite

subset. We claim that there are a natural number m ≥ 1 and elements f1, ..., fm ∈ F with

V(F) = V
(
{ f1, ..., fm }

)
.
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In particular, every algebraic set may be defined by finitely many equations. According

to Property I.9.1, v),

V(F) = V
(
〈F〉

)
.

Now, k[x1, ..., xn] is a noetherian ring, so that 〈F〉 is finitely generated. Pick a natural

number s ≥ 1 and elements g1, ..., gs with

〈F〉 = 〈 g1, ..., gs 〉.
Then,

V(F) = V
(
{ g1, ..., gs }

)
,

but the elements g1, ..., gs need not belong to F. However, there are elements

ai j ∈ R and fi j ∈ F, j = 1, ...,mi, i = 1, ..., s,

such that

gi =

mi∑

j=1

ai j · fi j, i = 1, ..., s.

We obviously have

〈F〉 = 〈 f11, ..., f1m1
, ..., fs1, ..., fsms

〉
and, consequently,

V(F) = V
(
〈F〉

)
= V

(
〈 f11, ..., f1m1

, ..., fs1, ..., fsms
〉
)
= V

(
{ f11, ..., f1m1

, ..., fs1, ..., fsms
}
)
.

Let R be a ring. An R-algebra is a ring S together with a ring homomorphismϕ : R −→
S . An R-algebra S is finitely generated, if there are elements f1, ..., fn ∈ S , such that the

homomorphism

R[x1, ..., xn] −→ S

that is associated with ϕ and the assignment xi 7−→ fi, i = 1, ..., n, is surjective (compare

Exercise I.1.9). One writes abusively

S = R[ f1, ..., fn].

II.1.9 Proposition. If R is a noetherian ring and S is a finitely generated R-algebra, then

S is also a noetherian ring.

II.1.10 Example. Let k be a field, n ≥ 1 a natural number, and Z ⊂ An
k

an algebraic set.

Then, the coordinate algebra

k[x1, ..., xn]/I(Z)

is a finitely generated k-algebra and, hence, a noetherian ring.

II.1.11 Exercise (Noetherian rings and spaces). i) Let k be a field. Then, one may define

the polynomial ring R := k[x1, x2, x3, ...] in the infinitely many variables xi, i ≥ 1. Is R

noetherian?

ii) A topological space X is called noetherian, if it satisfies the descending chain

condition for closed subsets, i.e., for any sequence

Z1 ⊃ Z2 ⊃ · · ·
of closed subsets of X, there is an index k0, such that Zk = Zk0

, for every k ≥ k0. Let R be

a noetherian ring. Show that Spec(R) is a noetherian topological space.

iii) Give an example of a non-noetherian ring R, such that Spec(R) consists of just one

point (and is, therefore, noetherian).
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II.2 Artinian Rings

A ring satisfies the descending chain condition (DCC), if every descending chain of ideals

in R is stationary. A ring which satisfies the descending chain condition is called an

artinian2 ring. It might be surprising that the descending chain condition is much more

restrictive than the ascending chain condition. In fact, it turns out that artinian rings are

very special noetherian rings (see [1], Theorem 8.5). We will not discuss this in full detail.

Instead we give some indications.

II.2.1 Proposition. In an artinian ring, every prime ideal is maximal.

Proof. Let R be an artinian ring and p ⊂ R a prime ideal. Then, R/p is an integral domain.

Lemma I.2.2 shows that R/p satisfies the descending chain condition (compare the proof

of Corollary II.1.4). Let x ∈ R/p be a non-zero element. Consider the descending chain

(
〈xk〉

)
k∈N.

For some k0 ≥ 0,

〈xk0〉 = 〈xk0+1〉.

Thus, there exists an element a ∈ R/p with xk0 = a · xk0+1. In other words,

xk0 · (1 − a · x) = 0.

Since R/p is an integral domain, xk0 , 0 and, so, 1 − a · x = 0 and x is a unit.

Every element x ∈ (R/p) \ {0} is a unit. This shows that R/p is a field and p is a

maximal ideal. �

II.2.2 Examples. Let k be a field.

i) Let R be a k-algebra which is finite dimensional as a k-vector space. Then, R satisfies

the ascending and descending chain condition for dimension reasons. (Ideals in R are, in

particular, sub vector spaces.) So, R is both noetherian and artinian.

ii) For n ≥ 1, k[x]/〈xn〉 is a k-algebra which has dimension n as k-vector space. By i),

it is an artinian ring.

II.3 Localization

Let R be a ring. A subset S ⊂ R is multiplicatively closed, if

⋆ 1 ∈ S ,

⋆ ∀s, t ∈ S : s · t ∈ S .

II.3.1 Example. Let R be a ring, f ∈ R, and p ⊂ R a prime ideal. Then, the following

subsets of R are multiplicatively closed:

⋆ S :=
{
a ∈ R | a is not a zero divisor

}
.

⋆ S :=
{

f k | k ∈ N
}
=

{
1, f , f 2, ...

}
.

2Emil Artin (1898 - 1962), Austrian mathematician.
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⋆ S := R \ p.

Let R be a ring and S ⊂ R a multiplicatively closed subset. We define a relation “∼” on

R × S by:

∀(a, s), (b, t) ∈ R × S : (a, s) ∼ (b, t) :⇐⇒ ∃u ∈ S : u · (a · t − b · s) = 0.

II.3.2 Lemma. The relation “∼” is an equivalence relation on R × S .

Proof. Reflexivity and symmetry follow easily from 1 ∈ S . For transitivity, let (a, s),

(b, t), (c, u) ∈ R × S with (a, s) ∼ (b, t) and (b, t) ∼ (c, u). This means that there exist

elements v,w ∈ S with

v · (a · t − b · s) = 0 and w · (b · u − c · t) = 0.

We multiply the first equation by u · w, the second by v · s and find

u · v · w · a · t − u · v · w · b · s = 0

u · v · w · b · s − v · w · c · t · s = 0.

Adding these two yields

t · v · w · (a · u − c · s) = u · v · w · a · t − v · w · c · t · s = 0.

Since S is multiplicatively closed, t · v · w ∈ S , and we see (a, s) ∼ (c, u). �

II.3.3 Remarks. Assume that R is an integral domain and 0 < S . Then,3

∀(a, s), (b, t) ∈ R × S : (a, s) ∼ (b, t) ⇐⇒ a · t − b · s = 0.

If R does contain zero divisors, it is necessary to formulate the relation “∼” as above in

order to get an equivalence relation.

In the following, we write
a

s

for the equivalence class of (a, s), a ∈ R, s ∈ S , and set

RS :=

{
a

s

∣∣∣∣ a ∈ R, s ∈ S

}
.

II.3.4 Notation. i) Other common symbols for RS are S −1R and R[S −1].

ii) Let f ∈ R and S = { f k | k ∈ N }. Then, we write R f for RS .

iii) Let p ⊂ R be a prime ideal and S := R \ p. We will write Rp instead of RS .

Next, we equip RS with the structure of a ring. The addition is defined via

+ : RS × RS −→ RS(
a

s
,

b

t

)
7−→

a · t + b · s
s · t

.

3Compare Page 25.
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We first check that this is well-defined. Let (a, s), (a′, s′), (b, t) ∈ R × S with

(a, s) ∼ (a′, s′).

We need to show

(a · t + b · s, s · t) ∼ (a′ · t + b · s′, s′ · t). (II.2)

For this, we observe

∆ := (a · t + b · s) · s′ · t − (a′ · t + b · s′) · s · t = a · s′ · t2 − a′ · s · t2 = (a · s′ − a′ · s) · t2.

If u ∈ S annihilates a · s′ − a′ · s, then u also annihilates ∆. This establishes (II.2). X

The addition is clearly commutative, and

0 :=
0

1

is the neutral element. Finally, we check associativity: Let a/s, b/t, and c/u ∈ RS . We

compute

(
a

s
+

b

t

)
+

c

u
=

a · t + b · s
s · t

+
c

u

=
a · t · u + b · s · u + c · s · t

s · t · u
=

a

s
+

b · u + c · t
t · u

=
a

s
+

(
b

t
+

c

u

)
.

The multiplication is defined as

· : RS × RS −→ RS(
a

s
,

b

t

)
7−→

a · b
s · t

.

Again, we verify that this is well-defined. For (a, s), (a′, s′), (b, t) ∈ R × S with

(a, s) ∼ (a′, s′),

we have to establish

(a · b, s · t) ∼ (a′ · b, s′ · t). (II.3)

We form

∆ := a · b · s′ · t − a′ · b · s · t = (a · s′ − a′ · s) · b · t.

If u ∈ S annihilates a · s′ − a′ · s, then u also annihilates ∆. We infer (II.3). X

It is immediate that multiplication is commutative and associative and that

1 :=
1

1

is the neutral element.
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The last thing we verify is the distributive law. For a/s, b/t, and c/u ∈ RS , we find

a

s
·
(
b

t
+

c

u

)
=

a

s
· b · u + c · t

t · u

=
a · b · u + a · c · t

s · t · u

=
a · b · s · u + a · c · s · t

s2 · t · u

=
a · b
s · t
+

a · c
s · u

=
a

s
·

b

t
+

a

s
·

c

u
.

So, (RS ,+, ·, 0, 1) is a ring.

II.3.5 Example. i) If R is an integral domain and S := R \ {0}, then RS is the quotient field

of R that was already considered in Section I.6.

ii) In an arbitrary ring R,

S :=
{

s ∈ R | s is not a zero divisor
}

is a multiplicatively closed subset. In this case, Q(R) := RS is the total ring of fractions

of R.

iii) The ring RS is the zero ring if and only if 0 ∈ S . In fact, 0/1 = 1/1 is equivalent

to the existence of an element s ∈ S with s · 1 = 0. Multiplicatively closed subsets of R

which contain zero are, e.g., { 0, 1 }, R.

We look at the homomorphism

ϕ : R −→ RS

a 7−→ a

1
.

Note that
a

1
= ϕ(a) = 0 ⇐⇒ ∃s ∈ S : s · a = 0.

This shows

ker(ϕ) =
⋃

s∈S
Ann(s).

In particular, if R is an integral domain, ϕ is injective.

II.3.6 Proposition. i) For every ideal I ⊂ R, the extension of I via ϕ is

Ie = J :=

{
a

s

∣∣∣∣ a ∈ I, s ∈ S

}
.

ii) For an ideal I ⊂ R,

Ie = RS ⇐⇒ I ∩ S , ∅.

iii) Every ideal J ⊂ RS is an extended ideal.
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iv) For an ideal I ⊂ R, we have

Iec =
⋃

s∈S

(
I : 〈s〉

)

v) An ideal I ⊂ R is a contracted ideal if and only if, for all s ∈ S , [s] is not a zero

divisor in R/I.

Proof. i) It is clear that ϕ(I) ⊂ J ⊂ Ie. Since Ie is the smallest ideal of RS which contains

ϕ(I), it suffices to show that J is an ideal. But this is immediate.

ii) “⇐=”. If s ∈ I ∩ S , then

1 =
s

s
∈ Ie.

“=⇒”. For a ∈ I and s ∈ S , the equation

a

s
= 1

implies that there is element t ∈ S with

t · a − s · t = t · (a − s) = 0.

So, s · t ∈ I ∩ S .

iii) By Property I.8.24, i), Jce ⊂ J. So, we have to show J ⊂ Jce. Let a/s ∈ J. Then,

a

1
=

s

1
·

a

s
∈ J.

This shows a ∈ Jc and a/s ∈ Jce.

iv) “⊂”. Let a ∈ Iec. This means that there exist b ∈ I and s ∈ S with

a

1
=

b

s
.

So, there exists an element t ∈ S with

t · (a · s − b) = 0.

For u := s · t ∈ S , we obtain

u · a ∈ I, i.e., a ∈
(
I : 〈u〉

)
.

“⊃”. Let s ∈ S and a ∈ (I : 〈s〉). Then, b := a · s ∈ I, so that

a

1
=

b

s
∈ Ie.

This shows a ∈ Iec.

v) Since I ⊂ Iec (Property I.8.24, i), we have to investigate the condition Iec ⊂ I. By

iv), it is equivalent to

∀s ∈ S :
(
I : 〈s〉

)
⊂ I.

This condition is, in turn, equivalent to

∀s ∈ S∀a ∈ R : a · s ∈ I =⇒ a ∈ I.

This is equivalent to the condition that [s] ∈ R/I is not a zero divisor, s ∈ S . �
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II.3.7 Corollary. Let R, S , and ϕ : R −→ RS be as in the proposition.

i) The assignment p 7−→ pe gives an inclusion preserving bijection between the prime

ideals of R with p ∩ S = ∅ and the prime ideals of RS .

ii) Let p ⊂ R be a prime ideal. Then, Rp is a local ring with maximal ideal pe.

Proof. i) Let p ⊂ R be a prime ideal with p ∩ S = ∅. By Part ii) of the proposition, pe is

a proper ideal of R. We show that it is a prime ideal. Let a, b ∈ R and s, t ∈ S with

a · b
s · t
=

a

s
·

b

t
∈ pe.

So, there exist c ∈ p and u ∈ S with

a · b
s · t
=

c

u
,

i.e.,

∃v ∈ S : v · (a · b · u − c · s · t) = 0.

We see

(a · b) · (u · v) = (s · t · v) · c ∈ p.

Since u, v < p, we have u · v < p and a · b ∈ p. This means a ∈ p or b ∈ p and

a

s
∈ pe or

b

t
∈ pe.

Finally, R/p is an integral domain (Proposition I.4.1, i). Since p ∩ S = ∅, we have

0 , [s] ∈ R/p, i.e., [s] is not a zero divisor, s ∈ S . Proposition II.3.6, v), shows pec = p.

ii) This follows immediately from i): For a prime ideal q ⊂ R, q ∩ (R \ p) = ∅ is

equivalent to q ⊂ p. �

II.3.8 Exercise (The universal property of localization). Let R be a ring, S ⊂ R a mul-

tiplicatively closed subset, and ϕ : R −→ RS , x 7−→ x/1, the canonical homomorphism

to the localization. Show that the pair (RS , ϕ) has the following universal property: For

any ring T and any homomorphism ψ : R −→ T , such that ψ(S ) ⊂ T⋆, there is a unique

homomorphism ψS : RS −→ T with ψ = ψS ◦ ϕ.

To conclude this section, we will give another proof of Proposition I.7.2 which only

uses the axiom that every non-zero ring possesses a prime ideal. This axiom is weaker

than the axiom of choice (see Remark I.4.5, ii).

Alternative proof of Proposition I.7.2. The inclusion “⊂” is obtained as before. For the

converse inclusion, let f ∈ R\N. Then, the multiplicatively closed subset S = { f k | k ∈ N }
does not contain 0, so that R f , {0}, by Example II.3.5, iii). Let q ⊂ R f be a prime ideal.

Then, p := qc is a prime ideal of R with

p ∩
{

f k | k ∈ N
}
= ∅,

i.e., f < p. �
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II.4 Primary Decomposition

In the ring of integers, we need powers of prime numbers in order to factorize all positive

integers. We now need the ideal theoretic analogs for powers of prime numbers. It turns

out that these are quite subtle.

Let R be a ring. An ideal q ⊂ R is primary, if the following property holds:

∀a, b ∈ R : a · b ∈ q =⇒ a ∈ q ∨ ∃k ≥ 1 : bk ∈ q.

II.4.1 Lemma. An ideal q ⊂ R is a primary ideal if and only if every zero divisor in the

ring R/q is nilpotent.

Proof. Assume that q is a primary ideal and that b ∈ R is an element, such that [b] ∈ R/q

is a zero divisor. Then, there is an element a ∈ R with [a] , 0 and [a · b] = [a] · [b] = 0.

This means that a ·b ∈ q but a < q. By assumption, there is an exponent k ≥ 1 with bk ∈ q,
i.e., [b]k = 0.

Now, assume that every zero divisor in R/q is nilpotent. Let a, b ∈ R with a · b ∈ q.
This means [a] · [b] = [a · b] = 0 in R/q. So, [a] = 0 or [b] is a zero divisor and there

exists a natural number k ≥ 1 with [bk] = [b]k = 0. This shows a ∈ q or there is a natural

number k ≥ 1 with bk ∈ q. �

II.4.2 Examples. i) A prime ideal is a primary ideal.

ii) If ϕ : R −→ S is a ring homomorphism and q ⊂ S is a primary ideal, then qc ⊂ R is

a primary ideal. In fact, by Exercise I.2.4, ii), we have an injective homomorphism

ϕ : R/qc −→ S/q,

so that we may apply Lemma II.4.1.

II.4.3 Lemma. Let R be a ring and q ⊂ R a primary ideal, then the radical
√
q is a prime

ideal.

Proof. Let a, b ∈ R be elements with a · b ∈ √q. There is an exponent k ≥ 1 with

ak · bk = (a · b)k ∈ q.

Then, ak ∈ q or there is an exponent l ≥ 1 with

bk·l = (bk)l ∈ q.

This shows a ∈ √q or b ∈ √q as asserted. �

Let q ⊂ R be an ideal and p a prime ideal. We say that q is a p-primary ideal, if it is a

primary ideal with
√
q = p.

II.4.4 Examples. i) The primary ideals of Z are exactly the ideals of the form 〈pk〉, p a

prime number, k ≥ 1 a natural number. First, let q ⊂ Z be a primary ideal. According

to Lemma II.4.3,
√
q is a prime ideal, i.e., of the form 〈p〉, for some prime number p. By

Example I.8.20, i), q = 〈pk〉, for some natural number k ≥ 1. Second, let k ≥ 1 be a

natural number and p a prime number. For integers a, b ∈ Z, a · b ∈ 〈pk〉 means pk|(a · b).
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II.4. Primary Decomposition

Then, pk divides a or p divides b and, then, pk divides bk. It follows that a ∈ 〈pk〉 or

bk ∈ 〈pk〉.
ii) Let k be a field, R = k[x, y], and q := 〈 x, y2 〉. Then,

R/q � k[y]/〈y2〉.

The zero divisors in that ring form the ideal 〈y〉. The elements of that ideal are all nilpo-

tent. So, q is a primary ideal. Its radical is

√
q = 〈 x, y 〉 =: p.

Observe

p2 = 〈 x2, x · y, y2 〉 ( q = 〈 x, y2 〉 ( p = 〈 x, y 〉.

This shows:

Not every primary ideal is the power of a prime ideal.

iii) Let k be a field and

R := k[x, y, z]/〈 x · y − z2 〉.

We look at

p :=
〈

[x], [z]
〉
.

Since

R/p = k[y],

the ideal p is a prime ideal. We claim that the ideal p2 is not primary. We have

[x] · [y] = [z]2 ∈ p2.

Here, [x] < p2 and, for all k ≥ 1, [y]k
< p2. We note:

Not every power of a prime ideal is a primary ideal.

The phenomenon in Example II.4.4, iii), cannot be observed in rings in which every

non-zero prime ideal is a maximal ideal, such as principal ideal domains. More generally,

the following holds true:

II.4.5 Lemma. Let R be a ring and q ⊂ R an ideal, such that m =
√
q is a maximal ideal.

Then, q is an m-primary ideal.

Proof. By Corollary I.8.18,
√
q is the intersection of all prime ideals which contain q. The

assumption implies that m is the only prime ideal which contains q, i.e., R/q is a local

ring. Let m be the image of m in R/q. The elements of m are nilpotent, and the elements

of (R/q) \ m are units. In particular, every zero divisor in R/q is nilpotent. By Lemma

II.4.1, q is an m-primary ideal. �

II.4.6 Primary decomposition in noetherian rings. Let R be a noetherian ring and

I ( R a proper ideal. Then, there exist a natural number m ≥ 1 and primary ideals

q1, ..., qm, such that

I = q1 ∩ · · · ∩ qm.

61



II. Noetherian Rings

Proof. Step 1. An ideal q ⊂ R is irreducible, if, for ideals I, J ⊂ R, the equality

q = I ∩ J

implies q = I or q = J.

Claim. For every proper ideal I ( R, there exist a natural number m ≥ 1 and irreducible

ideals q1, ..., qm, such that

I = q1 ∩ · · · ∩ qm.
Let Σ be the set of proper ideals in R which cannot be written as the intersection of

finitely many irreducible ideals. Assume that Σ is non-empty. By Theorem II.1.1, this set

contains a maximal element a. The ideal a is not irreducible. So, there exist ideals a ( I

and a ( J with

a = I ∩ J.

Note that this implies I ( R and J ( R, By definition of a, the ideals I and J are finite

intersections of irreducible ideals. But then, a is also an intersection of finitely many

irreducible ideals, a contradiction. X

Step 2. By Step 1, it remains to be shown that every irreducible ideal is primary. Let

q ⊂ R be an irreducible ideal. In view of Lemma I.2.2, we may replace R by R/q. So,

without loss of generality, we may assume q = 〈0〉. Let a, b ∈ R with a · b = 0 and a , 0.

We look at the ascending chain (
Ann(bk)

)
k∈N.

Since R is noetherian, there exists a natural number k0 ∈ N with

Ann(bk0) = Ann(bk0+1).

Claim. 〈a〉 ∩ 〈bk0〉 = 〈0〉.

Let c ∈ 〈a〉 ∩ 〈bk0〉. We write c = r · bk0 for a suitable element r ∈ R. Since c ∈ 〈a〉, we

have

0 = c · b = r · bk0+1.

This means

r ∈ Ann(bk0+1) = Ann(bk0),

so that c = r · bk0 = 0. X

Since 〈0〉 is irreducible and 〈0〉 , 〈a〉, we have 〈0〉 = 〈bk0〉, i.e., bk0 = 0. �

The first step of the above proof bears strong resemblance to the proof of the existence

of a prime factorization in the ring of integers ([30], Satz I.3.2).

II.4.7 Corollary. Let R be a noetherian ring and I ⊂ R a radical ideal. Then, there exist

prime ideals p1, ..., pm with

I = p1 ∩ · · · ∩ pm.

Proof. Let

I = q1 ∩ · · · ∩ qm
be a primary decomposition. According to our assumption and Property I.8.19, iv), we

have

I =
√

I =
√
q1 ∩ · · · ∩

√
qm.

By Lemma II.4.3, the radical ideal pi :=
√
qi is a prime ideal, i = 1, ...,m. �
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II.4. Primary Decomposition

II.4.8 Remarks. i) The theorem is also known as the Lasker4–Noether theorem.

ii) A ring in which every ideal can be written as a finite intersection of primary ideals

is called a laskerian ring. The above theorem states that every noetherian ring is laskerian.

However, there exist laskerian rings which are not noetherian. An example is contained

in [9].

iii) The zero ideal in the ring C
0([0, 1]) of continuous functions on the unit interval

does not admit a primary decomposition (Exercise II.4.11).

II.4.9 Caution. In the proof of the Lasker–Noether theorem II.4.6, we showed that every

irreducible ideal in a noetherian ring is a primary ideal. The converse does not hold: Let

k be a field and R := k[x, y].5 We have

〈 x2, x · y, y2 〉 = 〈 x, y2 〉 ∩ 〈 y, x2〉.

All occurring ideals have the maximal ideal m = 〈 x, y 〉 as radical, so they are all m-

primary, by Lemma II.4.5.

The reader should also look at the proof of Lemma II.4.12. There, several primary

ideals are intersected to obtain a new, non-irreducible, primary ideal. In order to obtain

uniqueness statements, we have to include primary ideals which are not irreducible. This

explains, in particular, why we work with primary ideals rather than with irreducible ones.

II.4.10 Exercise (Maximal ideals in rings of continuous functions). In this exercise, we

work in the ring R := C
0([0, 1]) of continuous functions on the interval [0, 1] ⊂ R.

i) Show that, for a point x ∈ [0, 1],

mx :=
{

f ∈ R | f (x) = 0
}

is a maximal ideal in R.

ii) Let m ⊂ R be a maximal ideal of R. Show that there exists a point x ∈ [0, 1] with

m = mx. (Hint. Use the compactness of [0, 1].)

II.4.11 Exercise (An ideal without primary decomposition). Let R be as in the previous

exercise.

i) Let q ⊂ R be a primary ideal. Show that there is a unique point x ∈ [0, 1] with

q ⊂ mx.

ii) Conclude that the zero ideal 〈0〉 ⊂ R cannot be written as the intersection of finitely

many primary ideals.

The First Uniqueness Theorem

For the considerations in this part, we do not need to assume that the ring R is noetherian.

Unfortunately, primary decompositions are, in general, not unique. First, there are

some stupid reasons for non-uniqueness which we will eliminate first. A primary decom-

position

I = q1 ∩ · · · ∩ qm
is minimal or irredundant, if the following two properties hold:

4Emanuel Lasker (1868 - 1941), German chess player, mathematician, and philosopher.
5Example taken from http://math.stackexchange.com/questions/28620/primary-ideals-

of-noetherian-rings-which-are-not-irreducible
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II. Noetherian Rings

i) ∀i ∈ { 1, ...,m }:
⋂

j∈{ 1,...,m }\{i}
q j 1 qi.

ii) For 1 ≤ i < j ≤ m:
√
qi ,
√
q j.

II.4.12 Lemma. Let R be a ring, I ⊂ R an ideal, and

I = q1 ∩ · · · ∩ qm

a primary decomposition. Then, the ideal possesses also a minimal primary decomposi-

tion

I = s1 ∩ · · · ∩ sn.

Proof. Step 1. Given any primary decomposition, one gets a primary decomposition

satisfying Condition i), by just removing some of the primary components.

Step 2. The idea is to collect the primary components with the same radical in one

primary component. For this, we need the following result:

Claim. Let p ⊂ R a prime ideal and r1, r2 ⊂ R two p-primary ideals. Then, the intersection

r := r1 ∩ r2

is also a p-primary ideal.

We first compute the radical with the help of Property I.8.19, iv):

√
r1 ∩ r2 =

√
r1 ∩
√
r2 = p ∩ p = p.

Now, we show that r1 ∩ r2 is a primary ideal. Let a, b ∈ R with a · b ∈ r1 ∩ r2 and

a < r1 ∩ r2. We may assume without loss of generality that a < r1. Then, there exists an

exponent k ≥ 1 with bk ∈ r1. So,

b ∈
√
r1 =
√
r1 ∩ r2.

This means that there is also an exponent l ≥ 1 with bl ∈ r1 ∩ r2. X

Let p1, ..., pn be the distinct prime ideals with

{
p1, ..., pn

}
=

{√
q1, ...,

√
qm

}
.

Set

I j :=
{
i ∈ { 1, ...,m } |

√
qi = p j

}
and r j =

⋂

i∈I j

qi, j = 1, ..., n.

By the claim,

I = r1 ∩ · · · ∩ rn (II.4)

is a primary decomposition with satisfies Condition ii). If the primary decomposition we

started with satisfied Condition i), (II.4) will also satisfy Condition i). Otherwise we apply

Step 1 to (II.4). �
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II.4. Primary Decomposition

II.4.13 Example. Let k be a field and R = k[x, y]. Here, we have

〈 x2, x · y 〉 = 〈x〉 ∩ 〈 x, y 〉2 = 〈x〉 ∩ 〈 x2, y 〉. (II.5)

The ideal 〈x〉 is a prime ideal, and

〈 x, y 〉 =
√
〈 x2, y 〉 =

√
〈 x, y 〉2.

This is a maximal ideal, so 〈 x2, y 〉 and 〈 x, y 〉2 are primary ideals. Therefore, (II.5) con-

tains two distinct minimal primary decompositions of the same ideal.

We can understand the underlying geometry at a heuristic level. The algebraic set

V(x2) is the y-axis in A2
k
. We should count it twice. The set V(x · y) is the union of the

coordinate axes. The intersection V(x2) ∩ V(x · y) consists of the y-axis. But the origin

occurs with multiplicity 2, because it occurs both in V(x2) and in V(x ·y) with multiplicity

2. This fact is reflected by the above primary decompositions.

∩ =

The origin occurs with
multiplicity two in
both “varieties”.

b

This gives an “embedded”
point of multiplicity two

in the intersection.

b

II.4.14 First uniqueness theorem. Let R be a ring, I ⊂ R an ideal,

I = q1 ∩ · · · ∩ qm
a minimal primary decomposition, and pi :=

√
qi, i = 1, ...,m. Then,

{
p1, ..., pm

}
=

{
p ⊂ R | p is a prime ideal : ∃r ∈ R with p =

√(
I : 〈r〉

) }
.

In particular, the set { p1, ..., pm } depends only on I and not on the primary decomposition.

II.4.15 Corollary. Let R be a noetherian ring. For every radical ideal I ⊂ R, there exist

uniquely determined distinct prime ideals p1, ..., pm with

I = p1 ∩ · · · ∩ pm.

Let I ( R be a proper ideal. A prime ideal p ⊂ R is associated with I, if there is an

element r ∈ R with

p =

√(
I : 〈r〉

)
.

The set of prime ideals associated with I is denoted by

Ass(I).

The prime ideals in Ass(I) which are minimal with respect to inclusion among the ideals

in Ass(I) are called isolated. The remaining ones are called embedded.
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II.4.16 Example. We return to Example II.4.13 and the primary decomposition

〈 x2, x · y 〉 = 〈x〉 ∩ 〈 x, y 〉2.

The associated prime ideals are 〈x〉 and 〈 x, y 〉, and we have

〈x〉 ⊂ 〈 x, y 〉.

So, 〈x〉 is an isolated associated prime ideal and 〈 x, y 〉 an embedded one. The corre-

sponding geometric objects are the y-axis V(〈x〉) and the origin V(〈 x, y 〉). The origin is

embedded into the y-axis. This explains the terminology.

We need some preparations for the proof of Theorem II.4.14.

II.4.17 Prime avoidance. Let R be a ring.

i) Suppose p1, ..., pm ⊂ R are prime ideals and I ⊂ R an ideal with

I ⊂
m⋃

i=1

pi.

Then, there exists an index i0 ∈ { 1, ...,m } with

I ⊂ pi0 .

ii) Let I1, ..., Im ⊂ R be ideals and p ⊂ R a prime ideal. If

p ⊃
m⋂

j=1

I j,

then, there exists an index j0 ∈ { 1, ...,m } with

p ⊃ I j0 .

Moreover, if

p =

m⋂

j=1

I j,

then, there exists an index j0 ∈ { 1, ...,m } with

p = I j0 ,

i.e., prime ideals are irreducible.

Proof. i) We prove the following statement6 by induction on m:

∀i ∈ { 1, ...,m } : I 1 pi =⇒ I 1

m⋃

i=1

pi.

6This explains the name “prime avoidance”: If I avoids the prime ideals p1, ..., pm, then it also avoids

their union.
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The case m = 1 is trivial. For the induction step “m −→ m + 1”, we may choose elements

a1, ..., am+1 ∈ I with

ai < p j, j ∈ { 1, ...,m + 1 } \ {i}, i = 1, ...,m + 1.

If there is an index i0 ∈ { 1, ...,m + 1 } with ai0 < pi0 , we are done. Thus, we need to

consider the case ai ∈ pi, i = 1, ...,m + 1. We then form

b :=

m+1∑

i=1

a1 · · · · · ai−1 · ai+1 · · · · · am+1 ∈ I.

Let i ∈ { 1, ...,m + 1 }. The i-th summand of b is not contained in pi, but all the other

summands are. It follows b < pi, i = 1, ...,m + 1.

ii) Suppose that p 2 I j, j = 1, ...,m. Choose elements a j ∈ I j \ p, j = 1, ...,m. Then,

a1 · · · · · am ∈
m∏

j=1

I j ⊂
m⋂

j=1

I j,

but

a1 · · · · · am < p.

This is a contradiction.

Assume

p =

m⋂

j=1

I j.

By what has already been proved, there is an index j0 ∈ { 1, ...,m }with p ⊃ I j0 . We clearly

have p ⊂ I j0 and, thus, p = I j0 . �

II.4.18 Lemma. Let R be a ring, p ⊂ R a prime ideal, q a p-primary ideal, and a ∈ R.

Then,

(
q : 〈a〉

)
=



R, if a ∈ q
a p-primary ideal, if a < q

q, if a < p

.

Proof. The assertion for a ∈ q is clear. Next, let us assume a < p. If r ∈ (q : 〈a〉), we have

r · a ∈ q. Since a < p =
√
q, we have r ∈ q. This shows (q : 〈a〉) ⊂ q. The other inclusion

is trivial.

Next, we just assume a < q. Let us first determine the radical of (q : 〈a〉). For

r ∈ (q : 〈a〉), we have r · a ∈ q. Since a < q, we have r ∈ √q = p. This implies

q ⊂
(
q : 〈a〉

)
⊂ p.

Taking radicals yields
√

(q : 〈a〉) = p.
Finally, assume that r, s ∈ R are elements with r · s ∈ (q : 〈a〉) and s < p =

√
(q : 〈a〉).

We have to check that r ∈ (q : 〈a〉). With a · r · s ∈ q and s < p, we find a · r ∈ q, i.e.,

r ∈ (q : 〈a〉). �
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Proof of Theorem II.4.14. Let I ⊂ R be an ideal and

I = q1 ∩ · · · ∩ qm

a minimal primary decomposition. By Property I.8.17, iv),

∀a ∈ R :
(
I : 〈a〉

)
=

( m⋂

i=1

qi : 〈a〉
)
=

m⋂

i=1

(
qi : 〈a〉

)
.

With Lemma II.4.18, this gives

∀a ∈ R :

√(
I : 〈a〉

)
=

m⋂

i=1

√(
qi : 〈a〉

)
=

⋂

i∈{ 1,...,m | a<qi }
pi. (II.6)

a) Let a ∈ R be an element, such that
√

(I : 〈a〉) is a prime ideal. By (II.6) and Propo-

sition II.4.17, ii), there is an index i0 ∈ { 1, ...,m | a < qi } with pi0 =
√

(I : 〈a〉).
b) Let i0 ∈ { 1, ...,m }. By the minimality of the primary decomposition, there is an

element

ai0 ∈
( ⋂

j∈{ 1,...,m }\{i0}
q j

)∖
qi0 .

Lemma II.4.18 and (II.6) show

√(
I : 〈ai0〉

)
= pi0 .

This concludes the proof. �

II.4.19 Exercise (Irreducible sets). A topological space X is called irreducible, if it is non-

empty, and, if X1 and X2 are closed subsets, such that X = X1∪X2, then X1 = X or X2 = X.

Let X be a topological space and Y a subset of X. Then, Y inherits a topology as follows:

A subset U ⊂ Y is said to be open, if there is an open subset Ũ ⊂ X with U = Y ∩ Ũ. We

call a subset Y ⊂ X irreducible, if it is irreducible with respect to the induced topology.

i) Let X be a noetherian topological space and Z a closed subset. Show that there are

irreducible closed subsets Z1,...,Zr, such that

⋆ Z = Z1 ∪ · · · ∪ Zr,

⋆ Zi 1 Z j, for i , j.

Show also that these closed subsets are uniquely determined. The sets Zi, i = 1, ..., r, are

called the irreducible components of Z.

ii) Let R be a noetherian ring and I ⊂ R an ideal. What is the relation between the

primary decomposition of I and the above decomposition of the closed subset V(I) ⊂
Spec(R) into irreducible components?

II.4.20 Exercise (Primary ideals). Show the following: In the polynomial ring Z[t], a) the

ideal m = 〈2, t〉 is maximal and b) the ideal q = 〈4, t〉 is m-primary, but c) q is not a power

of m.
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II.4.21 Exercise (A primary decomposition). Let k be a field and R := k[x, y, z]. Set

p1 := 〈x, y〉, p2 := 〈x, z〉, and m := 〈x, y, z〉.
i) Show that p1 and p2 are prime ideals, while m is maximal.

ii) Let I := p1 · p2. Show that

I = p1 ∩ p2 ∩m2

and that this a minimal primary decomposition of I.

iii) Which components are isolated and which are embedded?

II.4.22 Exercise (A primary decomposition). We work in the ring R = k[x1, x2, x3, x4], k a

field. Show that

〈 x1x2 − x4, x1x3 − x4, x2x3 − x4 〉 =
= 〈 x1, x2, x4 〉 ∩ 〈 x1, x3, x4 〉 ∩ 〈 x2, x3, x4 〉 ∩ 〈 x1 − x2, x2 − x3, x2

1 − x4 〉

is a minimal primary decomposition.

The Second Uniqueness Theorem

II.4.23 Proposition. Let R be a ring, S ⊂ R a multiplicatively closed subset, p ⊂ R a

prime ideal, q ⊂ R a p-primary ideal, and

ϕ : R −→ RS

the natural localization homomorphism. Then:

i) The assertion S ∩ p , ∅ is equivalent to the assertion qe = RS .

ii) If S ∩ p = ∅, then qe is a pe-primary ideal and qec = q.

Proof. i) By Proposition II.3.6, ii), the extended ideal qe equals RS if and only if S ∩q , ∅.

Thus, we have to prove:

Claim. S ∩ p , ∅⇐⇒ S ∩ q , ∅.

“⇐=”. This is clear, because q ⊂ p.
“=⇒”. Let s ∈ S ∩p. Since p is the radical of q, there is an exponent k ≥ 1 with sk ∈ q.

Furthermore, S is a multiplicatively closed subset, so that sk ∈ S . X

ii) We use the description

qec =
⋃

s∈S

(
q : 〈s〉

)

from Proposition II.3.6, iv). Suppose s ∈ S and r ∈ (q : 〈s〉). Then, r · s ∈ q. Since

sk
< q, k ≥ 1, we must have r ∈ q. This shows qec ⊂ q. The other inclusion is contained in

Property I.8.24, i), so that

q
ec = q.

By Proposition II.3.6, iii), Jce = J holds for every ideal J ⊂ RS . So, in order to verify√
qe = pe, it suffices to check (√

qe
)c
= pec.

With Property I.8.19, iv), we verify this as follows:

(√
qe

)c
=
√
qec =

√
q = p = pec.
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Finally, we check that qe is a primary ideal. Suppose we are given a, b ∈ R and s, t ∈ R

with
a · b
s · t
=

a

s
· b

t
∈ qe.

Then, a · b ∈ qec = q, so that a ∈ q or bk ∈ q, for some k ≥ 1. This implies a/s ∈ qe or

(b/t)k = bk/tk ∈ qe, for some k ≥ 1. �

II.4.24 Proposition. Let R be a ring, S ⊂ R a multiplicatively closed subset, I ⊂ R an

ideal, and

I =

m⋂

i=1

qi

a minimal primary decomposition. Set pi :=
√
qi, i = 1, ...,m, and suppose that the

numbering is such that

∃m0 ∈ { 0, ...,m }∀i ∈ { 1, ...,m } : S ∩ pi , ∅ ⇐⇒ i > m0.

Then,

Ie =

m0⋂

i=1

qei and Iec =

m0⋂

i=1

qi, (II.7)

and these are both minimal primary decompositions.

Proof. Using Proposition II.3.6, iii), and Property I.8.24, iv), it is enough to check the

second equality in (II.7). We first apply Proposition II.3.6, iv), and Property I.8.17, iv), to

see

Iec =
⋃

s∈S

(
I : 〈s〉

)
=

⋃

s∈S


m⋂

i=1

qi : 〈s〉
 =

⋃

s∈S

m⋂

i=1

(
qi : 〈s〉

)
.

Our assertion amounts to
⋃

s∈S

m⋂

i=1

(
qi : 〈s〉

)
=

m0⋂

i=1

qi.

“⊂”. For s ∈ S and 1 ≤ i ≤ m0, we have s < pi. This inclusion, therefore, follows

from Lemma II.4.18.

“⊃”. For m0 + 1 ≤ i ≤ m, S ∩ pi , ∅. By Proposition II.4.23, i), we may pick an

element si ∈ S ∩ qi. Then,

∀i ∈ {m0 + 1, ...,m } : s := sm0+1 · · · · · sm ∈ qi.

Lemma II.4.18 shows

∀i ∈ {m0 + 1, ...,m } :
(
qi : 〈s〉

)
= R.

The second equation in (II.7) is a minimal primary decomposition, because I =
m⋂

i=1

qi

is one. By Proposition II.4.23, ii), qe
i

is a pe
i
-primary ideal, i = 1, ...,m0. This shows that

the first equation in (II.7) is also a primary decomposition. To check that it is minimal,

we may contract it to R. This is the second equation in (II.7) which is minimal. �
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II.4.25 Second uniqueness theorem. Let R be a ring, I ⊂ R an ideal,

I =

m⋂

i=1

qi (II.8)

a minimal primary decomposition, and

Ass(I) =
{
p1, ..., pm

}
.

i) Let { i1, ..., in } ⊂ { 1, ...,m } be a subset, such that pi j
is an isolated associated prime

ideal of I, j = 1, ..., n. Then, the intersection

n⋂

j=1

qi j

does not depend on (II.8).

ii) Let p ∈ Ass(I) be an associated prime ideal and set

M(I, p) =
{
r ∈ Ass(I) | r ⊂ p

}
.

Let

{ i1, ..., in } =
{

i ∈ { 1, ...,m } |
√
qi ∈ M(I, p)

}
.

Then, the intersection
n⋂

j=1

qi j

does not depend on (II.8).

Proof. For i), we define

S := R \ (pi1 ∪ · · · ∪ pin)

and, for ii),

S := R \ p,

and look at the localization map ϕ : R −→ RS . In both cases,

Iec =

n⋂

j=1

qi j
,

by Proposition II.4.24. �

II.4.26 Remark. In general, we may associate with any subset { pi1 , ..., pim } ⊂ Ass(I) an

ideal which is the intersection of some of the primary ideals in (II.8) and which does not

depend on I.

II.4.27 Corollary. The primary ideals in a minimal primary decomposition of I which

correspond to the isolated associated prime ideals are uniquely determined by I.

Proof. Let p ⊂ R be an isolated associated prime ideal. We apply i) to {p} ⊂ Ass(I) or ii),

noting M(I, p) = {p}. �
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II. Noetherian Rings

To further familiarize us with primary decompositions, we study the primary decom-

position of the zero ideal.

II.4.28 Theorem. Let R be a noetherian ring. Write

{ pi1 , ..., pk } = Ass
(
〈0〉

)

and let

{ pi1 , ..., pim } ⊂ Ass
(
〈0〉

)

be the subset of isolated prime ideals associated with 〈0〉. Then:

i) The nilradical of R is

N =
√
〈0〉 = p1 ∩ · · · ∩ pk = pi1 ∩ · · · ∩ pim .

ii) Let p ⊂ R be a prime ideal. Then, there exists an index j ∈ { 1, ...,m } with

pi j
⊂ p,

i.e., the isolated prime ideals associated with 〈0〉 are the minimal prime ideals of R.

iii) The zero divisors of R are exactly the elements of the set

k⋃

i=1

pi.

Proof. i) Let

〈0〉 = q1 ∩ · · · ∩ qk
be a minimal primary decomposition with pi =

√
qi, i = 1, ..., k. Then,

√
〈0〉 =

√
q1 ∩ · · · ∩ qk =

√
q1 ∩ · · · ∩

√
qk = p1 ∩ · · · ∩ pk = pi1 ∩ · · · ∩ pim .

ii) By Proposition I.7.2,
√
〈0〉 ⊂ p, so that

pi1 ∩ · · · ∩ pim ⊂ p.

By prime avoidance (Proposition II.4.17), there is an index j ∈ { 1, ...,m } with pi j
⊂ p.

iii) Assume first that a ∈ R is a zero divisor. There is an element b ∈ R \ {0} with

a · b = 0. Since 〈0〉 = q1 ∩ · · · ∩ qk, there is an index i0 ∈ { 1, ..., k } with b < qi0 . Since qi0
is a primary ideal, it follows that a ∈ √qi0 = pi0 .

Next, let

a ∈ p1 ∪ · · · ∪ pk.

If a is nilpotent, then a is a zero divisor and we are done. Otherwise, we may choose

an index i0 ∈ { 1, ..., k } and an exponent l ≥ 1 with al ∈ qi0 . Note that the existence of

non-nilpotent zero divisors implies k ≥ 2. We have

qi0 ·
(
q1 ∩ · · · ∩ qi0−1 ∩ qi0+1 ∩ · · · ∩ qk

)
⊂ q1 ∩ · · · ∩ qk = 〈0〉.

Since the primary decomposition is minimal, we infer

J := q1 ∩ · · · ∩ qi0−1 ∩ qi0+1 ∩ · · · ∩ qk , 〈0〉.

Choose b ∈ J \{0}. Then, al ·b = 0. Let n ≥ 0 be the largest natural number with an ·b , 0.

We see that a · (an · b) = an+1 · b = 0 and that a is a zero divisor. �
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III
The Nullstellensatz

We prove here Hilbert’s famous Nullstellensatz. It completes our discussion from Section

I.9: Over an algebraically closed ground field k, there is a correspondence between alge-

braic sets inAn
k

and radical ideals in k[x1, ..., xn]. This result, therefore, translates algebraic

geometry in affine spaces into commutative algebra and establishes the close ties between

these two areas of mathematics. There are many proofs of the Nullstellensatz. We will

present a very elementary one which is a variant of an argument due to Munshi. The proof

uses some basic facts about integral ring extensions. In order to speak about integral ring

extensions, we need the language of modules. For these reasons, we take the opportunity

to develop the language of modules and the formalism of finite ring extensions in some

detail. We will also discuss normal rings and (Noether) normalization.

III.1 Modules

Let R be a ring. An R-module is an abelian group (M,+, 0) together with a scalar multi-

plication

· : R × M 7−→ M,

such that the following conditions are satisfied:

⋆ ∀a ∈ R∀x, y ∈ M: a · (x + y) = a · x + a · y.

⋆ ∀a, b ∈ R∀x ∈ M: (a + b) · x = a · x + b · x.

⋆ ∀a, b ∈ R∀x ∈ M: (a · b) · x = a · (b · x).

⋆ ∀x ∈ M: 1 · x = x.

III.1.1 Remark. Let (M,+, 0) be an abelian group. The datum of a scalar multiplication

· : R × M −→ M is equivalent to the datum of a ring homomorphism1

ϕ : R −→ End(M).

1The ring End(M), which is, in general, non-commutative, was described in Example I.1.3, viii).
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III. The Nullstellensatz

In fact, let a scalar multiplication · : R × M −→ M be given. The first property states

that

µa : M −→ M

x 7−→ a · x

is an endomorphism of the abelian group M. So, we can define

ϕ : R −→ End(M)

a 7−→ µa.

The fourth property says that ϕ(1) = idM , the second and third property express that ϕ is

compatible with addition and multiplication.

If we are give a ring homomorphism2

ϕ : R −→ End(M),

then it is easy to check that

· : R × M −→ M

(a, x) 7−→ ϕ(a)(x)

is a scalar multiplication.

III.1.2 Examples. i) If k is a field, a k-module is the same as a k-vector space (see [33],

§7).

ii) A Z-module is the same as an abelian group. In fact, the endomorphisms µn : M −→
M (see Remark III.1.1), n ∈ N, satisfy the recursion formula

∀n ∈ N∀x ∈ M : µn+1(x) = (n + 1) · x = n · x + 1 · x = n · x + x = µn(x) + x. (III.1)

Furthermore, it is easy to see that µ−1(x) = −x (compare Property I.1.2, ii). Thus, µ0 = 0

and

∀n ∈ N∀x ∈ M : µ−n(x) = (−n)·x =
(
(−1)·n

)
·x = n·

(
(−1)·x) = n·(−x) = µn(−x). (III.2)

So, the µk, k ∈ Z, or, equivalently, the scalar multiplication “·” are completely determined

by the condition µ1 = idM. In particular, on every abelian group, there exists at most one

scalar multiplication · : Z × M −→ M.

On the other hand, given an abelian group M, we can start with the constant map

µ0 : M −→ M, x 7−→ 0, and define µn by recursion (see [27], Satz 1.3.8) via (III.1) for

all natural numbers and, using (III.2), for all integers. It is then checked with various

inductions (compare [27], Satz 1.3.12) that

· : Z × M −→ M

(k, x) 7−→ µk(x)

is a scalar multiplication.

2This implies that ϕ(1) = idM .
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III.1. Modules

iii) Let k be a field and R = k[t] the polynomial ring in one variable over k. Any

R-module M is, in particular, a k-vector space, and

f := µt : M −→ M

x 7−→ t · x

is a k-linear map. So, an R-module determines a pair (M, f ) which consists of a k-vector

space M and a k-linear map f : M −→ M.

Suppose, conversely, that M is a k-vector space and f : M −→ M is a k-linear map.

Set

k[ f ] :=

{ n∑

i=0

λi · f i
∣∣∣∣ n ∈ N, λi ∈ k, i = 0, ..., n

}
⊂ End(M).

This is a commutative subring of End(M). By the universal property of the polynomial

ring (Page 5), idk and f ∈ k[ f ] define a (surjective) homomorphism k[t] −→ k[ f ] and,

thus, a homomorphism

ϕ : k[t] −→ End(M).

In this way, we get an R-module structure on M. It satisfies µt = f .

Altogether, we can say that R-modules identify with pairs (M, f ) composed of a k-

vector space M and a k-linear endomorphism f of M. Such objects are intensely studied in

any introduction to linear algebra, especially in the situation when M is finite dimensional.

iv) Let R, S be rings and ϕ : R −→ S a ring homomorphism. Then,

· : R × S −→ S

(a, b) 7−→ ϕ(a) · b

equips S with the structure of an R-module. In particular, we can use idR : R −→ R to

view R as an R-module.

Let R be a ring and M,N R-modules. An R-module homomorphism is a map ϕ : M −→ N,

such that

⋆ ∀x, y ∈ M: ϕ(x + y) = ϕ(x) + ϕ(y).

⋆ ∀a ∈ R∀x ∈ M: ϕ(a · x) = a · ϕ(x).

Module homomorphisms are the maps that are compatible with the given group struc-

tures and scalar multiplications on the modules and, therefore, allow to compare different

modules. As usual, there are different modules which are in a certain sense “indistin-

guishable”. These are modules which are related by an isomorphism. The “categorical”

definition of an isomorphism reads as follows: Let R be a ring and M,N R-modules. A

map ϕ : M −→ N is an isomorphism of R-modules, if

⋆ ϕ is an R-module homomorphism,

⋆ there exists an R-module homomorphism ψ : N −→ M with ϕ◦ψ = idM and ψ◦ϕ =
idN .

III.1.3 Exercise. Let R be a ring, M,N R-Modules, and ϕ : M −→ N an R-module homo-

morphism. Show that ϕ is an isomorphism if and only if ϕ is bijective.
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III. The Nullstellensatz

III.1.4 Example and Exercise. Let k be a field, R = k[x], and (M, f ) and (N, g) k-vector

spaces endowed with k-linear endomorphisms. According to Example III.1.2, iii), they

define R-modules. A map ϕ : M −→ N is a homomorphism of R-modules if and only if it

is k-linear and verifies

ϕ ◦ f = g ◦ ϕ,

i.e., the diagram

M
ϕ

//

f

��

N

g

��

M
ϕ

// N

commutes.

The classification of finite dimensional C[x]-modules is provided by the theory of the

Jordan3 normal form (see [33], §54; compare Page 87ff).

Constructions

Let R be a ring and M an R-module. A submodule is a subset N ⊂ M, such that

⋆ N , ∅.

⋆ ∀x, y ∈ N: x + y ∈ N.

⋆ ∀a ∈ R∀x ∈ N: a · x ∈ N.

Note that, for x ∈ N, we have −x = (−1) · x ∈ N. Let x0 ∈ N (N is non-empty). Then,

0 = x0 − x0 ∈ N. This proves that N is a subgroup of M. By the third property, N is also

equipped with a scalar multiplication. So, N inherits the structure of an R-module.

III.1.5 Example. Let R be a ring. According to Example III.1.2, iv), we may view R as an

R-module. The submodules of R are the ideals.

Suppose that M is an R-module and that N ⊂ M is a submodule. Then, we can form

the group M/N (see [30], Satz II.9.4). We set

· : R × M/N −→ M/N
(
a, [x]

)
−→ [a · x].

The reader should verify that this is well-defined and equips M/N with the structure of an

R-module. It is the quotient module of M by N.

III.1.6 Example and Exercise. Let R be a ring, M,N R-modules, and ϕ : M −→ N a

homomorphism.

i) Then,

⋆ im(ϕ) is a submodule of N.

⋆ ker(ϕ) is a submodule of M.

⋆ The module N/im(ϕ) is called the cokernel of ϕ.

3Marie Ennemond Camille Jordan (1838 - 1922), french mathematician.
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III.1. Modules

ii) The first isomorphism theorem holds, i.e.,

M/ker(ϕ) � im(ϕ).

Let I , ∅ be a possibly infinite index set and (Mi)i∈I a family of R-modules indexed

by I. The cartesian product
�

i∈I

Mi

together with componentwise addition and scalar multiplication is an R-module. It is

called the direct product of (Mi)i∈I .

The set

⊕

i∈I

Mi :=

{
(xi)i∈I ∈

�

i∈I

Mi

∣∣∣ xi = 0 for all but finitely many i ∈ I

}

is a submodule of
�

i∈I

Mi. It is referred to as the direct sum of (Mi)i∈I . Note that the direct

sum
⊕
i∈I

Mi equals the direct product
�

i∈I

Mi if and only if I is finite.

If M is an R-module and I , ∅ an index set, we may define Mi := M, i ∈ I. In this

case, we set ⊕

i∈I

M :=
⊕

i∈I

Mi.

For convenience, we also define ⊕

i∈∅
M := {0}.

Let M,N be R-modules, then

HomR(M,N) :=
{
ϕ : M −→ N | ϕ is a homomorphism of R-modules

}

together with the addition

∀ϕ, ψ ∈ HomR(M,N) : ϕ + ψ : M −→ N, x 7−→ ϕ(x) + ψ(x),

and the scalar multiplication

∀a ∈ R∀ϕ ∈ HomR(M,N) : a · ϕ : M −→ N, x 7−→ a · ϕ(x),

is an R-module, too. The neutral element for the addition is the zero homomorphism

0: M −→ N, x 7−→ 0.

III.1.7 Exercises (The universal properties of the direct sum and the direct product). i) Let

R be a ring, (Mi)i∈I a family of R-modules, and
⊕
i∈I

Mi its direct sum. Define, for k ∈ I,

jk : Mk −→
⊕

i∈I

Mi

m 7−→ (mi)i∈I with mi =

{
m, if i = k

0, if i , k
.
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III. The Nullstellensatz

Prove that
⊕
i∈I

Mi has the following universal property: Given an R-module N and a

collection of homomorphisms fk : Mk −→ N, k ∈ I, there is a unique homomorphism

f :
⊕
i∈I

Mi −→ N with f ◦ jk = fk, k ∈ I. In other words,

Hom R

(⊕

i∈I

Mi,N
)
�

�

i∈I

Hom R (Mi,N) .

ii) Let R be a ring, (Mi)i∈I a family of R-modules, and
�

i∈I

Mi its direct product. Define,

for k ∈ I,

pk :
�

i∈I

Mi −→ Mk

(mi)i∈I 7−→ mk.

Show that
�

i∈I

Mi has the following universal property: Given an R-module N and a col-

lection of homomorphisms fk : N −→ Mk, k ∈ I, there is a unique homomorphism

f : N −→
�

i∈I

Mi with pk ◦ f = fk, k ∈ I. In other words,

Hom R

(
N,

�

i∈I

Mi

)
�

�

i∈I

Hom R (N, Mi) .

Let R be a ring, M an R-module, and S ⊂ M a subset. The submodule generated by

S is

〈S 〉 :=
⋂

N⊂M submodule
S⊂N

N =

{ n∑

i=1

ai · xi

∣∣∣∣ n ≥ 1, ai ∈ R, xi ∈ S , i = 1, ..., n

}
.

We say that the R-module M is finitely generated, if the there is a finite subset S ⊂ M

with

M = 〈S 〉.

An R-module M is free, if there are an index set I and an isomorphism

ϕ :
⊕

i∈I

R −→ M.

If I = { 1, ..., n }, we write

R⊕n :=

n⊕

i=1

R.

III.1.8 Exercise (Finitely generated modules). Show that an R-module M is finitely gen-

erated if and only if there exist a natural number n ∈ N and a surjection

ϕ : R⊕n −→ M

of R-modules.

III.1.9 Exercise (The rank of a free module). Let R be a ring, s, t ∈ N natural numbers,

and ϕ : R⊕s −→ R⊕t a surjective map. Prove that s ≥ t. In particular, R⊕s
� R⊕t if and

only if s = t.
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III.1. Modules

If M is an R-module and there are a finite index set I and an isomorphism ϕ :
⊕
i∈I

R −→

M, we call the number #I the rank of M. By the last exercise, this is well-defined.

If k is a field, then every vector space has a basis4 (see [33], §28) and, so, every

k-module is free. Many concepts of linear algebra, such as the matrix formalism, may

be extended to free modules. However, the condition of freeness is rather restrictive, in

general. The following lemma gives a first illustration for this.

III.1.10 Lemma. Let R be an integral domain and I ⊂ R an ideal. Then, I is a free

R-module if and only if it is a principal ideal.

Proof. Let I be a principal ideal. If I = 〈0〉, there is nothing to show. Otherwise, I = 〈a〉
with a , 0. Consider

ϕ : R −→ R

r 7−→ r · a

Since R is an integral domain, ϕ is injective. The image of ϕ is 〈a〉, so that 〈a〉 � R as

R-module.

Assume I is a free R-module. If it is of rank 0 or 1, then I is a principal ideal. Other-

wise, there is an injective homomorphism ϕ : R⊕2 −→ I. Set f := ϕ(1, 0) and g := ϕ(0, 1).

The elements f and g are non-zero, because ϕ is injective. Observe

ϕ(g,− f ) = g · ϕ(1, 0) − f · ϕ(0, 1) = g · f − f · g = 0.

Since (g,− f ) , 0, this contradicts the injectivity of ϕ. �

Let M be an R-module. The torsion submodule of M is

Tors(M) :=
{

x ∈ M | ∃ non-zero divisor a ∈ R : a · x = 0
}
.

If Tors(M) = {0}, then M is said to be torsion free. If M = Tors(M), then M is said to be

a torsion module.

III.1.11 Remark. Let us briefly verify that Tors(M) is indeed a submodule. Clearly, 0 ∈
Tors(M). Let x ∈ Tors(M), a ∈ R, and b ∈ R a non-zero divisor with b · x = 0. Then,

b · (a · x) = a · (b · x) = a · 0 = 0, so that a · x ∈ Tors(M). If x, y ∈ Tors(M) and a, b ∈ R

are non-zero divisors with a · x = 0 and b · y = 0. Then, a · b is not a zero divisor and

(a · b) · (x + y) = (a · b) · x + (a · b) · y = b · (a · x) + a · (b · y) = 0.

This illustrates the appearance of non-zero divisors in the definition of the torsion sub-

module.

III.1.12 Examples. i) A free R-module is torsion free.

ii) If k is a field, then every k-module is free and, in particular, torsion free.

iii) If A is an abelian group, i.e., a Z-module (Example III.1.2, ii), then x ∈ A lies in

Tors(A) if and only it is an element of finite order.

iv) Let k be a field and (M, f ) a k[x]-module (see Example III.1.2, iii). If M is a

finite dimensional k-vector space, then (M, f ) is a torsion module. In fact, since the

4if and only if the axiom of choice is admitted ([12], Theorem 4.44)
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III. The Nullstellensatz

vector space Endk(M) = Homk(M, M) is also finite dimensional, the powers f k, k ∈ N,

are linearly dependent. So, there is a polynomial p ∈ k[x] with p( f ) = 0,5 and, for every

x ∈ M,

p · x = p( f )(x) = 0.

Let M be an R-module and x ∈ M, then

Ann(x) := AnnR(x) :=
{
a ∈ R | a · x = 0

}

is an ideal in R. It is the annihilator of x.

If N ⊂ M is a submodule, we set

Ann(N) := AnnR(N) :=
{
a ∈ R | ∀x ∈ N : a · x = 0

}
=

⋂

x∈N

Ann(x).

This is the annihilator of N.

III.1.13 Remark. Let M be an R-module. Note that M is in a natural way a module over

the ring R/Ann(M).

Modules over Principal Ideal Domains

The main theorem on finite abelian groups (see [30], II.13.5) classifies all finitely gener-

ated Z-modules. It generalizes to modules over a principal ideal domain R. We start with

the following

III.1.14 Theorem. Let R be a principal ideal domain and M a finitely generated R-

module. Then,

⋆ M/Tors(M) is a free R-module.

⋆ The map

ϕ : M/Tors(M) ⊕ Tors(M) −→ M

(x, y) 7−→ x + y

is an isomorphism.

The rank of the free R-module M/Tors(M) is called the rank of M and is denoted by

rk(M).

III.1.15 Remark. Let M,N be finitely generated R-modules and ϕ : M −→ N a homomor-

phism. It induces a homomorphism

ϕ : M/Tors(M) −→ N/Tors(N).

If ϕ is surjective, then so is ϕ. In particular, rk(M) ≥ rk(N) in that case (see Exercise

III.1.9).

We need several preparations to prove this result.

5The theorem of Cayley–Hamilton ([33], §36) asserts that we may take p to be the characteristic poly-

nomial of f .
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III.1.16 Proposition. Let R be a principal ideal domain, m ∈ N a natural number, and

M a free module of rank m. Then, every submodule N of M is free of rank n for some

n ∈ { 0, ...,m }.

Proof. Without loss of generality, we may assume M = R⊕m. We set

Mk :=
{
(a1, ..., ak, 0, ..., 0) ∈ R⊕m | ai ∈ R, i = 1, ..., k

}

and

Nk := N ∩ Mk, k = 1, ...,m.

We will prove inductively that Nk is a free module, k = 1, ...,m. Obviously, M1 is isomor-

phic to R (as R-module). Thus, N1 is isomorphic to a submodule of R, i.e., to an ideal of

R (Example III.1.5). Lemma III.1.10 shows that N1 is free of rank 0 or 1.

For k ≥ 2, we set

I :=
{

b ∈ R | ∃b1, ..., bk−1 ∈ R : (b1, ..., bk−1, b, 0, ..., 0) ∈ Nk

}
.

This is an ideal in R. Pick an element a ∈ R with I = 〈a〉 and elements a1, ..., ak−1 ∈ R

with

x0 := (a1, ..., ak−1, a, 0, ..., 0) ∈ Nk.

If a = 0, then Nk = Nk−1 and Nk is free by induction hypothesis. For the rest of the

argument, we assume a , 0. For every element x ∈ Nk, there exists an element r ∈ R with

x − r · x0 ∈ Nk−1. This shows that the homomorphism

ϕk : Nk−1 ⊕ R −→ Nk

(x, r) 7−→ x + r · x0

is surjective. It is also injective, because

Nk−1 ∩ 〈x0〉 = {0}.

So, Nk is free of rank rk(Nk−1) + 1. Note that the rank of Nk is at most k. �

III.1.17 Remark. The proposition is false, if R is not a principal ideal domain. In fact, R

is a free module of rank 1. If R contains an ideal which is not principal, we may use the

argument given in the proof of Lemma III.1.10. If R is not an integral domain, then we

pick a non-trivial zero divisor b. Then,

Ann
(
〈b〉

)
= Ann(b) , {0}.

But, for a non-zero free module, the annihilator is clearly {0}.

III.1.18 Corollary. Let R be a principal ideal domain and M a finitely generated R-

module. Then, every submodule N of M is finitely generated.

Proof. The assumption means that there exist a natural number m ∈ N and a surjection

ϕ : R⊕m −→ M.

Now, ϕ−1(N) is a submodule of M and, therefore, free. Let n ∈ { 1, ...,m } be its rank and

choose an isomorphism ψ : R⊕n −→ ϕ−1(N). Then,

R⊕n
ψ
−→ ϕ−1(N)

ϕ|ϕ−1(N)

−→ N

is a surjection, and N is finitely generated. �
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III.1.19 Remark. The corollary is true for every noetherian ring (see Proposition III.1.30

and Lemma III.1.29).

III.1.20 Proposition. Let R be a principal ideal domain and M a finitely generated tor-

sion free R-module. Then, M is free.

Proof. We may clearly assume M , {0}. Let us start with a surjection (see Exercise

III.1.8)

ϕ : R⊕m −→ M.

Let ei := (0, ..., 0, 1, 0, ..., 0), 1 being the i-th entry, and xi := ϕ(ei), i = 1, ...,m. A subset

X ⊂ M is linearly independent, if

λ1 · x1 + · · · + λn · xn = 0 =⇒ λ1 = · · · = λn = 0

holds for all n ≥ 1, for all pairwise distinct x1, ..., xn ∈ X, and for all λ1, ..., λn ∈ R. Note

that, in a non-zero torsion free module, any set of cardinality 1 is linearly independent. Let

n ∈ { 1, ...,m } be the maximal cardinality of a linearly independent subset of { x1, ..., xm }
and fix a linearly independent subset { xi1 , ..., xin } of { x1, ..., xm } with n elements. For

i = 1, ...,m, there exist ring elements ai, ai1, ..., ain ∈ R with

ai · xi + ai1 · xi1 + · · · + ain · xin = 0.

Note that ai , 0, because { xi1 , ..., xin } is linearly independent, i = 1, ...,m. So,

a := a1 · · · · · am , 0.

For i = 1, ...,m, we have

a · xi ∈ N := 〈 xi1 , ..., xin 〉

and, thus,

a · M ⊂ N.

Note that N is a free module of rank n. By Proposition III.1.16, a ·M is also free. Finally,

µa : M −→ M

x 7−→ a · x

is injective, because a , 0 and M is torsion free. Since µa maps M onto a ·M, the module

M is free. �

III.1.21 Proposition. Let R be an arbitrary ring, M an R-module, N a free R-module,

and ϕ : M −→ N a surjection. Then, there exists a submodule P ⊂ M, such that

⋆ ϕ|P : P −→ N is an isomorphism,

⋆ the homomorphism

ψ : P ⊕ ker(ϕ) −→ N

(x, y) 7−→ x + y

is an isomorphism.
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Proof. Let I be an index set, such that

N �
⊕

i∈I

R.

Let ei = (ei j) j∈I be the tuple with eii = 1 and ei j = 0, j ∈ I \ {i}. We pick elements xi ∈ M

with

ϕ(xi) = ei, i ∈ I.

By the universal property of the direct sum (Exercise III.1.7, i), there is a unique homo-

morphism ̺ : N −→ M that maps ei to xi, i ∈ I. We set

P := im(̺).

Clearly, ϕ ◦ ̺ = idN . In particular, ̺ is injective and, therefore, maps N isomorphically to

P. It also follows that ϕ|P is inverse to ̺.

For x ∈ M, we have

ϕ
(
x − (̺ ◦ ϕ)(x)

)
= ϕ(x) − (ϕ ◦ ̺)

(
ϕ(x)

)
= ϕ(x) − ϕ(x) = 0

and

x = (̺ ◦ ϕ)(x)︸     ︷︷     ︸
∈P

+
(
x − (̺ ◦ ϕ)(x)︸          ︷︷          ︸

∈ker(ϕ)

)
.

It follows that ψ is surjective. It is also injective, because P ∩ ker(ϕ) = {0}. �

Proof of Theorem III.1.14. We first show that M/Tors(M) is free. By Proposition III.1.14,

it is enough to verify that this module is torsion free. Let [x] ∈ M/Tors(M) be a torsion

element. There exists a non-zero divisor b with [b · x] = b · [x] = 0. This means b · x ∈
Tors(M). So, there is a non-zero divisor a ∈ R with

(a · b) · x = a · (b · x) = 0.

Since a · b is a non-zero divisor, x ∈ Tors(M) and [x] = 0. To conclude, we apply

Proposition III.1.21 to the surjection M −→ M/Tors(M). �

Let R be a principal ideal domain. In order to understand all finitely generated modules

over R, we need to understand the finitely generated torsion modules. This we will do now.

Let P ⊂ R be a subset, such that for every prime element q ∈ R, there exists one and only

one element p ∈ P with q ∼ p, i.e., P is a set of representatives for the equivalence classes

of prime elements in R with respect to the equivalence relation “being associated”.

Let M , {0} be a non-trivial torsion module over R. In this case, Ann(M) is a non-zero

proper ideal of R. Pick a generator a ∈ R \ (R⋆ ∪ {0}) for Ann(M). The idea is to use the

prime factorization of a to decompose M further.

For any ring element b ∈ R, let

µb : M −→ M

x 7−→ b · x

and

Mb := ker(µb).
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III.1.22 Proposition. Let c, d ∈ R be coprime elements and b = c · d. Then,

Mb � Mc ⊕ Md.

Proof. It is evident that Mc ⊂ Mb and Md ⊂ Mc. Note that 〈c〉 + 〈d〉 = 〈1〉. So, let r, s ∈ R

with

r · c + s · d = 1. (III.3)

With this equation, we see that Mc ∩ Md = {0}.
Next, let x ∈ Mb. By (III.3), we have

x = 1 · x = r · (c · x) + s · (d · x).

Now, d · x ∈ Mc and c · x ∈ Md. �

There are distinct elements p1, ..., ps ∈ P and positive integers k1, ..., ks with

〈a〉 = 〈 p
k1

1
· · · · · pks

s 〉.

By Proposition III.1.22,

M � M
p

k1
1

⊕ · · · ⊕ M
p

ks
s
.

III.1.23 Proposition. Suppose there are an element p ∈ P and a natural number k ≥ 1

with

M = Mpk .

Then, there exist positive integers l1, ..., lt, such that

M � R/〈pl1〉 ⊕ · · · ⊕ R/〈plt〉.

We need some preparations for the proof. Let M be any R-mdoule. We call elements

x1, ..., xu ∈ M independent, if

∀λ1, ..., λu ∈ R : λ1 · x1 + · · · + λu · xu = 0 =⇒ λ1 · x1 = · · · = λu · xu = 0.

This condition is weaker than linear independence. In fact, independent elements can

exist in torsion modules whereas linearly independent elements can’t.

In the set-up of Proposition III.1.23, M is said to be a p-torsion module. The number

e := min{ k ∈ N |M = Mpk }

is the exponent expp(M) of M. In the following, M is assumed to be a p-torsion module.

Let x ∈ M \ {0}. We call

s := min{ t ∈ N | pt · x = 0 }

the order ordp(x) of x. Clearly,

s ≥ 1, ordp(x) ≤ expp(M),

and there is an element x0 ∈ M for which equality is achieved.
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III.1.24 Lemma. In the above setting, let b ∈ R be an element with b · x = 0. Then,

pordp(x)|b.

Proof. We may write b = ps · m with p and m coprime. Assume s < o := ordp(x). As in

the proof of Proposition III.1.22, we find r, s ∈ R with

1 = r · po−s + s · m.

Now,

x = r · po−s · x + s · m · x
has order at most s. This is a contradiction to the definition of the order. �

III.1.25 Lemma. Let M be a p-torsion module of exponent e and x0 ∈ M an element of

order e. Assume y1, ..., yn ∈ M/〈x0〉 are non-zero independent elements. Then, there exist

elements x1, ..., xn ∈ M, such that

⋆ [xi] = yi, i = 1, ..., n,

⋆ ordp(xi) = ordp(yi), i = 1, ..., n,

⋆ x0, x1, ..., xn are independent.

Proof. Let y ∈ M/〈x0〉, o := ordp(y), and x′ ∈ M an element with [x′] = y. Obviously,

ordp(x′) ≥ ordp(y).

There exist 0 ≤ s ≤ e and an element m ∈ R which is coprime to m, such that

po · x′ = ps · m · x0.

If s = e, then po · x′ = 0, and ordp(x′) ≤ ordp(y), so that finally ordp(x′) = ordp(y).

If s < e, then ps · m · x0 has order e − s, by Lemma III.1.24. This means that x′ has

order o + e − s. But, we also know

o + e − s ≤ e, i.e., o ≤ s.

In this case,

x := x′ − ps−o · m · x0

has order o and [x] = y.

These considerations show that we may find x1, ..., xn ∈ M, satisfying the first two

properties. Finally, let a0, a1, ..., an ∈ R with

a0 · x0 + a1 · x1 + · · · + an · xn = 0.

Then,

a1 · y1 + · · · + an · yn = 0.

By assumption, ai · yi = 0, i = 1, ..., n. According to Lemma III.1.24,

pordp(yi)|ai, i = 1, ..., n.

But then

ai · xi = 0, i = 1, ..., n,

and also a · x0 = 0. �
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From now on, we assume that M is finitely generated. Let p ∈ P and suppose M is a

p-torsion module. By Corollary III.1.18, Mp is finitely generated. According to Remark

III.1.13, Mp is a module over R/〈p〉. The latter is a field. We shall denote it by K(p). So,

we may associate with M the number

dimK(p)(Mp) ∈ N.

Proof of Proposition III.1.23. Let x0 ∈ M be an element of order r and M = M/〈x0〉. We

prove

dimK(p)(Mp) < dimK(p)(Mp).

Note that elements x1, ..., xn ∈ Mp or elements y1, ..., yn ∈ Mp are independent if and only

if they are K(p)-linearly independent (Lemma III.1.24).

Let y1, ..., yn ∈ Mp form a K(p)-basis. By Lemma III.1.25, we can lift these elements

to K(p)-linear independent elements x1, ..., xn ∈ Mp. The elements x0, x1, ..., xn ∈ M are

independent. Then, pr−1 · x0, x1, ..., xn are also independent. Observe that pr−1 · x0 ∈ Mp.

We see

dimK(p)(Mp) ≥ n + 1 = dimK(p)(Mp) + 1.

We now prove the result by induction on d := dimK(p)(M). If d = 0, we claim that

M = {0}. Indeed, if M , {0} and x ∈ M \ {0}, then o := ordp(x) ≥ 1 and po−1 · x is an

element of order 1, i.e., a non-zero element in Mp.

Now, suppose the result holds for all natural numbers < dimK(p)(Mp). Pick an element

x0 ∈ M of order e = exp0(M). Then,

dimK(p)

((
M/〈x0〉

)
p

)
< dimK(p)(Mp).

By induction hypothesis, M/〈x0〉 is generated by independent elements y1, ..., yn. We con-

struct x1, ..., xn ∈ M as in Lemma III.1.25. Then, x0, x1, ..., xn generate M and are inde-

pendent. This means

M = 〈x0〉 ⊕ 〈x1〉 ⊕ · · · ⊕ 〈xn〉.

Furthermore,

〈xi〉 � R/〈pordp(xi)〉, i = 0, 1, ..., n.

This finishes the proof. �

III.1.26 Theorem (Torsion modules over principal ideal domains). Let M be a finitely

generated torsion module. Then, there are positive integers s, t1, ..., ts, s distinct prime

elements p1, ..., ps ∈ P, and positive integers 1 ≤ ki1 ≤ · · · ≤ kiti , i = 1, ..., s, such that

M � R/〈pk11

1
〉 ⊕ · · · ⊕ R/〈pk1t1

1
〉 ⊕ · · · ⊕ R/〈pks1

s 〉 ⊕ · · · ⊕ R/〈pksts
s 〉. (III.4)

The integers s, t1, ..., ts, ki j, j = 1, ..., ti, i = 1, ..., s, and the prime elements6 p1, ..., ps ∈
P are uniquely determined by M.

6They depend, of course, on the choice of P.
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Proof. The existence follows from the previous discussion. The uniqueness follows from

a careful look at submodules of the form Np where N is constructed in some way from M

and p ∈ P is a prime element.

First, we observe

{ p1, ..., ps } =
{

p ∈ P |Mp , {0}
}
.

Hence, s and p1, ..., ps are uniquely determined.

Next, we point out that

(
Z/〈pk〉

)
p = 〈p

k−1〉/〈pk〉, p ∈ P, k ≥ 1.

This shows

ti = dimK(pi)(Mpi
), i = 1, ..., s.

Likewise one sees

#
{

j ∈ { 1, ..., ts } | ki j ≥ l
}
= dimK(pi)

((
M/pl−1

i · M
)

pi

)
, l ≥ 1, i = 1, ..., s.

From these numbers, one may clearly determine k11, ..., ksts
. �

As an application of this result, let us derive the theorem on the Jordan normal form.

Let R = C[x] and let (M, f ) be a pair in which M is a finite dimensional complex vector

space and f : M −→ M is an endomorphism. By Example III.1.2, ii), and Exercise

III.1.12, iv), this defines a torsion module over C[x].

We decompose it according to Theorem III.1.26. Since C is algebraically closed, a

polynomial p ∈ C[x] is irreducible if and only if it is linear, i.e., of the form c · (x− λ), for

some c ∈ C⋆, λ ∈ C. We need to understand the C[x]-modules

Mλ,k = C[x]/
〈
(x − λ)k〉, λ ∈ C, k ≥ 1.

The elements

vi :=
[
(x − λ)k+1−i], i = 1, ..., k,

form a C-basis for Mλ,k. Set v0 := 0. We have, for i = 1, ..., k,

x ·vi = λ ·vi+(x−λ) ·vi = λ ·vi+(x−λ) ·
[
(x−λ)k+1−i] = λ ·vi+

[
(x−λ)k+1−(i−1)] = λ ·vi+vi−1.

Thus, with respect to the ordered C-basis (v1, ..., vk) of Mλ,k, multiplication by x is de-

scribed by the matrix 

λ 1 0 · · · 0

0 λ
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . . λ 1

0 · · · · · · 0 λ



, λ ∈ C.

III.1.27 Theorem (Finitely generated modules over principal ideal domains). Let R be a

principal ideal domain and M a finitely generated R-module. Then, there are a positive

integer t and elements a1, ..., at ∈ R \ {0} with

〈a1〉 ⊃ · · · ⊃ 〈at〉
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and

M � R⊕rk(M) ⊕ R/〈a1〉 ⊕ · · · ⊕ R/〈at〉. (III.5)

Moreover, if a′
1
, ..., a′u are other elements with these properties, then t = u and ai ∼ a′

i
,

i = 1, ..., t.

Proof. By Theorem III.1.14, it suffices to look at the case rk(M) = 0, i.e., that M is a

torsion module. We use Theorem III.1.26. Let t := max{ ti | i = 1, ..., s }. Define

li1 := · · · := li(t−ti) := 0 and li(t−ti+ j) := ki j, j = 1, ..., ti, i = 1, ..., s,

and

aν = p
l1ν
1
· · · · · plsν

s , ν = 1, ..., t.

By the Chinese remainder theorem I.8.12, these elements clearly have the required prop-

erties.

Since we recover the decomposition (III.4) from (III.5), the asserted uniqueness fol-

lows from the corresponding statement in Theorem III.1.26. �

Note that this theorem includes the main theorem on finitely generated abelian groups

([30], Satz II.13.5).

Noetherian Modules

Let R be a ring and M an R-module. We say that M is noetherian, if every submodule N

of M is finitely generated.

III.1.28 Remark. i) We may view R as an R-module (Example III.1.2, iv). Then, the

submodules of R are the ideals of R (see Example III.1.5). So, R is noetherian as R-

module if and only if R is noetherian as ring.

ii) If R is not noetherian, then there exist finitely generated R-modules which are not

noetherian. In fact, R itself is such an example. It is free of rank 1 as R-module and

contains an ideal I which is not finitely generated.

III.1.29 Lemma. Let M be an R-module and N ⊂ M a submodule. Then, M is noetherian

if and only if N and M/N are noetherian.

Proof. We will use the canonical surjection

π : M −→ M/N.

Assume first that M is noetherian. Every submodule of N is also a submodule of M.

Therefore, N is also noetherian. The fact that any submodule of M/N is finitely generated

is shown with an argument similar to the one in the proof Corollary III.1.18.

Next, assume that N and M/N are noetherian and P is a submodule of M. Let

x1, ..., xm ∈ P be generators of the module N ∩ P, y1, ..., yn ∈ M/N generators for π(P) ⊂
M/N, and xm+i ∈ P with π(xm+i) = yi, i = 1, ..., n. Then, one easily checks that x1, ..., xm+n

generate P. �

III.1.30 Proposition. Let R be a noetherian ring, M a finitely generated R-module. Then,

M is a noetherian R-module.
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Proof. There exist a natural number m ≥ 0 and a surjection ϕ : R⊕m −→ M. By Lemma

III.1.29, it suffices to show that R⊕m is noetherian. This will be done by induction on m.

m = 1. This was explained in Remark III.1.28.

m −→ m+ 1. Let

N :=
{

(0, ..., 0, r) ∈ R⊕(n+1) | r ∈ R
}
.

This is a submodule of R⊕m. It is evidently isomorphic to R. The quotient R⊕(m+1)/N is

isomorphic to R⊕m. In fact,

ϕ : R⊕m −→ R⊕(m+1) −→ R⊕(m+1)/M

(a1, ..., am) 7−→ (a1, ..., am, 0)

(a1, ..., am, am+1) 7−→ [a1, ..., am, am+1]

is an isomorphism. By the induction hypothesis, N and R⊕(m+1)/N are noetherian. By

Lemma III.1.29, R⊕(m+1) is noetherian, too. �

III.1.31 The Nakayama7 lemma. Let R be a local ring with maximal ideal m. Let M be

a finitely generated R-module, such that

m · M = M.

Then,

M = {0}.

Proof. Assume M , {0} and let m ≥ 1 be minimal, such that there is a surjection

ϕ : R⊕m −→ M. Define ei as in the proof of Proposition III.1.21 and set xi := ϕ(ei),

i = 1, ...,m. Since m · M = M, there are elements a1, ..., at ∈ m, such that

xm = a1 · x1 + · · · + am · xm,

i.e.,

(1 − am) · xm = a1 · x1 + · · · + am−1 · xm−1.

Since am ∈ m and R is a local ring, (1 − am) is a unit. This shows that xm is a linear

combination of x1, ..., xm−1, so that M is generated by x1, ..., xm−1. This contradicts the

choice of m. �

We will discuss two applications of this result.

III.1.32 Krull’s8 intersection theorem. Let R be a noetherian local ring with maximal

ideal m. Then,

I :=
⋂

k∈N
mk = {0}.

Proof. The intersection I is an ideal. Set

Σ :=
{

J ⊆ R | J is an ideal with J ∩ I = m · I
}
.

Note thatm · I ∈ Σ, so that Σ , ∅. Let J0 be a maximal element of Σ (see Theorem II.1.1).

By definition, m · I ⊂ J0.

7Tadashi Nakayama (1912 - 1964), japanese mathematician.
8Wolfgang Krull (1899 - 1971), german mathematician.

89



III. The Nullstellensatz

Claim. There is a natural number k ∈ N, such that mk ⊆ J0.

If the claim is correct, we have

I ⊂ mk ⊂ J0,

so that

I ⊂ J0 ∩ I = m · I.
We see

I = m · I.
Hence, I = {0}, by the Nakayama lemma III.1.31. X

Let us prove the claim. Since m is finitely generated, it suffices to check:

∀ f ∈ m∃l ≥ 1 : f l ∈ J0.

In fact, let f1, ..., fn generate m and assume f
li
i
∈ J0, i = 1, ..., n. For k ≥ 1, mk is generated

by the monomials (compare Example I.8.8, ii)

f
k1

1
· · · · · f kn

n with k1 + · · · + kn = k. (III.6)

If k ≥ l1 + · · · + ln, there is an index i0 ∈ { 1, ..., n }with ki0 ≥ li0 , and then the monomial in

(III.6) belongs to J0.

Let f ∈ m and look at the ascending chain

(
J0 : 〈 f k〉

)
k∈N.

There is an exponent k0 ≥ 1, such that

(
J0 : 〈 f k0〉

)
=

(
J0 : 〈 f k0+1〉

)
.

Choose x ∈ (J0 + 〈 f k0〉) ∩ I. This means

∃y ∈ J0∃a ∈ R : x = y + a · f k0 .

We see

f k0+1 · a = f · x − f · y ∈ m · I + J0 = J0

and conclude a ∈ (J0 : 〈 f k0+1〉) = (J0 : 〈 f k0〉). Consequently, a · f k0 ∈ J0 and x ∈ J0. This

implies (
J0 + 〈 f k0〉

)
∩ I = J0 ∩ I = m · I and

(
J0 + 〈 f k0〉

)
∈ Σ.

Since J0 is maximal in Σ and J0 ⊂ J0 + 〈 f k0〉, we infer J0 = J0 + 〈 f k0〉, that is f k0 ∈ J0. �

Let M and N be finitely generated R-modules and ϕ : M −→ N a homomorphism of

R-modules. We also have the natural quotient map

π : N −→ C := coker(ϕ) = N/im(ϕ).

Note that we get induced homomorphisms

ϕ : M := M/(m · M) −→ N := M/(m · N)

and

π : N −→ C := C/(m · C).

90



III.2. Finite Ring Extensions

III.1.33 Lemma. i) We have C � coker(ϕ).

ii) The homomorphism ϕ is surjective if and only if ϕ is surjective.

Proof. ii) If ϕ is surjective, then ϕ is obviously surjective, too. If ϕ is surjective, then

coker(ϕ) = {0}. By i), C = {0}. The Nakayama lemma III.1.31 implies C = {0}, i.e., the

surjectivity of ϕ.

i) We have to show that

ker(π) = im(ϕ).

The inclusion “⊃” is clear. For “⊂”, let y ∈ N be such that π([y]) = [π(y)] = 0. So, there

are an element m ∈ m and an element z ∈ N with π(y) = m · [z] in C. This, in turn, means

that there is an element u ∈ im(ϕ) with

y = u + m · z.

We see that, in N, we have

[y] = [u],

and this element belongs to im(ϕ). �

III.1.34 Remark. The proof actually shows that the kernel of the induced surjection

N −→ C

is

im(ϕ) +m · N.
III.1.35 Exercise. Let R be a local ring with maximal ideal m, M a finitely generated

R-module, and N ⊂ M a submodule. Prove that, if

M = m · M + N,

then

M = N.

III.2 Finite Ring Extensions

Let R, S be rings and ϕ : R −→ S a ring homomorphism. We say that ϕ is a finite ring

extension, if ϕ is injective and S is finitely generated as an R-module.

III.2.1 Example. If K and L are fields, then a finite field extension K ⊂ L, i.e., dimK(L) <

∞, is an example for a finite ring extension.

For the following definitions, we assume that ϕ is injective. An element s ∈ S is

integral over R, if there are a positive integer n > 0 and elements a1, ..., an ∈ R with9

sn + a1 · sn−1 + · · · + an−1 · s + an = 0.

III.2.2 Example. Let K ⊂ L a field extension. Then, y ∈ L is integral over K if and only if

it is algebraic over K (see [8], Satz III.1.6.2, i). If R and S aren’t fields, it is important to

keep in mind that the coefficient of the highest occurring power of s is 1.

9The symbol “·” refers to the R-module structure of S (Example III.1.2, iv).
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III. The Nullstellensatz

The ring R is integrally closed in S , if

∀s ∈ S : s is integral over R ⇐⇒ s ∈ R.

We say that R is integrally closed, if R is integrally closed in its total ring of fractions (see

Example II.3.5, ii). A ring R is reduced, if
√
〈0〉 = {0}, i.e., R does not contain non-trivial

nilpotent elements. It is normal, if it is integrally closed and reduced.

III.2.3 Examples. i) We define

R := C[x, y]/〈x2 − y3〉.

One readily checks that the polynomial x2 − y3 is irreducible, so that R is an integral

domain.

We will show that R is not normal. For this, we look at the element

t :=
x

y
∈ Q(R)

in the quotient field of R. We have

t2 =
x2

y2
=

y3

y2
= y and t3 = t · y = x.

In particular, t is integral over R, but is is not contained in R. This shows that R is not

normal.

To conclude this example, let us compute the normalization of R, i.e., its integral

closure in Q(R). We look at

S := R[t] ⊂ Q(R).

We see that

S � C[x, y, t]/〈 x2 − y3, t2 − y, t3 − x 〉.
Moreover, one checks that

ϕ : C[ϑ] −→ S

ϑ 7−→ t

and

ψ : S −→ C[ϑ]

t 7−→ ϑ

x 7−→ ϑ3

y 7−→ ϑ2

are homomorphisms which are inverse to each other. It is easy to verify that the poly-

nomial ring C[ϑ] is a normal ring. Hence, so is S . The integral extension ν : R ⊂ S is,

therefore, called the normalization. Using the isomorphism S � C[ϑ] just described, it is

given as

ν : S −→ C[ϑ]

x 7−→ t3

y 7−→ t2.
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Its geometric counterpart is the map

f : A1
C

−→ V(x2 − y3) ⊂ A2
k

t 7−→ (t3, t2).

A

1
C

f
−→

ii) Set

R := C[x, y]/〈 x · y 〉.

We write abusively x, y for [x], [y] ∈ R. Note that R is not an integral domain but reduced

and that

〈0〉 = 〈x〉 ∩ 〈y〉

is a minimal primary decomposition. By Theorem II.4.28, iii), we have

{ zero divisors of R } = 〈x〉 ∪ 〈y〉.

This shows that x + y is not a zero divisor, so that we may form the non-zero element

u :=
x

x + y
∈ Q(R)

in the total ring of fractions of R. It is not contained in R, but satisfies the integrality

condition

u2 − u =
x2

(x + y)2
− x

x + y

x·y=0
=

x · (x + y)

(x + y)2
− x

x + y
=

x

x + y
− x

x + y
= 0.

This shows that R is not normal.

iii) Set R := C[x]/〈x2〉. An element a + b · [x] is a unit if and only if a , 0, a, b ∈ C.

Otherwise, it is nilpotent. We see that Q(R) = R. The ring R is integrally closed, but not

normal, because it is not reduced.

The notion of normality is an important concept in commutative algebra and algebraic

geometry. The above examples already suggest that the notion of normality is related to

singularities. We will study normal rings and normalizations in more detail in Section

III.5 and IV.8.

Let K ⊂ L be a field extension. If it is finite, then every element of L is algebraic over

K. Conversely, if α ∈ L is algebraic over K, then the subfield K(α) ⊂ L it generates is a

finite extension of K. The sum and product of algebraic elements are algebraic, and so on.

The reader may consult, e.g., [8], Satz III.1.6.2, ii), for this. We will now prove similar

results in the realm of commutative rings.
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III. The Nullstellensatz

III.2.4 Proposition. Let ϕ : R −→ S be an injective ring homomorphism and s ∈ S . The

following conditions are equivalent:

i) The element s is integral over R.

ii) The R-module R[s] ⊂ S is finitely generated.

iii) There is a finitely generated R-module T ⊂ S which contains R[s].

iv) There exists an R[s]-module M, such that

⋆ M is finitely generated as R-module,

⋆ AnnR[s](M) =
{
y ∈ R[s] | y · M = {0} } = {0}.

Proof. “i)=⇒ii)”. Let n ≥ 1 and a1, ..., an ∈ R, such that

sn + a1 · sn−1 + · · · + an−1 · s + an = 0.

Then, R[s] is generated as an R-module by 1, s, ..., sn−1. In fact, set

p(x) := xn + a1 · xn−1 + · · · + an−1 · x + an ∈ R[x].

For u ∈ R[s], there is a polynomial g ∈ R[x] with u = g(s). Since the leading coefficient of

p is a unit in R, polynomial division is possible. This implies that there are polynomials

q, r ∈ R[x], such that

g = q · p + r

and deg(r) < n. Then,

u = g(s) = r(s) ∈ 〈 1, s, ..., sn−1 〉.

“ii)=⇒iii)”. We may take T = R[s].

“iii)=⇒iv)”. Set M := T . For y ∈ AnnR[s](M) ⊂ S , we have y · 1 = 0 and, thus, y = 0.

“iv)=⇒i)”. Let M be generated as an R-module by the elements x1, ..., xm. There are

elements ai j ∈ R, i, j = 1, ...,m, such that

∀i ∈ { 1, ...,m } : s · xi = ai1 · x1 + · · · + aim · xm.

We form the (m × m)-matrix

B := s · Em − (ai j)i, j=1,...,m ∈ Matm

(
R[s]

)

with entries in the ring R[s]. By definition

B ·



x1

...

xm

 = 0. (III.7)

We note that the theory of determinants works over every commutative ring. In particular,

we have Cramer’s rule10 ([33], §27): For i, j = { 1, ...,m }, let Bi j ∈ Matm−1(R[s]) be the

matrix that is obtained from B by deleting the i-th column and the j-th row and bi j :=

(−1)i+ j · det(Bi j). The matrix Bad := (bi j)i, j=1,...,m is the adjoint matrix of B and satisfies

Bad · B = det(B).

10Gabriel Cramer (1704 - 1752), swiss mathematician.

94



III.2. Finite Ring Extensions

Multiplying Equation (III.7) by Bad yields the conclusion

∀i ∈ { 1, ...,m } : det(B) · xi = 0, i.e., det(B) ∈ AnnR[s](M).

By assumption, det(B) = 0. Expanding the determinant of B provides us with an integral-

ity equation for s. �

This proposition has several important consequences.

III.2.5 Corollary. Let R, S be rings and ϕ : R −→ S an injective ring homomorphism.

i) Suppose n ≥ 1 and s1, ..., sn ∈ S are integral over R. Then, the R-subalgebra

R[s1, ..., sn] ⊂ S is finitely generated as R-module.

ii) If s, t ∈ S are integral over R, then so are s + t and s · t. In particular,

T :=
{

s ∈ S | s is integral over R
}

is a subring of S .

The subring T in Part ii) of the corollary is called the integral closure of R in S . In the

proof of the above corollary, we use the following

III.2.6 Lemma. Suppose A, B,C are rings and f : A −→ B and g : B −→ C are homo-

morphisms. If B is finitely generated as A-module and C is finitely generated as B-module,

then C is also finitely generated as A-module.

Proof. Suppose x1, ..., xm ∈ B generate B as A-module and that y1, ..., yn ∈ C generate C

as B-module. Using the B-module structure of C, we introduce the elements

xi · y j, i = 1, ...,m, j = 1, ..., n.

It is readily checked that these elements generate C as A-module. �

Proof of Corollary III.2.5. i) We prove this result by induction on n. The case n = 1 is

Part ii) of Proposition III.2.4, ii).

n −→ n+ 1. For the induction step, we write (compare (I.2))

R[s1, ..., sn+1] = R[s1, ..., sn][sn+1].

By induction hypothesis, R[s1, ..., sn] is finitely generated as R-module. Since sn+1 is

integral over R, it is also integral over R[s1, ..., sn]. By Part ii) of Proposition III.2.4,

R[s1, ..., sn, sn+1] is a finitely generated R[s1, ..., sn]-module. Lemma III.2.6 shows that

R[s1, ..., sn, sn+1] is also finitely generated as R-module.

ii) By Part i), we know that the R-module R[s, t] ⊂ S is finitely generated. Note

R[s + t] ⊂ R[s, t] and R[s · t] ⊂ R[s, t]. Part iii) of Proposition III.2.4, iii), says that s + t

and s · t are integral over R. �

III.2.7 Corollary. Let R, S , T be rings and ϕ : R −→ S and ψ : S −→ T injective ring

homomorphisms. If S is integral over R and T is integral over S , then T is also integral

over R.
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III. The Nullstellensatz

Proof. Let t ∈ T . There exist a natural number n ≥ 1 and elements b1, ..., bn ∈ S with

tn + b1 · tn−1 + · · · + bn−1 · t + bn = 0.

Set S ′ := R[b1, ..., bn]. The elements b1, ..., bn are integral over R. By Corollary III.2.5, S ′

is a finitely generated R-module. The element t is integral over S ′. So,

S ′[t] = R[b1, ..., bn, t]

is a finitely generated S ′-module. Lemma III.2.6 proves that R[b1, ..., bn, t] is a finitely

generated R-module. It contains R[t]. By Part iii) of Proposition III.2.4, t is integral over

R. �

III.2.8 Corollary. Let R, S be rings, ϕ : R −→ S an injective homomorphism, and T ⊂ S

the integral closure of R in S . Then, T is integrally closed in S .

III.2.9 Example. This corollary can be applied to the homomorphism ϕ : R −→ Q(R). If T

is the integral closure of R in Q(R), then Q(T ) = Q(R) (Exercise III.2.11, ii). This means

that T is an integrally closed ring.

III.2.10 Exercise (Integral ring extensions). Let R, S 1,...,S n be rings and fi : R −→ S i,

i = 1, ..., n, integral ring extensions. Show that

f : R −→
n

�

i=1

S i

x 7−→
(
f1(x), ..., fn(x)

)

is also an integral ring extension.

III.2.11 Exercises (Total rings of fractions and integral ring extensions). Let R be a ring

and Q(R) its total ring of fractions.

i) Show that the homomorphism

λR : R −→ Q(R)

a 7−→
a

1

is injective.

ii) Let S ⊂ Q(R) be a subring, containing λR(R). Prove that

ψ : Q(R) −→ Q(S )

a

s
7−→

λR(a)

λR(s)

is an isomorphism, so that, in particular, Q(Q(R)) = Q(R).

iii) Give an example of rings R, S , an injective ring homomorphism ϕ : R −→ S , and

an element a ∈ R, such that

⋆ a ∈ R is not a zero divisor,

⋆ ϕ(a) ∈ S is a zero divisor.
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Conclude that there is no ring homomorphism ψ : Q(R) −→ Q(S ), such that the diagram

R
ϕ

//

λR

��

S

λS

��

Q(R)
ψ

// Q(S )

commutes.

iv) Let R be a ring and S ⊂ Q(R) the integral closure of R in Q(R). Demonstrate that

S is an integrally closed ring with Q(R) = Q(S ).

III.2.12 Exercise (Normal rings). i) Let R be an integral domain and S ⊂ R a multiplica-

tively closed subset. Note that one may interpret the localization RS as a subring of the

quotient field Q(R). Using this interpretation, show that the following identity holds in

Q(R):

R =
⋂

m⊂R
maximal ideal

Rm.

Hint. Let s be an element of the right hand intersection. Look at { r ∈ R | r · s ∈ R }.
ii) Prove that an integral domain R is normal if and only if Rm is normal for every

maximal ideal m ⊂ R.

III.3 The Nullstellensatz

In this section, we will present a fairly elementary proof of Hilbert’s Nullstellensatz, fol-

lowing Swan11 [34]. It is due to Munshi [22]. The next section contains a more geometric

proof, based on Noether’s normalization theorem.

III.3.1 Nullstellensatz — Field theoretic version. Let k be a field and R a finitely gen-

erated k-algebra. If R is a field, then k ⊂ R is a finite field extension.

III.3.2 Exercise (Maximal ideals). Suppose that k is an algebraically closed field and that

m ⊂ k[x1, ..., xn] is a maximal ideal. Prove that there exists a point (a1, ..., an) ∈ An
k

with

m = 〈 x1 − a1, ..., xn − an 〉.

III.3.3 Weak Nullstellensatz. Let k be an algebraically closed field, n ≥ 1 a natural

number, and I ( k[x1, ..., xn] a proper ideal. Then,

V(I) , ∅.

Proof. There is a maximal ideal m with I ⊂ m (Corollary I.4.8, i). By Exercise III.3.2,

there is a point (a1, ..., an) ∈ An
k
, such that

m = 〈 x1 − a1, ..., xn − an 〉.

Then,

(a1, ..., an) ∈ V(I).

This proves the claim. �

11Richard Gordon Swan (∗ 1933), US mathematician.
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III.3.4 Strong Nullstellensatz. Let k be an algebraically closed field, n ≥ 1 a natural

number, and I ⊂ k[x1, ..., xn] an ideal. Then,

I
(
V(I)

)
=
√

I.

Proof. We apply the trick of Rabinovich. Let I = 〈 f1, ..., fm 〉 ⊂ k[x1, ..., xn] and f ∈
I(V(I)) \ {0}. This means

∀a = (a1, ..., an) ∈ An
k :

(
∀i ∈ { 1, ...,m } : fi(a) = 0

)
=⇒ f (a) = 0.

We infer that the polynomials f1, ..., fm, (1− x0 · f ) ∈ k[x0, x1, ..., xn] do not have a common

zero in An+1
k

. By the weak Nullstellensatz III.3.3, there exist polynomials b0, ..., bm ∈
k[x0, ..., xm] with

b0 · (1 − x0 · f ) + b1 · f1 + · · · + bm · fm = 1. (III.8)

Define

ϕ : k[x0, ..., xm] −→ k[x1, ..., xn] f

x0 7−→
1

f

xi 7−→ xi, i = 1, ..., n.

With ci := ϕ(bi), i = 1, ...,m, Equation (III.8) yields

c1 · f1 + · · · + cm · fm = 1. (III.9)

By construction of the localization R[x1, ..., xn] f , there exists a natural number s ∈ N with

di := f s · ci ∈ R[x1, ..., xn], i = 1, ...,m.

Multiplying Equation (III.9) by f s gives

d1 · f1 + · · · + dm · fm = f s

and shows f s ∈ I and f ∈
√

I. �

III.3.5 Corollary. Let k be an algebraically closed field, n ≥ 1 a natural number. Then,

the maps Φ and Ψ defined on Page 43 are bijections which are inverse to each other.

Next, we will prepare the proof of Theorem III.3.1.

III.3.6 Lemma. Let R be an integral domain and R[x] the polynomial ring in one variable

over R. Then, there does not exist an element f ∈ R[x], such that the localization R[x] f is

a field.

Proof. Assume to the contrary that f ∈ R[x] is an element, such that R[x] f is a field.

Obviously, we must have deg( f ) ≥ 1. In particular, 1 + f , 0. There are a polynomial

g ∈ R[x] and an exponent k ∈ N, such that the equation

1

1 + f
=

g

f k
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holds in R(x) := Q(R[x]). It implies the equation

f k = (1 + f ) · g (III.10)

in R[x]. We pass to the ring S := R[x]/〈1 + f 〉. Then, [ f ] = −1 in S and (III.10) gives

[ f ]k = 0. We find

(−1)k = 0

in S . This means S = {0} and 〈1 + f 〉 = R[x]. So, 1 + f is a unit in R[x]. But this is

impossible, because deg(1 + f ) > 0 (Exercise I.3.10). �

III.3.7 Lemma. Let ϕ : R −→ S be an integral ring extension. Then,

R ∩ S ⋆ = R⋆.

Proof. The inclusion “⊃” is obvious. For the converse inclusion, let a ∈ R ∩ S ⋆. Then,

there is an element b ∈ S with a · b = 1. Since b is integral over R, there are a positive

integer n ≥ 1 and elements a1, ..., an ∈ R with

bn + a1 · bn−1 + · · · + an−1 · b + an = 0.

We multiply this by an−1 and find

b = −a1 − a2 · a − · · · − an−1 · an−2 − an · an−1.

This shows b ∈ R and a ∈ R⋆. �

III.3.8 Exercise. Let R and S be integral domains, ϕ : R −→ S an integral ring extension,

and n ⊂ S be a maximal ideal and m := n ∩ R. Show that m is a maximal ideal in R.

III.3.9 Lemma. Let ϕ : R −→ S be an integral ring extension. If S is a field, then so is R.

Proof. This is a direct consequence of Lemma III.3.7: R \ {0} = R∩ (S \ {0}) = R ∩ S ⋆ =

R⋆. �

The central ingredient in the proof of the Nullstellensatz is

III.3.10 Proposition. Let R be an integral domain, n ≥ 1 a positive integer, and m ⊂
R[x1, ..., xn] a maximal ideal with

m ∩ R = {0}.

Then, there exists an element a ∈ R, such that

⋆ Ra is a field,

⋆ Ra ⊂ R[x1, ..., xn]/m is a finite field extension.
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Proof. We prove the result by induction on n.

n = 1. Let f ∈ m \ {0} be a non-constant element and l ≥ 1 be its degree. Write

f = a0 · xl + a1 · xl−1 + · · · + al−1 · x + al.

Since R ∩ m = 0, by assumption, we have a0 < m. Thus, we obtain the injective homo-

morphism (compare Exercise II.3.8)

ϕ : Ra0
−→ R[x]/m = R[ξ], ξ := [x].

Observe that

g :=
1

a0

· f = xl + b1 · xl−1 + · · · + bl−1 · x + bl, bi :=
ai

a0

, i = 1, ..., l,

is a polynomial in Ra0
[x] with

g(ξ) = 0.

This shows that ϕ is an integral ring extension. By Lemma III.3.9, Ra0
is a field. Obvi-

ously, ϕ is a field extension of degree at most l.

n −→ n+ 1. Set S i := R[xi], i = 1, ..., n + 1. We apply the induction hypothesis to S i

and the polynomial ring

S i[x1, ..., xi−1, xi+1, ..., xn+1], i = 1, ..., n + 1.

We infer from Proposition III.3.10 that

S i ∩ m , {0}, i = 1, ..., n + 1.

Pick non-zero elements

fi ∈ S i ∩m
and write

fi = ai
0 · xl

i + ai
1 · xl−1

i + · · · + ai
l−1 · xi + ai

l, i = 1, ..., n + 1.

As before, we may assume that ai
0
< m, i = 1, ..., n + 1, and

a := a1
0 · · · · · al+1

0 < m.

We get the injective homomorphism

ϕ : Ra −→ R[x1, ..., xn+1]/m = R[ξ1, ..., ξn+1], ξi := [xi], i = 1, ..., n + 1.

Note that
1

ai
0

=
a1

0 · · · · · ai−1
0
· ai+1

0
· · · · · an+1

i

a
∈ Ra, i = 1, ..., n + 1,

so that we can form the polynomial

gi :=
1

ai
0

· f = xl
i + bi

1 · xl−1
i + · · · + bi

l−1 · xi + bi
l, bi

j :=
bi

j

ai
0

, j = 1, ..., l,

in Ra[xi], i = 1, ..., n. We have

gi(ξi) = 0, i = 1, ..., n.

We see that ϕ is an integral ring extension. As before, we conclude that Ra is a field and

ϕ is a finite field extension. �
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Proof of Theorem III.3.1. We find a positive integer n ≥ 1 and a surjection

ϕ : k[x1, ..., xn] −→ R.

Its kernel is a maximal ideal m ⊂ k[x1, ..., xn]. Since the elements of k⋆ are units in

k[x1, ..., xn], we have

k ∩m = {0}.

In Proposition III.3.10, we must have Ra = k, so that this proposition immediately yields

the claim. �

III.3.11 Exercise (Study’s lemma12). Deduce the following result from the Nullstellensatz:

Let k be an algebraically closed field and f , g ∈ k[x1, ..., xn] polynomials. Assume that f

is irreducible and V( f ) ⊂ V(g). Show that f divides g in k[x1, ..., xn].

III.4 Noether Normalization

Let k be an infinite field, e.g., an algebraically closed field. We first collect some elemen-

tary facts on the polynomial ring k[x1, ..., xn].

III.4.1 Lemma. Let f ∈ k[x1, ..., xn] \ {0} be a non-zero polynomial. Then, there exists a

point (a1, ..., an) ∈ An
k

with

f (a1, ..., an) , 0.

Proof. We prove this result by induction on n. For n = 1, observe that a polynomial

f ∈ k[x1] has at most deg( f ) zeroes and k is infinite.

n −→ n + 1. For the induction step, set S := k[x1, ..., xn] and let f ∈ S [xn+1] be a

non-trivial polynomial and d ∈ N its degree. There are polynomials g0, ..., gd ∈ S with

gd , 0, such that

f = gd · xd
n+1 + · · · + g1 · xn+1 + g0.

By the induction hypothesis, there is a point (a1, ..., an) ∈ An
k

with gd(a1, ..., an) , 0. Then,

f (a1, ..., an, xn+1) = gd(a1, ..., an) · xd
n+1 + · · · + g1(a1, ..., an) · xn+1 + g0(a1, ..., an)

is a non-trivial polynomial in k[xn+1]. There exists an element a ∈ k with

f (a1, ..., an, a) , 0,

and this finishes the proof. �

III.4.2 Exercises (Dominant regular maps). Let k be an algebraically closed field. An

affine algebraic variety is an irreducible algebraic set X ⊂ An
k
. Recall that an algebraic

set Z ⊂ An
k

is irreducible if and only if its coordinate algebra

k[Z] := k[x1, ..., xn]/I(Z)

is an integral domain. A regular map (see Exercise I.9.8) f : X −→ Y between algebraic

varieties is dominant, if f (X) is dense in Y .

12Christian Hugo Eduard Study (1862 - 1930), German mathematician.
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i) Let F : X −→ Y be a regular map between algebraic varieties and F⋆ : k[Y] −→ k[X]

the corresponding homomorphism of algebras. Show that F is dominant if and only if F⋆

is injective.

ii) Let X be an algebraic variety. The function field of X is the quotient field

k(X) := Q
(
k[X]

)

of the coordinate algebra k[X] of X. Show that a dominant morphism F : X −→ Y induces

a field extension F# : k(Y) −→ k(X), such that the diagram

k[Y]
F⋆

//
� _

��

k[X]� _

��

k(Y)
F#

// k(X)

commutes.

An element m ∈ k[x1, ..., xn] is a monomial, if there are natural numbers k1, ..., kn ∈ N
with

m = x
k1

1
· · · · · xkn

n .

The number

deg(m) = k1 + · · · + kn

is the degree of m. The set of monomials is a k-basis for k[x1, ..., xn]. Let d ≥ 1 be a

natural number. A polynomial f ∈ k[x1, ..., xn] is homogeneous of degree d, if it is a linear

combination of monomials of degree d.

III.4.3 Remark. Lemma III.4.1 shows that a polynomial f ∈ k[x1, ..., xn] is homogeneous

of degree d if and only if

∀(a1, ..., an) ∈ An
k∀λ ∈ k : f (λ · a1, ..., λ · an) = λd · f (a1, ..., an).

The degree of a not necessarily homogeneous non-zero polynomial f ∈ k[x1, ..., xn] \
{0} is the maximal degree of a monomial occuring with non-zero coefficient in f .

III.4.4 Noether normalization for hypersurfaces. Let d ≥ 1 be a natural number and

f ∈ k[x1, ..., xn] a polynomial of degree d. Then, there are linear polynomials y1, ..., yn ∈
k[x1, ..., xn], polynomials g1, ..., gd ∈ k[x1, ..., xn−1], and a non-zero constant c ∈ k⋆, such

that

ϕ : k[x1, ..., xn] −→ k[x1, ..., xn]

xi 7−→ yi, i = 1, ..., n,

is an isomorphism and

ϕ( f ) = f (y1, ..., yn) = c · (xd
n + g1 · xd−1

n + · · · + gd−1 · xn + gd). (III.11)

Proof. There are uniquely determined homogeneous polynomials f0, ..., fd ∈ k[x1, ..., xn]

with

⋆ deg( fi) = i, i = 0, ..., d,
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⋆ f = fd + fd−1 + · · · + f1 + f0,

⋆ fd , 0.

By Lemma III.4.1, there is an element (b1, ..., bn) ∈ A

n
k

with c := fd(b1, ..., bn) , 0.

Note that (b1, ..., bn) , 0, because d ≥ 1 and fd is homogeneous of degree d, so that

fd(0, ..., 0) = 0. After renumbering, we may assume bn , 0. Set

yn := bn · xn,

yi := bi · xn + xi, i = 1, ..., n − 1.

We leave it to the reader to check that the homomorphism ϕ : k[x1, .., xn] −→ k[x1, ..., xn],

xi 7−→ yi, i = 1, ..., n, is an isomorphism. Let h := ϕ( f ). We compute (compare Remark

III.4.3)

h(0, ..., 0, xn) = fd(b1, ..., bn) · xd
n+ fd−1(b1, .., bn) · xd−1

n + · · ·+ f1(b1, ..., bn) · xn+ f0(b1, ..., bn).

This implies that there are polynomials g1, ..., gd ∈ k[x1, ..., xn−1], such that Equation

(III.11) holds. �

III.4.5 Remarks. i) Let f be a polynomial as in (III.11). Then,

k[x1, ..., xn]/〈 f 〉

is a finitely generated k[x1, ..., xn−1]-module. Indeed, it is generated by 1, [xn], ..., [xd−1
n ]

(see the proof of Proposition III.2.4).

ii) Assume that k is algebraically closed. There is a geometric interpretation of the

lemma. We let f be a polynomial as in (III.11) and look at the projection

π : An
k −→ A

n−1
k

(a1, ..., an) 7−→ (a1, ..., an−1)

and its restriction

π̃ := π|V( f ) : V( f ) −→ A

n−1
k

to the zero set of f . Then,

⋆ π̃ is surjective,

⋆ any fiber of π̃ consists of at most d points, or exactly d points when counted with

multiplicity.

This means that the hypersurface V( f ) ⊂ An
k

may be presented as a ramified covering of

degree d of affine (n − 1)-space An−1
k

. This suggests also that the dimension of V( f ) is

n − 1. We will develop this in Chapter IV.
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A

1
k

b

b

b

b

b

b

b

b

π

V( f )

ramification/discriminant locus

III.4.6 The projection theorem. Let k be an algebraically closed field, I ⊂ k[x1, .., xn]

an ideal, and f0 ∈ I an element for which there exist a natural number d ≥ 1 and elements

g1, ..., gd ∈ k[x1, ..., xn−1], such that

f0 = xd
n + g1 · xd−1

n + · · · + gd−1 · xn + gd.

Set

⋆ X := V(I) ⊂ An
k
,

⋆ I′ := I ∩ k[x1, ..., xn−1],

⋆ X′ := V(I′) ⊂ An−1
k

.

Then, the projection

π : An
k −→ A

n−1
k

(a1, ..., an) 7−→ (a1, ..., an−1)

satisfies

π(X) = X′.

Proof. “⊂”. Let a = (a1, ..., an−1) ∈ π(X). There, there exists an element b ∈ k with

(a, b) = (a1, ..., an−1, b) ∈ X.

For f ∈ I′ ⊂ I, we have f (a, b) = 0. Since f ∈ k[x1, ..., xn−1], this means f (a) = 0. We

conclude a ∈ V(I′).

“⊃”. Suppose a = (a1, ..., an−1) < π(X). We will construct an element g ∈ I′ with

g(a) , 0, so that a < X′.

Claim. Let f ∈ k[x1, ..., xn]. Then, there exist an element h f ∈ I and polynomials p0, ...,

pd−1 ∈ k[x1, ..., xn−1] with pi(a) = 0, i = 0, ..., d − 1, such that

f = p0 + p1 · xn + · · · + pd−1 · xd−1
n + h f .
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We look at the homomorphism

ϕ : k[x1, ..., xn] −→ k[xn]

xi 7−→ ai, i = 1, ..., n − 1,

xn 7−→ xn,

i.e.,

ϕ( f ) = f (a, xn).

Since ϕ is surjective, the image ϕ(I) of I is an ideal. Note:

∃b ∈ k : b ∈ V
(
ϕ(I)

)
⇐⇒ ∃b ∈ k∀ f ∈ I : f (a, b) = 0 ⇐⇒ a ∈ π(X).

Since we assumed a < π(X), we see V(ϕ(I)) = ∅. By the “Nullstellensatz in one variable”,

i.e., the definition of an algebraically closed field, ϕ(I) = k[xn]. So, there exists an element

h′
f
∈ I with

ϕ(h′f ) = ϕ( f ).

We set

g f := f − h′f .

We perform polynomial division by f0 (in k[x1, ..., xn−1][xn]). There are a polynomial

q ∈ k[x1, ..., xn] and polynomials p0, ..., pd−1 ∈ k[x1, ..., xn−1], such that

g f = q · f0 +

d−1∑

i=0

pi · xi
n.

We look at the equation

0 = g f (a, xn) = q(a, xn) · f0(a, xn) +

d−1∑

i=0

pi(a) · xi
n.

Now, deg( f0(a, xn)) = d. This implies q(a, xn) = 0 and pi(a) = 0, i = 0, ..., d − 1. With

h f := h′f + q · f0 ∈ I,

we find

f = h f +

d−1∑

i=0

pi · xi
n

as asserted. X

Using this claim, we find polynomials pi j ∈ k[x1, ..., xn−1] with pi j(a) = 0, i, j =

0, ..., d − 1, and hi ∈ I, i = 0, ..., d − 1, with

1 = p0,0 + p0,1 · xn + · · · + p0,d−1 · xd−1
n + h0

xn = p1,0 + p1,1 · xn + · · · + p1,d−1 · xd−1
n + h1

...

xd−1
n = pd−1,0 + pd−1,1 · xn + · · · + pd−1,d−1 · xd−1

n + hd−1.
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III. The Nullstellensatz

Define

A := Ed − (pi j)i, j=0,...,d−1 ∈ Matd

(
k[x1, ..., xn−1]

)
.

The above system of equations can be rewritten as

A ·



1
...

xd−1
n

 =



h0

...

hd−1

 .

Multiplying by the adjoint matrix (compare Page 94) Aad, we infer

det(A) ·



1
...

xd−1
n

 =



h′
0
...

h′
d−1

 , (III.12)

for appropriate polynomials h′0, ..., h
′
n ∈ I. We would like to show that g := det(A) ∈

k[x1, ..., xn−1] is the polynomial we are looking for. The first row in (III.12) shows g ∈ I

and, consequently, g ∈ I′. Finally, pi j(a) = 0, i, j = 0, ..., d − 1. This gives g(a) = 1. �

We pause a minute to give an alternative proof of the weak Nullstellensatz III.3.3.

Proof of Theorem III.3.3. We perform induction on n. For n = 0, 1, the theorem is true.

Since an algebraically closed field is infinite, we can apply Noether normalization for

hypersurfaces III.4.4 and assume without loss of generality that I contains an element f0

as in the projection theorem. If I ⊂ k[x1, ..., xn] is a proper ideal, so is I′ ⊂ k[x1, ..., xn−1].

By induction hypothesis, V(I′) , ∅. Since

π
(
V(I)

)
= V(I′),

we also have V(I) , ∅. �

III.4.7 Noether’s normalization theorem. Let k be an infinite field and I ⊂ k[x1, ..., xn]

a proper ideal. Then, there are linear polynomials z1, ..., zn ∈ k[x1, ..., xn] and a natural

number r ≤ n, such that

ψ : k[x1, ..., xn] −→ k[x1, ..., xn]

xi 7−→ zi, i = 1, ..., n,

is an isomorphism,

k[x1, ..., xr] −→ k[x1, ..., xn]/ψ(I)

xi 7−→ [xi], i = 1, ..., r,

is a finite ring extension. If I , 〈0〉, then r < n.

Proof. We perform induction on n. Note that the case I = 〈0〉 is trivial.

n = 1. Let f ∈ k[x] \ {0} be a polynomial with I = 〈 f 〉. Then, k[x]/I is a finite

dimensional k-vector space of dimension at most deg( f ) (compare Remark III.4.5, i).

n −→ n+ 1. Again, we may assume I , 〈0〉. We let y1, ..., yn and ϕ be as in Theorem

III.4.4, i.e., such that ϕ(I) contains an element f0 of the form given in (III.11). As was
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explained in Remark III.4.5, i), k[x1, ..., xn]/〈 f0〉 is a finite module over k[x1, ..., xn−1]. Set

J := ϕ(I) and

J′ := J ∩ k[x1, ..., xn−1].

Since f0 ∈ ϕ(I), we have the commutative diagram

k[x1, ..., xn−1] //

��

k[x1, ..., xn]/〈 f0〉

��

k[x1, ..., xn−1]/J′ // k[x1, ..., xn]/J

in which the vertical maps are surjective and the horizontal ones injective. So, the ring

k[x1, ..., xn]/J is a finite module over k[x1, ..., xn−1]/J′. Now, we apply the induction hy-

pothesis to J′ ⊂ k[x1, ..., xn−1]. (The reader should pay attention how to combine the

choice of y1, ..., yn and the choice of elements in k[x1, ..., xn−1] hidden in the application of

the induction hypotheses to J′ to a single choice of elements z1, ..., zn ∈ k[x1, ..., xn].) �

III.4.8 Lemma. Assume that k is algebraically closed, and let I ⊂ k[x1, ..., xn] be an ideal

and r ≤ n an integer, such that

k[x1, ..., xr] −→ k[x1, ..., xn]/I

is injective and k[x1, ..., xn]/I is a finite k[x1, ..., xr]-module. Then, the restriction

π̃ := π|V(I) : V(I) −→ A

r
k

of the projection

π : An
k −→ A

r
k

(a1, ..., an) 7−→ (a1, ..., ar)

to the algebraic set V(I) is surjective.

Proof. Set si := [xi] ∈ k[x1, ..., xn]/I, i = r + 1, ...., n. Since si is integral over S :=

k[x1, ..., xr], there are a positive integer di ∈ Z and a polynomial

fi(xi) = x
di

i
+ g1 · xdi−1

i
+ · · · + gdi−1 · xi + gdi

∈ S [xi] (III.13)

with

fi(si) = 0,

i.e.,

fi ∈ I ∩ k[x1, ..., xi], i = r + 1, ..., n.

Define, for i = r + 1, ..., n,

Ji := I ∩ k[x1, ..., xi]

and

πi : A
i
k −→ A

i−1
k

(a1, ..., ai) 7−→ (a1, ..., ai−1).
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Due to (III.13), the projection theorem III.4.6 implies that πi maps V(Ji) surjectively

onto V(Ji−1), i = r + 2, ..., n, and V(Jr+1) surjectively onto Ar
k
. Since

π = πr+1 ◦ · · · ◦ πn,

this gives the assertion. We will see in Remark IV.2.5, ii), a more conceptual proof of this

statement. �

III.4.9 Exercises (Noether normalization). We study the map

v : C −→ C

3

t 7−→ (t3, t4, t5).

i) Show that the image of v is the set V(a) with

a := 〈 z2
2 − z1 · z3, z

3
1 − z2 · z3, z

2
3 − z2

1 · z2 〉.

ii) Prove that the projection π : C3 −→ C, (z1, z2, z3) 7−→ z1, gives a Noether normal-

ization of V(a), such that z2 is a primitive element for the corresponding field extension.

Determine the discriminant locus.

III.4.10 Exercise (Noether normalization). Let S be an integral domain and R ⊂ S a

subring, such that S is finitely generated as R-algebra. Prove that there are a non-zero

element f ∈ R \ {0}, a natural number n, and elements y1, ..., yn ∈ S , such that

⋆ y1, ..., yn are algebraically independent over R,13

⋆ the induced homomorphism ϕ : R f [y1, ..., yn] −→ S f is an integral ring extension.

III.4.11 Exercise (Universal property of normalization). An affine algebraic variety X is

said to be normal, if its coordinate algebra k[X] is normal (compare Exercise III.4.2). Let

k be an algebraically closed field and X an affine algebraic variety over k. Show that there

are a normal affine algebraic variety X̃ and a dominant regular map

ν : X̃ −→ X

which are universal, i.e., for every normal algebraic variety Z and every dominant regular

map ϕ : Z −→ X, there is a unique regular map ϑ : Z −→ X̃ with ϕ = ν ◦ ϑ:

Z
∃!ϑ

//❴❴❴

ϕ
��
❃❃

❃❃
❃❃

❃❃
X̃

ν

��

X.

The pair (X̃, ν) is the normalization of X.

13See Page 8 for the definition of algebraically independent elements.
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III.5 Normal Rings

III.5.1 Lemma. Let R be a factorial ring.14 Then, R is a normal ring.

Proof. Recall that a factorial ring is an integral domain. Let Q(R) be the quotient field

of R and s ∈ Q(R) \ {0} a non-zero element which is integral over R. Pick d ≥ 1 and

a1, ..., ad ∈ R with

sd + a1 · sd−1 + · · · + ad−1 · s + ad = 0. (III.14)

According to Lemma I.6.11, there are elements q, r ∈ R \ {0} which are coprime and

satisfy

s =
q

r
.

By Equation (III.14),

rd−1 · sd ∈ R.

Therefore,

qd = rd · sd ∈ 〈r〉.

Since q and r are coprime, this is possible if and only if r is a unit of R. This implies

s ∈ R. �

III.5.2 Proposition. Let R be a normal noetherian local ring. Then, R is an integral

domain.

Proof (compare Example III.2.3, ii). By definition, a normal ring is reduced, i.e.,
√
〈0〉 =

〈0〉. According to Corollary II.4.7, there are a natural number r ≥ 1 and prime ideals p1,

..., pr with

〈0〉 = p1 ∩ · · · ∩ pr.

We have to prove that r = 1. So, let us assume r ≥ 2. We choose elements

⋆ f ∈ p1 \ (p2 ∪ · · · ∪ pr) (compare Proposition II.4.17, i),

⋆ g ∈ (p2 ∩ · · · ∩ pr) \ p1.

Then,

⋆ f + g < p1 ∪ · · · ∪ pr, i.e., f + g is not a zero-divisor (Theorem II.4.28, iii),

⋆ f · g ∈ p1 · (p2 ∩ · · · ∩ pr) ⊂ p1 ∩ · · · ∩ pr = 〈0〉.

We look at the element (compare Example III.2.3)

u :=
f

f + g
∈ Q(R).

It satisfies

u2 =
f 2

( f + g)2

f ·g=0
=

f · ( f + g)

( f + g)2
=

f

f + g
= u, i.e., u · (u − 1) = 0.

14See Page 24.
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III. The Nullstellensatz

This shows that u is integral over R. Since R is assumed to be integrally closed in Q(R),

this means that u ∈ R. Note u , 0, because f , 0, and u , 1, because g , 0. Hence, u

and (1 − u) are zero divisors in R. Thus, they are both contained in the maximal ideal m

of R. But then 1 = u + (1 − u) ∈ m, and this is impossible. �

III.5.3 Exercises15. i) Let R1 and R2 be integral domains. Describe the total ring of frac-

tions Q(R1 × R2) in terms of the quotient fields Q(R1) and Q(R2).

ii) Use Part i) to construct a normal ring which is not an integral domain.

We look at integral domains R, S , and at an injective ring extension ϕ : R −→ S . By

the universal property of a quotient field (Page 25), it induces a field extension

ϕ̃ : Q(R) −→ Q(S ).

III.5.4 Remark. If ϕ is a finite ring extension, then ϕ̃ is a finite field extension.

We need to recall some results from the theory of fields. Let K be a field, n ≥ 1, and

f (x) = xn + a1 · xn−1 + · · · + an−1 · x + an

a monic polynomial in K[x], i.e., a polynomial with leading coefficient one. Let K ⊂ L

be a field extension, such that f splits in L, i.e., there are elements α1, ..., αn ∈ L, such that

f (x) = (x − α1) · · · · · (x − αn) in L[x].

The discriminant of f is

∆( f ) :=
∏

i, j∈{ 1,...,n }:
i, j

(αi − α j).

By the theory of symmetric functions ([17], Chapter IV, §6), ∆( f ) is a polynomial in

a1, ..., an with integral coefficients and does not depend on L. In particular,

∆( f ) ∈ K.

III.5.5 Remark. We have ∆( f ) = 0 if and only if f has a multiple root in L.

An irreducible monic polynomial f ∈ K[x] is separable, if ∆( f ) , 0. An arbi-

trary non-constant monic polynomial f ∈ K[x] is separable, if its irreducible factors,

normalized to have leading coefficient one, are separable. A field k is perfect, if every

non-constant monic polynomial f ∈ K[x] is separable.

III.5.6 Examples. i) Every field of characteristic zero is perfect ([8], Korollar III.3.4.8;

Exercise III.5.7, ii).

ii) Every finite field is perfect ([8], Korollar III.4.1.9; Exercise III.5.8, ii).

iii) Every algebraically closed field is perfect. (This is trivial, because the only irre-

ducible polynomials are those of degree one.)

iv) Let k be a field of characteristic p > 0 and k(t) := Q(k[t]) the quotient field of the

polynomial ring in one variable over k. Then, k(t) is not perfect. In fact, the polynomial

xp − t is not separable, because

xp − t = (x − ϑ)p

for every field extension k(t) ⊂ L and every element ϑ ∈ L with ϑp = t.

15It might be good to recall Exercise I.4.22
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III.5.7 Exercises (Separable polynomials). Let K be a field and f ∈ K[x] an irreducible

monic polynomial. Define the derivative f ′ of f by the usual rules of analysis ([27], Page

127).

i) Let K ⊂ L be a field extension, such that f and f ′ split over L. Show that f is

separable if and only if f and f ′ do not have a common zero in L.

ii) Prove that f is inseparable, i.e., not separable, if and only if f ′ = 0.

III.5.8 Exercises (Perfect fields). i) Let k be a perfect field of characteristic p > 0. Show

that, for every element a ∈ k and every s ≥ 1, there is an element b ∈ k with

bps

= a.

ii) Prove that a field k with the property that, for every element a ∈ k, there is an

element b ∈ k with bp = a is perfect.

Hint. Use Exercise III.5.7, ii), to show that an inseparable polynomial f ∈ k[x] lies in the

subring k[xp].

Let K ⊂ L be a finite field extension and α ∈ L. Then,

mα : L −→ L

v 7−→ α · v

is a K-linear automorphism. The minimal polynomial of α is the minimal polynomial

µα ∈ K[x] of the linear map mα (see [33], §36). It is, by definition, monic and irreducible.

We say that α ∈ L is separable over K, if µα ∈ K[x] is a separable polynomial. The field

extension K ⊂ L is separable, if every element α ∈ L is separable over K.

Let K ⊂ L be a field extension. An element α ∈ L is primitive for this field extension,

if L = K(α). Here, K(α) is the smallest subfield of L that contains K and α.

III.5.9 Remark. If the primitive element α ∈ L is algebraic over K, then K ⊂ L is a finite

extension and every element can be written as a polynomial in α with coefficients in K.

The degree of this polynomial can be chosen to be smaller than the degree of the minimal

polynomial µα of α. In fact, if r = deg(µα), then 1, α, ..., αr−1 is a K-basis for L.

III.5.10 Theorem of the primitive element. Let K ⊂ L be a finite separable field exten-

sion. Then, it has a primitive element.

Proof. [8], III.4.2.3; [17], Theorem V.4.6. �

III.5.11 Lemma. Let R be an integral domain, K := Q(R) its quotient field, and K ⊂ L a

finite field extension.

i) If there exists a primitive element for the field extension, then there exists also a

primitive element which is integral over R.

ii) Assume that R is also normal, and let α ∈ L be an element which is integral over

R. Then, the minimal polynomial of α lies in R[x].

Proof. i) Let α ∈ L be a primitive element. Then, there are a natural number r ≥ 1 and

elements a1, ..., ar ∈ K with

αr + a1 · αr−1 + · · · + ar−1 · α + ar = 0.
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Since K is the quotient field of R, we may find an element s ∈ R \ {0} with s · ai ∈ R,

i = 1, ..., r. We multiply the above equation by sr and find

(α · s)r + (a1 · s) · (α · s)r−1 + · · · + (ar−1 · sr−1) · (α · s) + (ar · sr) = 0.

This shows that the element α · s is integral over R. Finally, K(α · s) = K(α), because

s ∈ K⋆.

ii) Let L ⊂ L be a field extension, such that µα splits in L, and write

µα = (x − α1) · · · · · (x − αr) in L[x],

for suitable elements α1, ..., αr ∈ L. We may assume that the numbering is such that

α = α1. Note that µα is also the minimal polynomial for αi, i = 2, ..., r. Thus, there are

K-linear isomorphisms

ψi : K[x]/〈µα〉 −→ K(αi) (III.15)

sending x to αi, i = 1, ..., r. We deduce that αi is integral over R, i = 1, ..., r. The

coefficients of µα are polynomials in α1, ..., αr with integer coefficients. By Corollary

III.2.5, ii), they are integral over R. Since R is integrally closed in K, they must actually

belong to R, and this concludes the argument. �

III.5.12 Finiteness of integral closure I. Let R be a normal integral domain with quotient

field K := Q(R), K ⊂ L a finite separable field extension, and S the integral closure of R

in L.16 Pick a primitive element17 α ∈ S for the given field extension, and let ∆ ∈ R\{0} be

the discriminant of the minimal polynomial µα ∈ R[x].18 Then, the following properties

hold true:

i) If r = deg(µα), then S is contained in the R-submodule of L that is generated by the

elements
1

∆
,
α

∆
, ...,

αr−1

∆
.

In particular, for f ∈ S , there exists a polynomial q ∈ R[x] with 0 ≤ deg(q) < deg(µα),

such that

∆ · f = q(α).

ii) We have

S ∆ = R∆[α].

In particular, R∆[α] is normal.

III.5.13 Remark. Assume that R is noetherian. Since the R-module (1/∆) · R[α] is finitely

generated, the R-submodule S is also finitely generated (Proposition III.1.30), i.e., R ⊂ S

is a finite ring extension. The theorem does not necessarily hold, if K ⊂ L is not separable!

See [15], Theorem 100, for a counterexample. In the case of an inseparable extension,

we have to add additional assumptions on R for the theorem to remain true (see Theorem

III.5.14).

16See Page 95.
17See Theorem III.5.10 and Lemma III.5.11, i).
18See Lemma III.5.11, ii)
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Proof of Theorem III.5.12. i) We fix a finite field extension K ⊂ M, such that µα splits in

M. Let α1, ..., αr ∈ M be such that

µα(x) = (x − α1) · · · · · (x − αr) ∈ M[x].

We may assume α = α1. Since µα belongs to R[x] and is monic, the equation µα(αi) = 0

shows that αi is integral over R, i = 1, ..., r.

Next, let f ∈ S be an element of the integral closure of R in L. There are elements

q0, ..., qr−1 ∈ K with

f = q0 + q1 · α + · · · + qr−1 · αr−1.

We define

fi = q0 + q1 · αi + · · · + qr−1 · αr−1
i , i = 1, ..., r.

Note that f = f1. By (III.15), there is a K-linear isomorphism K(α) −→ K(αi) which

maps α to αi and, therefore, f to fi, so that fi is integral over R, i = 1, ..., r. We form the

matrix

A :=



1 α1 · · · αr−1
1

...
...

...

1 αr · · · αr−1
r

 ∈ Matr(M).

By definition,

A ·



q0

...

qr−1

 =



f1

...

fr



We multiply this equation by the adjoint matrix Aad of A (see Page 94) and find

det(A) ·



q0

...

qr−1

 =



p1

...

pr

 .

The entries of Aad are polynomials in the elements α
j

i
∈ M, i = 1, ..., r, j = 0, ..., r − 1,

with integer coefficients. This implies that they are integral over R (see Corollary III.2.5,

ii). Since f1, ..., fr are also integral over R, we infer that p1, ..., pr are integral over R. Note

that det(A) is a Vandermonde19 determinant (see [19], Kapitel IV, §3, Beispiel 3). Hence,

det(A) =
∏

r≥i> j≥1

(αi − α j).

This implies that det(A) is integral over R. We finally see that

∆ · qi = ±det(A) · pi

is integral over R, i = 1, ..., r. Furthermore, ∆ · qi ∈ K and R is normal, so that ∆ · qi ∈ R,

i = 1, ..., r. We infer

∆ · f ∈ R[α].

19Alexandre-Théophile Vandermonde (1735 - 1796), French musician, mathematician, and chemist.
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III. The Nullstellensatz

ii) We clearly have

R[α] ⊂ S ,

and Part i) shows

S ⊂ R∆[α].

This yields the assertion. �

III.5.14 Finiteness of integral closure II. Let k be an infinite perfect field,20 R a finitely

generated k-algebra and integral domain with quotient field K := Q(R), K ⊂ L a finite

field extension. Then, the integral closure S of R in L is a finitely generated R-module.

Proof. Let n ∈ N be a natural number, such that R may be generated over k by n elements.

By the Noether normalization theorem III.4.7, there are a natural number 0 ≤ r ≤ n and a

finite ring extension

ϕ : k[t1, ..., tr] −→ R.

This means that we may assume without loss of generality that R = k[t1, ..., tr]. In partic-

ular, the theorem of Gauß I.6.4 and Lemma III.5.1 show that R is normal.

By Theorem III.5.12, we only have to treat the case that K ⊂ L is an inseparable

extension. We explain how we may reduce to the separable case. We fix an algebraically

closed extension L ⊂ K ([8], Theorem III.2.1.8). Let p > 0 be the characteristic of the

field k. Let i = 1, ..., r, s ≥ 1, and ϑi,s ∈ K a root of the polynomial

xps − ti ∈ K[x].

Then,

xps − ti = (x − ϑi,s)
ps ∈ K[x].

In other words, ti has a unique ps-th root in K, i = 1, ..., r, s ≥ 1. Thus, we write

t
1/ps

i
:= ϑi,s, i = 1, ..., r, s ≥ 1.

Define21

Ks := k(t
1/ps

1
, ..., t1/ps

r ), s ≥ 1.

Note

∀s ≥ 1 : Ks ⊂ Ks+1.

Therefore, we may form

K∞ :=
⋃

s≥1

Ks.

This is a subfield of K. For every element a ∈ K∞, there is an index s0 ≥ 1 with a ∈ Ks0
,

so that we may define

s(a) := min
{

s ≥ 1 | a ∈ Ks

}
. (III.16)

Claim. The field K∞ is perfect.

20e.g., an algebraically closed field as in Example III.5.6, iii)
21By definition, this is the smallest subfield of K that contains k, t

1/ps

1
, ..., t

1/ps

r .
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We apply Exercise III.5.8, ii). The fact that k is perfect (Exercise III.5.8) gives

Ks =
{

b ∈ K | bps ∈ K
}
, s ≥ 1, (III.17)

i.e., Ks consists of the ps-th roots of elements of K, s ≥ 1. Now, let a ∈ K∞. Since K

is algebraically closed, there is an element b ∈ K with bp = a. By Equation (III.17),

b ∈ Ks(a)+1 ⊂ K∞. X

The composite L ·K∞ of L and K∞ in K is the smallest subfield of K that contains both

L and K∞. The extension K∞ ⊂ L ·K∞ is finite and, by the claim, separable. Let β ∈ L ·K∞
be a primitive element (Theorem III.5.10) and µβ ∈ K∞[x] its minimal polynomial.

Claim. There is an index s0 ≥ 1 with L ⊂ Ks0
[β] and µβ ∈ Ks0

[x]. In particular, Ks0
[β] =

Ks0
(β).

We have L ⊂ K∞[β]. Let b ∈ L, m ∈ N, and λ0, ..., λm ∈ K∞ with

b = λ0 + λ1 · β + · · · + λm · βm.

Then, in the notation of (III.16),

b ∈ Ks[β], s := max
{

s(λ0), ..., s(λm)
}
.

Now, let (b1, ..., bn) be a K-basis for L. The previous discussion shows that there is an

index s0 ≥ 1 with bi ∈ Ks0
[β], i = 1, ..., n. This clearly implies L ⊂ Ks0

[β]. Likewise,

the fact that µβ ∈ K∞[x] has only finitely many coefficients implies that we may suppose

µβ ∈ Ks0
[x]. X

We choose s0 so large that Ks0
[x] contains the minimal polynomial µβ of β. The

field extension Ks0
⊂ Ks0

[β] is separable, because the µβ is a separable polynomial ([8],

Korollar III.3.4.13).

Since L ⊂ Ks0
[β] is a finite field extension, we may replace L by Ks0

[β]. In fact, the

integral closure S of R in L is an R-submodule of the integral closure T of R in Ks0
[β]. If

T is finitely generated as R-module, then so is S (Proposition III.1.30).

For the field extension Ks0
⊂ Ks0

[β], we may apply Theorem III.5.12. It remains to

investigate the extension K ⊂ Ks0
. Recall that R = k[t1, ..., tr].

Claim. The elements t
1/ps0

1
, ..., t

1/ps0

r are algebraically independent over k.

Indeed, if q ∈ k[x1, ..., xr] is a polynomial with

q(t
1/ps0

1
, ..., t1/ps0

r ) = 0,

then u := qps0 is a polynomial in the subring k[x
ps0

1
, ..., x

ps0

r ] ⊂ k[x1, ..., xr]. So, u(t
1/ps0

1
, ...,

t
1/ps0

r ) is actually a polynomial in t1, ..., tr, i.e., there exists a polynomial u′ ∈ k[x1, ..., xr]

with

u′(t1, ..., tr) = u(t
1/ps0

1
, ..., t1/ps0

r ).

Since t1, ..., tr are algebraically independent over k, u′ = 0. Using the injective map

N

×r −→ N

×r

(ν1, ..., νr) 7−→ (ps0 · ν1, ..., ps0 · νr),
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III. The Nullstellensatz

we find a bijection between the monomials in u and the monomials in u′. We infer u = 0

and q = 0. X

By this claim,

ι : k[x1, ..., xr] −→ Ks0

xi 7−→ t
1/ps0

i
, i = 1, ..., r,

is an injective homomorphism, and Ks0
is isomorphic to the quotient field of k[x1, ..., xr].

The polynomial ring k[x1, ..., xr] is normal (Theorem I.6.4 and Lemma III.5.1), so that

k[t
1/ps0

1
, ..., t

1/ps0

r ] is integrally closed in Ks0
. It remains to show that

k[t1, ..., tr] −→ k[t
1/ps0

1
, ..., t1/ps0

r ]

is a finite ring extension. By Corollary III.2.5, i), it is enough to show that τi := t
1/ps0

i
is

integral over k[t1, ..., tr], i = 1, ..., r. Finally, τi satisfies the integrality equation τ
ps0

i
−ti = 0,

i = 1, ..., r. �

III.5.15 Corollary (Finiteness of normalization). Let k be an infinite perfect field, R a

finitely generated k-algebra and integral domain, and R ⊂ S the normalization of R, i.e.,

the integral closure of the ring R in its quotient field Q(R).22 Then, the integral closure S

is a finitely generated R-module and, in particular, a finitely generated k-algebra.

Proof. By Theorem III.4.7, there are r ∈ N and a finite ring extension

ϕ : k[x1, ..., xr] −→ R.

By Corollary III.2.7, the integral closure of k[x1, ..., xr] in Q(R) equals the integral closure

of R in Q(R). So, we may apply Theorem III.5.14 to k[x1, ..., xr] and L := Q(R). �

III.5.16 Remark. Not every noetherian ring has a finite normalization. We refer to [24]

for a survey on counterexamples.

22See Example III.2.9.
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IV
Dimension Theory

The concept of dimension is very important in many areas of mathematics. That might be

partially due to the fact that we have a good intuition for dimension. It is our impression

that we live in a three-dimensional world, so that, adding time, we may visualize up to

four real dimensions. Now, it becomes an important task to introduce in a mathematically

rigid way a concept of dimension that matches our intuitive expectations. In commutative

algebra, this concept is the Krull dimension of a ring. It will be defined and discussed in

this chapter. For integral domains which are finitely generated over a field, it is possible to

identify the Krull dimension with the transcendence degree of the quotient field. Another

important concept is the embedding dimension of a local ring. In the geometric context,

the embedding dimension is the dimension of the tangent space at a point.1 With the

embedding dimension, we may define regular and singular points of algebraic varieties.

Working over the complex numbers, a point of a variety is regular if and only if the variety

looks locally2 around that point like an open subset of Ck, k the dimension of the variety,

i.e., is a complex manifold around that point. So, near regular points, the local geometry

is very easy, whereas, at singular points, it can become very intricate. We will see some

basic examples for this. We will also highlight some algebraic consequences of regularity.

IV.1 Krull Dimension

Let R be a ring. Its Krull dimension is

dim(R) := sup
{
k ∈ N | ∃ prime ideals p0 ( · · · ( pk

}
∈ N ∪ {∞}.

IV.1.1 Examples. i) A field has Krull dimension zero. Geometrically, a field is the coor-

dinate algebra of a point. So, this matches our expectation that a point should be zero-

dimensional.

1We recall that, for varieties over algebraically closed ground fields, we have a correspondence between

points of the variety and maximal ideals in the coordinate algebra. The local ring attached to a point of the

variety is the localization of the coordinate algebra of the variety at the corresponding maximal ideal.
2in the euclidean topology of An

C
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IV. Dimension Theory

ii) A principal ideal domain is either a field or has Krull dimension one. For example,

let k be a field. Then, k[x] is one-dimensional as ring. It is the coordinate algebra of

the affine line A1
k
. Again, our feeling that the affine line should be one-dimensional is

confirmed. It is worthwhile noting that Z also has Krull dimension one. For this reason,

one draws Spec(Z) in a fashion which supports this fact (see [21], Chapter II.1, Example

C).3 It is, indeed, one of the big achievements of modern algebraic geometry that rings

such as Z and k[x] may be described on an equal footing.

IV.1.2 Remarks. i) Let k be a field, n ∈ N, I ⊂ k[x1, ..., xn] an ideal, and

R := k[x1, ..., xn]/I.

Then, the Krull dimension of R is the supremum of all natural numbers s for which there

exist irreducible algebraic sets

V(I) ⊃ V0 ) · · · ) Vs

in the affine n-space An
k
. This illustrates the idea behind Krull dimension: Given two

irreducible subsets Y, Z ⊂ A

n
k
, an inclusion Y ⊂ Z is only possible, if Y = Z or the

dimension of Z is larger than the one of Y . For example, an irreducible zero-dimensional

algebraic set is just a point. Any irreducible algebraic set properly containing it has to be

at least one-dimensional, and so on.

ii) Let k be a field, n ∈ N, and R := k[x1, ..., xn]. We have the chain of prime ideals

〈0〉 ( 〈x1〉 ( · · · ( 〈 x1, ..., xn 〉.

This shows

dim
(
k[x1, ..., xn]

)
≥ n.

IV.1.3 Theorem. Assume that the field k is infinite. For any natural number n ∈ N, we

have dim(k[x1, ..., xn]) = n.

The proof will be given on Page 121f.

IV.2 The Going-Up Theorem

We now investigate how dimension behaves under integral ring extensions.

IV.2.1 Lemma. Let R and S be integral domains and ϕ : R −→ S an integral ring

extension. Then, R is a field if and only if S is one.

Proof. We have already seen that R is a field, if S is one (Lemma III.3.9). Now, assume

that R is a field. Let y ∈ S \ {0} be a non-zero element. Choose n ≥ 1 minimal, such that

there exist elements a1, ..., an ∈ R with

yn + a1 · yn−1 + · · · + an−1 · y + an = 0. (IV.1)

3Accordingly, Z[x] should be two-dimensional. Here, you should consult your picture of the spectrum

of that ring (Exercise I.4.21). You will also find it in [21], Chapter II.1, Example H.
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IV.2. The Going-Up Theorem

Since we chose n to be minimal and S is an integral domain, we have an , 0. Equation

(IV.1) can be read as

an = −y · (yn−1 + a1 · yn−2 + · · · + an−1).

This shows that

y−1 = − 1

an

· (yn−1 + a1 · yn−2 + · · · + an−1)

is an element of S . �

IV.2.2 Lemma. Let R, S be rings, ϕ : R −→ S an integral ring extension, q ⊂ S a prime

ideal, and

p := q ∩ R.

Then, q is a maximal ideal in S if and only if p is a maximal ideal in R.4

Proof. The homomorphism ϕ induces the homomorphism

ϕ : R/p −→ S/q.

Here, R/p and S/q are integral domains, and ϕ is also an integral ring extension.

By Proposition I.4.1, ii), q is a maximal ideal in S if and only if S/q is a field. The

previous lemma says that S/q is a field if and only if R/p is a field. Using Proposition

I.4.1, ii), again, R/p is a field if and only if p is a maximal ideal in R. This completes the

proof. �

IV.2.3 Lemma. Let R, S be rings, ϕ : R −→ S an integral ring extension, and q ⊂ q′ ⊂ S

prime ideals. If

p := R ∩ q = R ∩ q′,

then

q = q′.

Proof. The set T := R \ p is a multiplicatively closed subset of both R and S . By Exercise

II.3.8, the homomorphism ϕ induces a homomorphism

ϕT : RT −→ S T .

It is readily verified that ϕT is an integral ring extension, too. We use the commutative

diagram

R

��

ϕ
// S

��

RT

ϕT
// S T .

(IV.2)

Define

n := qe ⊂ S T and n′ := q′e ⊂ S T .

Note that5

q ∩ T = ∅ = q′ ∩ T.

4Compare Exercise III.3.8.
5We use ϕ to view R as a subring of S and write intersections instead of preimages.
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IV. Dimension Theory

Thus, Proposition II.3.6, v), shows

nc = q and n′c = q′. (IV.3)

Next,

m := pe ⊂ RT .

By Corollary II.3.7, ii), it is the maximal ideal of RT . Using Proposition II.3.6, i), and the

maximality of m, our assumption gives

n ∩ RT = m = n
′ ∩ RT .

We apply Lemma IV.2.2 to ϕT . It shows that n and n′ are maximal ideals in S T . Since

n ⊂ n′, we infer n = n′. So, Equation (IV.3) yields our claim. �

IV.2.4 Lying-over theorem. Let R, S be rings, ϕ : R −→ S an integral ring extension,

and p ⊂ R a prime ideal. Then, there is a prime ideal q ⊂ S with

p = q ∩ R.

IV.2.5 Remarks. i) The theorem says that the induced map

ϕ# : Spec(S ) −→ Spec(R)

is surjective.

ii) Note that, by Lemma IV.2.2, ϕ# maps maximal ideals to maximal ideals, i.e., ϕ# is

also surjective on the level of maximal ideals. Together with the correspondence between

the points of an algebraic set and the maximal ideals of its coordinate algebra provided by

the Nullstellensatz (Exercise III.3.2), we find a nice conceptual proof for Lemma III.4.8.

Proof of the lying-over theorem. As in the proof of Lemma IV.2.3, we localize at the mul-

tiplicatively closed subset T := R \ p and look at Diagram (IV.2). Let n ⊂ S T be a maxi-

mal ideal (Theorem I.4.4). Since ϕT is an integral ring extension, we conclude by Lemma

IV.2.2 that

m := n ∩ RT

is a maximal ideal of RT . Now, RT is a local ring (Corollary II.3.7, ii). So, m = pe and

mc = p. Finally,

q := nc ⊂ S

is a prime ideal. By construction, q ∩ R = p. �

IV.2.6 The going-up theorem. Let R, S be rings, ϕ : R −→ S an integral ring extension,

k > l natural numbers,

p0 ( · · · ( pk

prime ideals in R, and

q0 ( · · · ( ql
prime ideals in S , such that

∀i ∈ { 0, ..., l } : qi ∩ R = pi.

Then, one finds prime ideals

ql+1 ( · · · ( qk
in S with
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⋆ ql ( ql+1,

⋆ qi ∩ R = pi, i = l + 1, ..., k.

Proof. It clearly suffices to treat the case k = l + 1. This case follows from applying the

lying-over theorem to the integral ring extension

ϕl : R/pl −→ S/ql

and the prime ideal pk of R/pl (Lemma I.2.2). �

IV.2.7 Theorem. Let R, S be rings and ϕ : R −→ S an integral ring extension. Then, the

Krull dimensions of R and S are equal:

dim(R) = dim(S ).

Proof. The lying-over theorem and the going-up theorem clearly show that

dim(R) ≤ dim(S ).

Conversely, let

q0 ( · · · ( qk
be prime ideals in S and

pi := qi ∩ R.

By Lemma IV.2.3,

p0 ( · · · ( pk.

This implies

dim(R) ≥ dim(S )

and, therefore, the assertion of the theorem. �

Proof of Theorem IV.1.3. We proceed by induction on n. For n = 0, we are dealing with

the field k. It has Krull dimension 0 (Example IV.1.1).

Now, assume that the theorem is true for n, and let

p0 ( · · · ( pk

be prime ideals in the polynomial ring k[x1, ..., xn+1]. Since k[x1, ..., xn+1] is an integral

domain, we may assume p0 = 〈0〉. Moreover, we may suppose k ≥ 1 (see Remark IV.1.2,

ii). Let f ∈ p1 \ {0}. Recall that k[x1, ..., xn+1] is a factorial ring (Theorem I.6.4). Thus,

there are pairwise non-associated irreducible polynomials f1, ..., fs ∈ k[x1, ..., xn+1] and

positive integers k1, ..., ks, such that

f ∼ f
k1

1
· · · · · f ks

s .

Since p1 is a prime ideal, there is an index i0 ∈ { 1, ..., s } with fi0 ∈ p1. We get the prime

ideals

p0 ( 〈 fi0〉 ( p1 ( · · · ( pk.
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This shows that we may assume without loss of generality that p1 is a principal ideal, say,

p1 = 〈g〉 with g ∈ k[x1, ..., xn+1] an irreducible polynomial. By the Noether normalization

theorem for hypersurfaces III.4.4, there is an integral ring extension

ϕ : k[x1, ..., xn] −→ k[x1, ..., xn+1]/〈g〉

By Theorem IV.2.7 and the induction hypothesis,

dim
(
k[x1, ..., xn+1]/〈g〉

)
= n.

This shows that k ≤ n + 1 and, consequently,

dim
(
k[x1, ..., xn+1]

)
≤ n + 1.

Together with Remark IV.1.2, ii), we obtain the desired equality. �

IV.3 The Transcendence Degree of a Field

Let k ⊂ K be a field extension. A subset S ⊂ K is said to be algebraically independent

over k, if every finite subset S ′ ⊂ S is algebraically independent over k (in the sense of

Page 8). The algebraically independent subsets of K are partially ordered by inclusion,

and ∅ is an algebraically independent subset. Zorn’s lemma I.4.7 gives:

IV.3.1 Lemma. The field K contains maximal algebraically independent subsets.

A maximal algebraically independent subset S ⊂ K is called a transcendence basis

for K over k. We say that K has finite transcendence degree over k, if there exists a finite

transcendence basis for K over k.

IV.3.2 Remark. The field extension k ⊂ K is algebraic if and only if ∅ is a transcendence

basis of K over k.

IV.3.3 Proposition. Assume that K has finite transcendence degree over k. Let S ⊂ K be

a transcendence basis and m := #S . Then, every transcendence basis of K over k has m

elements.

If K has finite transcendence degree over k and S ⊂ K is a transcendence basis, we

call

trdegk(K) := #S

the transcendence degree of K over k. By Proposition IV.3.3, this is well-defined. If K

does not have finite transcendence degree, we say that it has infinite transcendence degree

and write

trdegk(K) := ∞.

Proof of Proposition IV.3.3. We may assume that S has the minimal number of elements

among all transcendence bases for K. Write S = { s1, ..., sm } and let T = { t1, ..., tn } ⊂ K

be an algebraically independent subset with m ≤ n. We will then prove that there is a

subset T ′ ⊂ T with m elements, such that K is algebraic over k(T ′). This implies that

T \ T ′ is empty and, thus, m = n, and that T is a transcendence basis. The strategy is to

exchange elements of S by elements of T .
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We set

r := max
{
̺ ∈ { 0, ...,m } | ∃i̺+1, ..., im ∈ { 1, ...,m } :

K is algebraic over k(t1, ..., t̺, si̺+1
, ..., sim)

}
.

We will lead the assumption r < m to a contradiction. After renumbering, we may as-

sume { ir+1, ..., im } = { r+ 1, ...,m }. There exists a non-zero polynomial f ∈ k[x1, ...., xm+1]

with

f (t1, ..., tr, sr+1, ..., sm, tr+1) = 0 (in K).

Since t1, ..., tr+1 are algebraically independent over k, there is an index i0 ∈ { r + 1, ...,m },
such that xi0 occurs in f , i.e., f < k[x1, ..., xr, xr+1, ..., xi0−1, xi0+1, ..., xm+1]. After renum-

bering, if necessary, we may assume that r + 1 is such an index. This means that sr+1

is algebraic over k(t1, ..., tr+1, sr+2, ...., sm) and, therefore, K is an algebraic extension of

k(t1, ..., tr+1, sr+2, ...., sm), contradicting the definition of r. �

IV.3.4 Example. Let k be a field. For n ∈ N, it follows readily that

trdegk

(
k(x1, ..., xn)

)
= n, k(x1, ..., xn) := Q

(
k[x1, ..., xn]

)
.

IV.4 The Dimension of an Algebraic Variety

IV.4.1 Theorem. Let k be an infinite field, n ≥ 1, and p ⊂ k[x1, ..., xn] a prime ideal.

Then,

dim(k[x1, ..., xn]/p) = trdegk

(
Q(k[x1, ..., xn]/p)

)
.

Proof. By Noether normalization III.4.7, there are a natural number 0 ≤ m ≤ n and a

finite ring extension

ϕ : k[x1, ..., xm] −→ k[x1, ..., xn]/p.

The homomorphism ϕ induces a finite field extension (see Page 25)

ϕ̃ : k(x1, ..., xm) = Q
(
k[x1, ..., xm]

)
−→ Q(k[x1, ..., xn]/p).

Since every finite field extension is algebraic ([8], Satz III.1.6.2, 1), we have

trdegk

(
Q(k[x1, ..., xn]/p)

)
= trdegk

(
k(x1, ..., xm)

)
= m.

On the other hand, Theorem IV.2.7 gives

dim(k[x1, ..., xn]/p) = dim
(
k[x1, ..., xm]

)
= m.

This settles the theorem. �

The Going-Down Theorem

Let R, T be rings, ψ : R −→ T an injective homomorphism, and I ⊂ R an ideal. We say

that α ∈ T is integral over I, if there exist a positive natural number n ≥ 1 and elements

a1, ..., an ∈ I with

αn + a1 · αn−1 + · · · + an−1 · α + an = 0. (IV.4)
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IV.4.2 Lemma. Let R, S be integral domains, ϕ : R −→ S an integral ring extension,

ϕ̃ : K −→ L the corresponding algebraic field extension, K := Q(R), L := Q(S ), and

I ⊂ R an ideal.

i) An element α ∈ S is integral over I if and only if α ∈
√

Ie.

ii) Assume that R is normal. Let α ∈ L be an element which is integral over I. Then,

the minimal polynomial µα ∈ K[x] of α has coefficients in
√

I.

Proof. i) If α ∈ S is integral over I, then an integrality equation like (IV.4) shows αn ∈ Ie,

so that α ∈
√

Ie.

Conversely, suppose that α ∈
√

Ie and pick s ≥ 1 with αs ∈ Ie. There are m ≥ 1,

r1, ..., rm ∈ I, and a1, ..., am ∈ S with

αs = a1 · r1 + · · · + am · rm.

Now, let M ⊂ S be the finitely generated R-submodule generated by a1, ..., am, and set

ϕ : M −→ M

x 7−→ αs · x.

This is an endomorphism with ϕ(M) ⊂ I ·M. As in the proof of “iv)=⇒i)” of Proposition

III.2.4, we construct a monic polynomial p ∈ R[x] with coefficients in I, such that p(αs)

annihilates M. If α , 0, then M , {0}. Since S is an integral domain, this implies that

p(αs) = 0. Therefore, αs and α are integral over I.

ii) By Equation (IV.4) and the definition of a minimal polynomial, the minimal poly-

nomial µα of α divides p(x) := xn + a1 · xn−1 + · · · + an−1 · x + an. Therefore, the roots

α1, ..., αr of µα are integral over I. The arguments in the proof of Lemma III.5.11, ii),

show that the coefficients of µα belong to R, and Part i) yields that they lie in
√

I. �

IV.4.3 The going-down theorem. Let R, S be integral domains, ϕ : R −→ S an integral

ring extension, k > l natural numbers,

p0 ) · · · ) pk

prime ideals in R, and

q0 ) · · · ) ql
prime ideals in S , such that

∀i ∈ { 0, ..., l } : qi ∩ R = pi.

If R is normal, one finds prime ideals

ql+1 ) · · · ) qk

in S with

⋆ ql ) ql+1,

⋆ qi ∩ R = pi, i = l + 1, ..., k.
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IV.4. The Dimension of an Algebraic Variety

Proof. Again, it suffices to treat the case k = l + 1. We look at the localization6 S ql
and the homomorphism R −→ S ql . It is sufficient to show that, with respect to this

homomorphism,

p
ec
l+1 = pl+1.

In fact, by Corollary II.3.7, pe
l+1

, the extension being taken with respect to ϕ, will do the

trick.

Let β ∈ pe
l+1

. Then, we may write β = α/s with α ∈ S · pl+1 and s ∈ S \ ql. Since S

is integral over R, it is clear that α is integral over pl+1, and Lemma IV.4.2, ii), shows that

we may find n ≥ 1 and a1, ..., an ∈ pl+1 with

αn + a1 · αn−1 + · · · + an−1 · α + an = 0. (IV.5)

In fact, we may assume that xn + a1 · xn−1 + · · ·+ an−1 · x+ an is the minimal polynomial of

α. Now, assume that β ∈ pec
l+1
\ {0}. Recall that s = α/β. We divide (IV.5) by βn and find

the integrality equation

sn + b1 · sn−1 + · · · + bn−1 · s + bn = 0, bi :=
ai

βi
, i = 1, ..., n, (IV.6)

for s over K. We claim that q(x) := xn + b1 · xn−1 + · · · + bn−1 · x + bn is the minimal

polynomial of s. Indeed, if there were a polynomial r(x) ∈ K[X] of degree, say, l < n,

with r(s) = 0, then (βl · r)(α) = 0 and βl · r ∈ K[x]. This contradicts the choice of n. By

Lemma III.5.11, q(x) is a polynomial in R[x], i.e., bi ∈ R, and

βi · bi = ai ∈ pl+1, i = 1, ..., n.

If β < pl+1, then bi ∈ pl+1, i = 1, ..., n. Equation (IV.6) proves that sn ∈ S · pl+1 ⊂ ql, and

this is impossible. So, after all, β ∈ pl+1. �

A Refined Version of Noether Normalization

IV.4.4 Theorem. Let k be an infinite field, R a finitely generated k-algebra, n := dim(R),

and

I0 ( · · · ( Il

a chain of ideals in R. Then, there exist a finite ring extension

ϕ : k[t1, ..., tn] −→ R

and natural numbers

0 ≤ k0 ≤ · · · ≤ kl ≤ n

with

ϕ−1(I j) = 〈 t1, ..., tk j
〉, j = 0, ..., l.

6Corollary II.3.7 explains why this is natural.
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IV. Dimension Theory

Proof. Step 1. We first reduce to the case when R is a polynomial ring. By definition,

there are a natural number m ≥ 1 and an ideal J ⊂ k[x1, ..., xm], such that

R = k[x1, ..., xm]/J.

By Theorem III.4.7, there is an integral ring extension

ψ : k[x1, ..., xn] −→ R.

We get the chain

J0 ⊂ · · · ⊂ Jl, Jk := ψ−1(Ik), k = 0, ..., l.

Since the composition of finite ring extensions is a finite ring extension (Lemma III.2.6),

we may assume without loss of generality that R = k[x1, ..., xn].

Step 2. We first consider the case l = 0. Here, we will use several inductions. To start

with, we look at the case I = 〈 f 〉 with f , 0.

Claim. The element f is transcendent over k.

According to the proof of Theorem III.4.4, we may assume that there are polynomials

g1, ..., gr ∈ k[x2, ..., xn], such that

f = xr
1 + g1 · xr−1

1 + · · · + gr−1 · x1 + gr. (IV.7)

For a non-zero polynomial p(t) = tl + a1 · tl−1 + · · · + al−1 · t + al ∈ k[t], we have

p( f ) = xr·l
1 + terms involving x2, ..., xn + lower order terms.

This is not zero. X

A similar argument shows that the elements f , x2, ..., xn are algebraically independent

over k (compare Section IV.3). The inclusion

k[ f , x2, ..., xn] ⊂ k[x1, x2, ..., xn]

is a finite ring extension,

xr
1 + g1 · xr−1

1 + · · · + gr−1 · x1 + gr − f = 0

being an integrality equation for x1. Together with the isomorphism

k[t1, t2, ..., tn] −→ k[ f , x2, ..., xn]

t1 7−→ f

ti 7−→ xi, i = 2, ..., n,

we obtain the integral ring extension ϑ with

ϑ−1(〈 f 〉) = 〈t1〉.

Now, we are ready to prove the case l = 0 by induction on n. The case n = 1 is clear

by the foregoing discussion.
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IV.4. The Dimension of an Algebraic Variety

Next, assume that I ⊂ k[x1, x2, ..., xn] is a non-trivial ideal. We let f ∈ I \ {0}. Suppose

that it has the form given in (IV.7) and construct an integral ring extension

ϑ : k[u1, ..., un] −→ k[x1, ..., xn]

with ϑ−1(〈 f 〉) = 〈u1〉. So, we have an induced finite ring extension

ϑ : k[u2, ..., un] = k[u1, ..., un]/〈u1〉 −→ k[x1, ..., xn]/〈 f 〉.

Define I′ as the image of I in the ring k[x1, ..., xn]/〈 f 〉 and I′′ := ϑ
−1

(I′). By induction,

there are a natural number 2 ≤ k0 ≤ n and a finite ring extension

ψ : k[t2, ..., tn] −→ k[u2, ..., un]

with

ψ−1(I′′) = 〈 t2, ..., tk0
〉.

Define ϕ as the composition of ϑ and the homomorphism

k[t1, ..., tn] −→ k[u1, ..., un]

t1 7−→ u1

ti 7−→ ψ(ti), i = 2, ..., n.

It is an integral ring extension with

ϕ−1(I) = 〈 t1, ..., tk0
〉.

Step 3. Now, we can prove the general statement by induction on l. The case l = 0

has been settled in the previous step. Let I0 ⊂ · · · ⊂ Il+1 be a chain of ideals in k[x1, ..., xn].

By induction hypothesis, there are natural numbers 0 ≤ k0 ≤ · · · ≤ kl ≤ n and a finite ring

extension

ϑ : k[u1, ..., un] −→ k[x1, ..., xn]

with

ϑ−1(I j) = 〈 u1, ..., uk j
〉, j = 0, ..., l.

It induces a finite ring extension

ϑ : k[ukl+1, ..., un] = k[u1, ..., un]/〈 u1, ..., ukl
〉 −→ k[x1, ..., xn]/Il.

We conclude as in Step 2. �

IV.4.5 Remark. Assume in the statement of Theorem IV.4.4 that

p0 ( · · · ( pl

is a chain of prime ideals. Then, by Lemma IV.2.3,

ϕ−1(pi−1) ( ϕ−1(pi), i = 1, ..., l,

i.e.,

0 ≤ k0 < · · · < kl ≤ n,

and k0 = 0 holds if and only if p0 = 〈0〉.
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IV. Dimension Theory

IV.4.6 The chain theorem. Let k be an infinite field, n ≥ 1 a natural number, R a finitely

generated k-algebra and an integral domain, and n = dim(R). Every finite chain

p0 ( · · · ( pl (IV.8)

of prime ideals in R can be completed to a finite chain of length n, i.e., there are prime

ideals

p′0 ( · · · ( p′n
such that

{ p0, ..., pl } ⊂ { p′0, ..., p′n }.

Proof. We apply Theorem IV.4.4 to (IV.8). Let 0 ≤ k0 < · · · < kl ≤ n be natural numbers

and

ϕ : k[t1, ..., tn] −→ R

be an integral ring extension with

ϕ−1(pi) = 〈 t1, ..., tki
〉, i = 0, ..., l.

Note that we may assume kl = n, because otherwise, by the going-up theorem IV.2.6,

there is an ideal pl ( pl+1 with ϕ−1(pl+1) = 〈 t1, ..., tn 〉. This assumption and Remark IV.4.5

imply that, if l < n, there must be an index i0 ∈ { 1, ..., l } with

ki0 − ki0−1 > 1.

We pass to the finite ring extension

ϕ : k[tκ+1, ..., tn] := k[t1, ..., tn]/〈 t1, ..., tκ 〉 −→ R/pi0−1 κ := ki0−1,

and look at the image p of pi0 in R/pi0−1. By construction,

ϕ
−1

(p) = 〈 tκ+1, ..., tki0
〉.

The assumption ki0 > κ + 1 implies

〈tκ+1〉 ( 〈 tκ+1, ..., tki0
〉

Since k[tκ+1, ..., tn] is a normal ring (Theorem I.6.4 and Lemma III.5.1), we may apply the

going-down theorem IV.4.3. So, there exists an ideal

q ( p

with

ϕ
−1

(q) = 〈tκ+1〉.

The preimage q of q in k[x1, ..., xn] satisfies

pi0−1 ( q ( pi0 .

So, we have increased the length of the given chain by one. Iterating the argument, if

necessary, we arrive at a chain of length n. �
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IV.4. The Dimension of an Algebraic Variety

Heights

Let R be a ring and p ⊂ R a prime ideal. The height of p is

ht(p) = sup
{
k | ∃ prime ideals p0 ( · · · ( pk = p

}
.

IV.4.7 Remark. By Corollary II.3.7, i), we have

ht(p) = dim(Rp).

IV.4.8 Corollary to the chain theorem. Let k be an infinite field, n ≥ 1 a natural number,

q ⊂ k[x1, ..., xn] a prime ideal, and

R := k[x1, ..., xn]/q.

Then, for every prime ideal p ⊂ R, we have

dim(R) = dim(R/p) + ht(p).

In particular, if m ⊂ R is a maximal ideal, then

dim(R) = dim(Rm).

We now prove a variant of Krull’s principal ideal theorem (see Theorem IV.5.6) for

k[x1, ..., xn]. If Z ⊂ An
k

is an algebraic set, we define

dim(Z) := dim
(
k[Z]

)

to be the dimension of Z.

IV.4.9 Proposition. Let k be an algebraically closed field, n ≥ 1 a natural number, I ⊂
k[x1, ..., xn] a radical ideal, and

V(I) = V1 ∪ · · · ∪ Vs

the decomposition into irreducible components. Then, the following conditions are equiv-

alent:

i) The ideal I is a principal ideal.

ii) For i = 1, ..., s, one has dim(Vi) = n − 1.

Proof. One reduces immediately to s = 1, i.e., to the case when I is a prime ideal.

“i)=⇒ii)”. This is again an application of Noether normalization for hypersurfaces

III.4.4.

“ii)=⇒i)”. Since I is a prime ideal, we may apply Corollary IV.4.8. The assumption is

equivalent to ht(I) = 1, i.e., 〈0〉 ( I is the maximal chain ending in I. As explained in the

proof of Theorem IV.1.3, we may always insert a non-zero principal ideal into that chain.

Therefore, I has to be a principal ideal. �
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IV. Dimension Theory

IV.4.10 Exercise (Dimension). Let k be a field, R a finitely generated k-algebra, and

p1, ..., ps the minimal prime ideals of R (see Theorem II.4.28, ii).

i) Assume that k is algebraically closed and that R is reduced. Write R = k[x1, ..., xn]/I

for a suitable natural number n and a suitable radical ideal I ⊂ k[x1, ..., xn], and set

Z := V(I) ⊂ A

n
k
. Define p̃i ⊂ k[x1, ..., xn] as the preimage of pi under the projection

k[x1, ..., xn] −→ k[x1, ..., xn]/I, i = 1, ..., n. What is the geometric significance of the

varieties V (̃pi) ⊂ An
k
, i = 1, ..., s?

ii) Set Ri := R/pi, i = 1, ..., s. Prove that

dim(R) = max
{

trdegk

(
Q(Ri)

) ∣∣∣ i = 1, ..., s
}
.

iii) Let S ⊂ R be a subalgebra. Prove that dim(S ) ≤ dim(R).

Hint. If p1, ..., ps ∈ R are algebraically independent over k, then k[p1, ..., ps] ⊂ R is an

integral domain.

IV.5 Krull’s Principal Ideal Theorem

Let R be a ring and M an R-module. The number

l(M) := sup
{

l ∈ N | ∃ submodules M0 ( · · · ( Ml

}
∈ N ∪ {∞}

is called the length of M.

IV.5.1 Remarks. i) Let R be a ring. We may view R as an R-module. Then, l(R) is not the

same as dim(R). In fact, in the definition of l(R), all ideals are used, not just the prime

ideals.

ii) As Part i) already suggests, an R-module M, even a noetherian one, will usually

have infinite length. In other words, modules of finite length are quite special.

IV.5.2 Example. Let k be a field and V a k-vector space. Then, l(V) = dimk(V).

IV.5.3 Lemma. Let R be a ring, M an R-module, and M0 ( · · · ( Ml a maximal chain of

submodules. Then, l(M) = l.

Proof. Note that the maximality of the chain implies M0 = {0} and Ml = M. We proceed

by induction on l. The case l = 0 is trivial.

l − 1 −→ l. Let l′ ∈ N and M′0 ( · · · ( M′
l′ be a chain of submodules of M with

M′
0
= {0}. Set

r := max
{

t ∈ { 0, ..., l′ }
∣∣∣ M′t ⊂ Ml−1

}
.

Then,

Ml−1 + M′i = M, i = r + 1, ..., l′.

Observe that

M′i+1 = M′i+1 ∩ M = M′i+1 ∩ (Ml−1 + M′i ) = M′i + (Ml−1 ∩ M′i+1), i = r + 1, ..., l′ − 1.

Since M′i ( M′
i+1, we have

(Ml−1 ∩ M′i ) ( (Ml−1 ∩ M′i+1), i = r + 1, ..., l′ − 1.
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IV.5. Krull’s Principal Ideal Theorem

We form

M′0 ( · · · ( M′r ⊂ (Ml−1 ∩ M′r+1) ( (Ml−1 ∩ M′r+2) ( · · · ( (Ml−1 ∩ M′l′).

This is a chain of length at least l′ − 1. Since M0 ( · · · ( Ml−1 is a maximal chain in Ml−1,

the induction hypothesis gives l′ − 1 ≤ l − 1, i.e., l′ ≤ l, and we are done. �

IV.5.4 Lemma. Let R be a ring, M an R-module, and N ⊂ M a submodule. Then,

l(M) = l(N) + l(M/N).

Proof. If N or M/N has infinite length, then it is easy to check that M has infinite length,

too. So, assume that N and M/N have finite length. Then, we have maximal sequences

{0} = N0 ( · · · ( Nl(N) = N and {0} = M0 ( · · · ( Ml(M/N) = M/N

of submodules of N and M/N, respectively. With the preimage Mi of Mi under the pro-

jection M −→ M/N, i = 0, ..., l(M/N), we get the maximal chain

{0} = N0 ( · · · ( Nl(N) = N = M0 ( · · · ( Ml(M/N)

of submodules of M. Lemma IV.5.3 shows l(M) = l(N) + l(M/N). �

IV.5.5 Lemma. Let R be a noetherian local ring and M a finitely generated R-module.

Then, the following holds:

dim
(
R/Ann(M)

)
= 0 =⇒ l(M) < ∞.

Proof. We suppose M , 0.

Step 1. Letm be the maximal ideal of R and k := R/m. Since R and M are noetherian,

m is finitely generated, and, for every natural number s ∈ N, (ms ·M)/(ms+1 ·M) is a finite

dimensional k-vector space. Note, for s ∈ N,

l
(
(ms · M)/(ms+1 · M)

)
= dimk

(
(ms · M)/(ms+1 · M)

)

and

l
(
M/(ms · M)

)
=

s−1∑

i=0

dimk

(
(mi · M)/(mi+1 · M)

)
.

The second formula results from Lemma IV.5.4.

Step 2. Let R := R/Ann(M) and m ⊂ R the image of m under the surjection R −→ R.

Then, R is a local ring with maximal ideal m. The assumption dim(R) = 0 implies that m

is also a minimal prime ideal of R. Therefore, it equals the radical of R (see Proposition

I.7.2). Since m is finitely generated, there is a power s ≥ 1 with m
s
= 〈0〉 (compare

Example I.8.8, ii), i.e.,

m
s ⊂ Ann(M) and m

s · M = 〈0〉.

Together with Step 1, we find our claim. �

Let R be a noetherian ring and x ∈ R \ R⋆. A minimal prime ideal containing x is a

prime ideal x ∈ p ⊂ R whose image p ⊂ R/〈x〉 is a minimal prime ideal.
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IV.5.6 Krull’s principal ideal theorem. Let R be a noetherian ring, x ∈ R\R⋆ and p ⊂ R

a minimal prime ideal containing x. Then, ht(p) ≤ 1.

Proof. We look at the localization Rp. In view of Remark IV.4.7, we have to show that

dim(Rp) ≤ 1. So, we have reduced to the case that R is a local ring and the minimal prime

ideal p containing x is the maximal ideal of R.

Suppose we have a chain r ( q ( p of prime ideals in R. We may pass to the quotient

R/r and, therefore, assume that r = 〈0〉 and that R is an integral domain.

Now, we work with the localization R −→ Rq. We form the descending chain

q
nec
+ 〈x〉 ⊂ R, n ∈ N, (IV.9)

of ideals in R. We claim that this sequence becomes stationary. It gives rise to a de-

scending chain (pn)n∈N in R := R/〈x〉. Note that our construction implies that R is zero-

dimensional and, therefore, has finite length as R-module, by Lemma IV.5.5. For this

reason, the sequence (pn)n∈N becomes stationary. By Lemma I.2.2, this is also true for the

sequence (IV.9).

Pick a natural number n0 with

qn0 ec
+ 〈x〉 = qn0+1ec

+ 〈x〉.

In particular,

qn0 ec ⊂ qn0+1ec
+ 〈x〉.

Let r ∈ qn0 ec. There are elements s ∈ qn0+1ec
and a ∈ R with

r = s + a · x.

We infer

a · x = r − s.

Since x < q, we find, using Property I.8.24, ii),

a =
r − s

x
∈ qn0 ece ∩ R = qn0 e ∩ R = qn0 ec

.

Our discussion shows

qn0 ec
= qn0+1ec

+ p · qn0 ec
.

Using Exercise III.1.35, we find

qn0 ec
= qn0+1ec

.

This yields

qn0 e
= qn0 ece

= qn0+1ece
= qn0+1e

= qn0 e · qe

in Rq. Note that qe is the maximal ideal of Rq (Corollary II.4.7). We apply the Nakayama

lemma III.1.31 once more. It gives

qn0 e
= 〈0〉.

Since R is an integral domain, this implies that qn0 = 〈0〉 (see Page 57) and, thus, q = 〈0〉.
This contradicts our assumption on q. �
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IV.5.7 Exercise (Krull’s Höhensatz). Let R be a noetherian ring and I ( R a proper ideal.

We say that I ⊂ p is a minimal prime ideal containing I, if the image p of p in R/I is a

minimal prime ideal of R/I.

Assume that there are s ∈ N and a1, ..., as ∈ R with 〈 a1, ..., as 〉 = I. Prove that

ht(p) ≤ s

for every minimal prime ideal p ⊂ R containing I. What is the geometric interpretation of

this statement?

IV.6 Embedding Dimension

Let R be a local notherian ring and m ⊂ R its maximal ideal. Then,

m/m2

is a vector space over the field R/m.

IV.6.1 Remark. The idealm is finitely generated, because R is a noetherian ring. Let s ≥ 1

and a1, ..., as ∈ m be such that

〈 a1, ..., as 〉 = m.

Then, the classes [a1], ..., [as] ∈ m/m2 generate m/m2 as a vector space over R/m, i.e.,

dimR/m(m/m2) ≤ s.

The natural number

edim(R) := dimR/m(m/m2)

is called the embedding or tangential dimension of R.

IV.6.2 Proposition. Let a1, ..., as ∈ m be elements, such that the classes [a1], ..., [as] ∈
m/m2 generate m/m2 as a vector space over R/m. Then,

〈 a1, ..., as 〉 = m.

In particular, the embedding dimension of R equals the minimal number of generators for

the maximal ideal m.

Proof. We look at the homomorphism

ϕ : R⊕s −→ m

(r1, ..., rs) 7−→ r1 · a1 + · · · + rs · as

of R-modules. The assumption states that the induced homomorphism

ϕ : (R/m)⊕s −→ m/m2

is surjective. By Lemma III.1.33, ii), ϕ is surjective. �
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A noetherian local ring R is regular, if

dim(R) = edim(R).

IV.6.3 Remarks. i) Let R, S be not necessarily local rings and ϕ : R −→ S a surjective

homomorphism. If n ⊂ S is a maximal ideal in S , then m = ϕ−1(n) is a maximal ideal in

R, and we have an induced surjection

ϕ : m/m2 −→ n/n2.

ii) Let R be a not necessarily local ring, m ⊂ R a maximal ideal, and ϕ : R −→ Rm
the localization. Then, Rm is a local ring with maximal ideal n = me. Then, by Corollary

II.3.7, i),

nc = mec = m and (m2)ec = m2.

It is also evident (Proposition II.3.6) that

(m2)e = n2.

Thus, we have an induced injective homomorphism

ϕ : m/m2 −→ n/n2.

It is also clear that ϕ is surjective and, therefore, an isomorphism.

IV.6.4 Examples. i) Let k be an algebraically closed field, n ≥ 1 a natural number, R :=

k[x1, ..., xn] and m ⊂ R a maximal ideal. Then,

dimk(m/m
2) = n.

This is obvious for m = 〈 x1, ..., xn 〉. In general, there is a point (a1, ..., an) ∈ An
k

with

m = 〈 x1 − a1, ..., xn − an 〉,

and

ϕ : k[x1, ..., xn] −→ k[x1, ..., xn]

xi 7−→ xi − ai, i = 1, ..., n,

is an automorphism which maps 〈 x1, ..., xn 〉 to m. Corollary IV.4.8 and Remark IV.6.3,

ii), show that Rm is a regular local ring of dimension n.

ii) Let k be an algebraically closed field, n ≥ 1 a natural number, I ⊂ k[x1, ..., xn] an

ideal, R := k[x1, ..., xn]/I, and m ⊂ R a maximal ideal. Then,

edim(Rm) ≤ n.

In fact, let

π : k[x1, ..., xn] −→ R

be the canonical surjection. There is a point (a1, ..., an) ∈ An
k

with

π
(
〈 x1 − a1, ..., xn − an 〉

)
= m.
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By Remark IV.6.1,

dim(m/m2) ≤ n.

The contention follows now from Remark IV.6.3, ii). This gives (a partial) explanation for

the name embedding dimension: Given an affine variety X with coordinate algebra R :=

k[X], k an algebraically closed field. Then, the maximum7 of the embedding dimensions

of the localizations of R at all maximal ideals is a lower bound for the minimal number n,

such that X can be embedded into An
k
.

IV.7 Singular Points of Algebraic Varieties

We now work over an algebraically closed field k. Fix a natural number n ≥ 1, and a

radical ideal I ⊂ k[x1, ..., xn]. Define

Z := V(I) ⊂ An
k

as the corresponding algebraic set and

R := k[x1, ..., xn]/I

as its coordinate algebra. According to Exercise III.3.2, the assignment

a 7−→ ma :=
{

f ∈ R | f (a) = 0
}

establishes a bijection between V(I) and the set of maximal ideals of the k-algebra R.

We say that a ∈ Z is a regular point of Z or that Z is non-singular at a, if Rma
is a

regular local ring. Otherwise, we say that a is a singular point of Z or that Z is singular

at a. The k-vector space

TaZ := Homk(ma/m
2
a, k)

is the Zariski tangent space of Z at a. Observe that it is defined intrinsically in terms of

the coordinate algebra of Z, i.e., without reference to the embedding Z ⊂ An
k
.

A derivation of R at a is a k-linear map

t : R −→ k

which satisfies the Leibniz8 rule

∀ f , g ∈ R : t( f · g) = t( f ) · g(a) + f (a) · t(g).

The space

Dera(R) :=
{
t ∈ Homk(R, k) | t is a derivation at a

}

of all derivations of R at a is a sub vector space of Homk(R, k).

Now, suppose t : R −→ k is a derivation of R at a. We find

t(1) = t(1 · 1) = 2 · t(1).

7The above discussion shows that this maximum exists. In fact, it is bounded by m, if X ⊂ Am
k

.
8Gottfried Wilhelm von Leibniz (1646 - 1716), German mathematician and philosopher.
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This implies t(1) = 0 and, by k-linearity,

∀λ ∈ k : t(λ) = 0. (IV.10)

Note that

F : R −→ k ⊕ma

f 7−→
(
f (a), f − f (a)

)

is an isomorphism of k-vector spaces. By (IV.10), t is determined by its restriction to ma.

Next, let f , g ∈ ma. Then,

t( f · g) = t( f ) · g(a) + f (a) · t(g) = 0.

Thus, t|ma
factorizes over a k-linear map

t : ma/m
2
a −→ k.

IV.7.1 Proposition. The map

H : Dera(R) −→ TaZ = Homk(ma/m
2
a, k)

t 7−→ t

is an isomorphism of k-vector spaces.

Proof. The injectivity and k-linearity are clear from the definition and the above discus-

sion. Now, suppose we are given l ∈ Homk(ma/m
2
a, k). We set

t : R −→ k

f 7−→ l
([

f − f (a)
])
.

Now, let f , g ∈ R. Then, (
f − f (a)

)
·
(
g − g(a)

)
∈ m2

a.

We now compute

t( f · g) = t
(

f · g −
(
f − f (a)

)
·
(
g − g(a)

))

= t
(
f · g(a) + f (a) · g − f (a) · g(a)

)

= t( f ) · g(a) + f (a) · t(g) − f (a) · g(a) · t(1)

= t( f ) · g(a) + f (a) · t(g).

So, t is a derivation of R at a with t = l, i.e., H is also surjective. �

IV.7.2 Example (Taylor9 expansion). Let a = (a1, ..., an) ∈ An
k

be a point and m := 〈 x1 −
a1, ..., xn − an 〉 ⊂ k[x1, ..., xn] the corresponding maximal ideal. The homomorphism

τa : k[x1, ..., xn] −→ k[x1, ..., xn]

xi 7−→ xi − ai, i = 1, ..., n,

9Brook Taylor (1685 - 1731), English mathematician.
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IV.7. Singular Points of Algebraic Varieties

is a k-linear isomorphism. So, for a polynomial f ∈ k[x1, ..., xn], there exists a polynomial

Ta f ∈ k[x1, ..., xn] with

f (x1, ..., xn) = Ta f (x1 − a1, ..., xn − an).

We call Ta f the Taylor expansion of f at a. We have

Ta f (x1 − a1, ..., xn − an) = f (a) +

n∑

i=1

δ f ,i(a) · (xi − ai) + higher order terms.

The vector space ma/m
2
a has the basis [x1 − a1], ..., [xn − an]. Let l1, ..., ln be the dual basis

of Homk(ma/m
2
a, k). Then,

∀ f ∈ k[x1, ..., xn] : li( f ) = δ f ,i(a).

On the other hand, we may define the partial derivatives

∂ f

∂xi

∈ k[x1, ..., xn], i = 1, ..., n,

by formally applying the rules we know from analysis ([28], Kapitel 5). Then, one finds

δ f ,i(a) =
∂ f

∂xi

(a), i = 1, ..., n. (IV.11)

In fact, for i ∈ { 1, ..., n }, the operators δ·,i(a) and (∂/∂xi)(a) are both k-linear and satisfy

the Leibniz rule, i.e., for f , g ∈ k[x1, ..., xn],

δ f ·g,i(a) = δ f ,i(a) · g(a) + f (a) · δg,i(a) and
∂( f · g)

∂xi

(a) =
∂ f

∂xi

(a) · g(a) + f (a) ·
∂g

∂xi

(a).

For this reason, it is enough to check (IV.11) for constant polynomials and the polynomials

x1, ..., xn. For all of these, (IV.11) is trivial.

IV.7.3 Remark. In principle, we could try to compute the Taylor expansion also up to

higher orders. Here, we have to be a little cautious: The usual Taylor formula ([28], Satz

7.2.2, [4], Kapitel I, Satz (2.9)) requires division by natural numbers of the form l1!·· · ··ln!

with l1 + · · · + ln = l in the term of order l. So, the characteristic of our base field k must

be larger than l, if we would like to have the usual formula for the term of order l in the

Taylor expansion. If we allow, as we do, fields of characteristic 2, it makes only sense to

look at the linear terms of the Taylor expansion.

Now, let g1, ..., gs ∈ k[x1, ..., xn] be such that I = 〈 g1, ..., gs 〉. For every derivation

D : R −→ k at a, the composition

D̃ : k[x1, ..., xn]
π−→ R

D−→ k

is a derivation of k[x1, ..., xn] at a.

IV.7.4 Lemma. A derivation D̃ : k[x1, ..., xn] −→ k at a factorizes over a derivation

D : R −→ k of R at a if and only if

∀i ∈ { 1, ..., s } : D̃(gi) = 0.
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Proof. The implication “=⇒” is trivial. For the converse, we have to show that D̃ vanishes

on all elements of I. An element of I has the form f1·g1+· · ·+ fs·gs for suitable polynomials

f1, ..., fs ∈ k[x1, ..., xn]. Since a derivation is a k-linear, it suffices to look at elements of

the shape f · gi, f ∈ k[x1, ..., xn], i ∈ { 1, ..., s }. For such an element we have

D̃( f · gi) = D̃( f ) · gi(a) + f (a) · D̃(gi) = 0.

Indeed, the first summand vanishes, because a ∈ V(I) ⊂ V(gi) and the second one by

assumption. �

Example IV.7.2 and Lemma IV.7.4 give the following description of the tangent space

of a variety at a point.

IV.7.5 Proposition. Let I = 〈 g1, ..., gs 〉 ⊂ k[x1, ..., xn] be an ideal, R := k[x1, ..., xn]/I,

Z := V(I), and a = (a1, ..., an) ∈ Z. Then,

TaZ �

{
(t1, ..., tn) ∈ kn

∣∣∣∣
n∑

j=1

t j ·
∂gi

∂x j

(a) = 0, i = 1, ..., s

}
.

In the situation of Proposition IV.7.5, set G := (g1, ..., gs). The matrix

JG :=

(
∂gi

∂x j

)

i=1,...,s
j=1,...,n

∈ Mat
(
s, n, k[x1, ..., xn]

)

is the Jacobian matrix of the ordered tuple G of polynomials. Putting everything together,

we find the following result.

IV.7.6 Proposition (Jacobian criterion). Let I = 〈 g1, ..., gs 〉 ⊂ k[x1, ..., xn] be an ideal,

R := k[x1, ..., xn]/I, Z := V(I), and a = (a1, ..., an) ∈ Z. Then,

edim(Rma
) = n − rk

(
JG(a)

)
, JG(a) :=

(
∂gi

∂x j

(a)

)

i=1,...,s
j=1,...,n

∈ Mat(s, n, k).

Moreover, if all the irreducible components of Z have the same dimension, Rma
is a regular

local ring if and only if

rk
(
JG(a)

)
= n − dim(Z).

The reader should compare this with the corresponding result in real analysis ([28],

Abschnitt 11.2). Given a set of elements g1, ..., gs ∈ k[x1, ..., xn], it is not obvious what the

dimension of V(g1, ..., gs) is. However, if s = 1, we know from Proposition IV.4.9 that it

is n − 1. In this case, the Jacobian criterion is easy to check. For g ∈ k[x1, ..., xn] \ {0},
the hypersurface V(g) is non-singular at a ∈ V(g) if and only if there is at least one index

j ∈ { 1, ..., n } with (∂g/∂x j)(a) , 0.

IV.7.7 Examples. i) We define the curve

Z := V(x3 − y2 − y3) ⊂ A2
C

and compute the partial derivatives of f := x3 − y2 − y3:

∂ f

∂x
= 3x2,

∂ f

∂y
= −y · (2 + 3y).

They both vanish at (0, 0) and (0,−2/3). The second point does not lie on Z. So, Z has

exactly one singular point at the origin.
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ii) Set f := y · (3x2 − y2) − (x2 + y2)2 and Z := V( f ) ⊂ A2
C

. This is a clover leaf.

The partial derivatives are

∂ f

∂x
= 6xy − 4x · (x2 + y2),

∂ f

∂y
= 3x2 − 3y2 − 4y · (x2 + y2).

We look at points where both partial derivatives vanish. These points verify the equation

0 = 3x3 − 3xy2 − 6xy2 = 3x · (x2 − 3y2).

This gives x = 0 or x = ±
√

3 · y. In the first case, we must also have −y2 · (3 + 4y) = 0,

that is, y = 0 or y = −3/4. The origin (0, 0) is a singular point of Z, but (0,−3/4) does not

belong to the curve. In the second case, we plug the result into the second derivative:

0 = 9y2 − 3y2 − 4y · 4y2 = 2y2 · (3 − 8y).

So, y = 0 and x = 0, or y = 3/8 and x = 3 ·
√

3/8. The point (3 ·
√

3/8, 3/8) does not lie

on the curve.
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iii) We look at Cayley’s ruled surface

Z := V(x2
1x3 + x3

2 + x1x2) ⊂ A3
C

.

The partial derivatives of f := x2
1
x3 + x3

2
+ x1x2 are

∂ f

∂x1

= 2x1x3 + x2,
∂ f

∂x2

= 3x2
2 + x1,

∂ f

∂x3

= x2
1.

They all vanish on the line

l := { x1 = 0 = x2 } ⊂ Z.

In other words, Z is singular along the line l.

Let us add a simple example which is not a hypersurface.

IV.7.8 Example (The twisted cubic10). We look at the regular map

ϕ : A1
k −→ A

3
k

t 7−→ (t, t2, t3).

The points in the image clearly satisfy the equations11

x2 − y = 0, x3 − z = 0, y3 − z2 = 0.

Set g1 := x2 − y, g2 := x3 − z, g3 := y3 − z2, I := 〈 g1, g2, g3 〉, and Z := V(I). The map

ψ : Z −→ A

1
k

(x, y, z) 7−→ x

10In this example, we will slightly abuse notation, by not distinguishing between coordinate functions

and coordinates.
11The third one being redundant.
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is inverse to ϕ. Let us determine the corresponding homomorphisms of algebras (Exercise

I.9.8):

ϕ# : k[x, y, z]/I −→ k[t]

[x] 7−→ t

[y] 7−→ t2

[z] 7−→ t3

and

ψ# : k[t] −→ k[x, y, z]/I

t 7−→ [x].

So, the varieties A1
k

and Z are isomorphic and one dimensional. In particular, Z is non-

singular. Let us check this with the Jacobian criterion:

JG =


2x −1 0

3x2 0 −1

0 3y2 −2z

 .

This matrix has everywhere rank at least two. We add (3y2)× the first line and (−2z)× the

second line to the last line and find

(
6x · (y2 − xz) 0 0

)
.

This vanishes at every point of Z. So, the matrix has, in fact, rank two at every point of

Z.12

IV.7.9 Lemma. Let k be an algebraically closed field, n ≥ 1, f ∈ k[x1, ..., xn] an irre-

ducible polynomial, and Z := V( f ) ⊂ An
k
. Then,

Sing(Z) :=
{
a ∈ Z | Z is singular at a

}

is a proper Zariski closed subset of Z.

Proof. By the Jacobian criterion IV.7.6, we have

Sing(Z) = V

(
f ,
∂ f

∂x1

, ...,
∂ f

∂xn

)
.

This shows that Sing(Z) is Zariski closed in Z. Assume Z = Sing(Z). This means

V( f ) ⊂ V

(
∂ f

∂xi

)
,

i.e.,

f
∣∣∣∣
∂ f

∂xi

, i = 1, ..., n,

12The fact that the rank of JG can never be three at a point of Z follows, indeed, from Theorem IV.7.16,

ii).
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by the lemma of Study III.3.11. Since deg(∂ f /∂xi) < deg( f ), this is only possible if

∂ f

∂xi

= 0, i = 1, ..., n. (IV.12)

In characteristic zero, it follows that f is constant. But, this is ruled out by the assumption

that f be irreducible.

If char(k) = p > 0, then (IV.12) implies that f is a polynomial in x
p

1
, ..., x

p
n . The field

k is perfect, because it is algebraically closed (Example III.5.6, iii). So, we may find a

polynomial g ∈ k[x1, ..., xn] with

f = gp.

Again, this contradicts the assumption that f be irreducible. �

We would like to extend this result to arbitrary varieties. For this, we need some

preparations.

Semicontinuity of the embedding dimension

Let R be a ring, r, s ∈ N, M ∈ Mat(r, s,R) an (r × s)-matrix with coefficients in R, and

1 ≤ t ≤ min{ r, s }. A t-minor of M is the determinant of a (t × t)-matrix which is obtained

from M by deleting r−t rows and s−t columns. It is an element of R and can be expressed

as a polynomial with integer coefficients in the entries of M. Recall the following basic

result from linear algebra ([7], 3.3.6, Satz):

IV.7.10 Lemma. Let K be a field, r, s ∈ N, M ∈ Mat(r, s,K), and 1 ≤ t ≤ min{ r, s }.
Then, the rank of the matrix M is at least t if and only if it has a non-vanishing t-minor.

Now, let k be an algebraically closed field, n ≥ 1, I ⊂ k[x1, ..., xn] a radical ideal,

R := k[x1, ..., xn]/I, Z := V(I) ⊂ An
k
, and

M = ( fi j) i=1,...,r
j=1,...,s
∈ Mat(r, s,R).

For every point a ∈ Z, we obtain the matrix

M(a) := ( fi j(a)) i=1,...,r
j=1,...,s
∈ Mat(r, s, k).

For t ∈ { 1, ...,min{ r, s } }, a t-minor of M is a regular function on Z, i.e., an element of R.

IV.7.11 Exercises. i) Let a ∈ Z be a point and t := rk(M(a)). Show that there is a Zariski

open subset a ∈ U ⊂ Z, such that

∀a ∈ U : rk
(
M(a)

)
≥ t.

ii) Show that there are a non-empty Zariski open subset ∅ , U ⊂ Z and a natural

number t ∈ { 0, ...,min{ r, s } }, such that

∀a ∈ U : rk
(
M(a)

)
= t

and

∀a ∈ Z : rk
(
M(a)

)
≤ t.
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Suppose g1, ..., gl ∈ k[x1, ..., xn] generate I and set G := (g1, ..., gl). Then, the above

discussion can be applied to the Jacobian matrix JG. An immediate consequence of Exer-

cise IV.7.11 is:

IV.7.12 Proposition. There are a non-empty Zariski open subset ∅ , U ⊂ Z and a

natural number t ∈ { n −min{ l, n }, ..., n }, such that

∀a ∈ U : edim(Rma
) = t, ma =

{
f ∈ R | f (a) = 0

}
,

and

∀a ∈ Z : edim(Rma
) ≥ t.

We will see later (Theorem IV.7.16) that t = dim(Z).

Principal open subsets

Let k be an algebraically closed field, n ≥ 1, and f ∈ k[x1, ..., xn] \ {0}. Then, we call

D( f ) := An
k \ V( f )

the principal open subset associated with f (compare Exercise I.4.18).

IV.7.13 Remark. Let U ⊂ An
k

be a non-empty Zariski open subset. Then, there is a non-

zero ideal I ⊂ k[x1, ..., xn] with An
k
\ U = V(I). Pick f ∈ I \ {0}. According to Property

I.9.1, iv), V(I) ⊂ V( f ), and, therefore,

D( f ) ⊂ U.

IV.7.14 Exercise. Let U ⊂ An
k

be a non-empty Zariski open subset. Prove that there are

finitely many elements f1, ..., fs ∈ k[x1, ..., xn] \ {0} with

U = D( f1) ∪ · · · ∪ D( fs).

The regular function f doesn’t vanish anywhere on D( f ). For this reason, we consider

k[x1, ..., xn] f

as the algebra of regular functions on D( f ). There is an even better justification for

doing this: The homomorphisms

ϕ : k[x1, ..., xn+1]/〈xn+1 · f − 1〉 −→ k[x1, ..., xn] f

xi 7−→ xi, i = 1, ..., n

xn+1 7−→
1

f

and

ψ : k[x1, ..., xn] f −→ k[x1, ..., xn+1]/〈xn+1 · f − 1〉
xi 7−→ xi, i = 1, ..., n

1

f
7−→ xn+1
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are inverse to each other. Now, the algebra k[x1, ..., xn+1]/〈xn+1 · f − 1〉 is attached to the

hypersurface

V(xn+1 · f − 1) ⊂ An+1
k .

This hypersurface is the graph of the function

D( f ) −→ A

1
k

a 7−→
1

f (a)
.

The projection

π : An+1
k −→ A

n
k

(a1, ..., an+1) 7−→ (a1, ..., an)

induces a homeomorphism between V(xn+1 · f − 1) and D( f ). In this way, we may view

D( f ) as an affine algebraic variety. The inclusion

D( f ) ⊂ An
k

corresponds to the localization homomorphism

k[x1, ..., xn] −→ k[x1, ..., xn] f .

IV.7.15 Example. Look at

D(x) = A1
k \ {0} ⊂ A1

k .

The above construction embeds A1
k
\ {0} as a hyperbola into A2

k
.

The same thing can be done for every algebraic variety. Indeed, let p ⊂ k[x1, ..., xn] be

a prime ideal, R := k[x1, ..., xn]/p, and Z = V(p). For f ∈ R \ {0},

D( f ) := Z \ V( f )

is a non-empty open subset. By Property I.9.1, iv), and Exercise III.3.2, its points are in

one-to-one correspondence with the maximal ideals m ⊂ R, such that

f < m. (IV.13)
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The set D( f ) inherits a topology from the Zariski topology of Z (compare [18], Section

2.1). On the other hand, R f is a finitely generated k-algebra, and thus defines an affine

algebraic variety Z f . By Corollary II.3.7, ii), the points of Z f correspond to the maximal

ideals of R, satisfying (IV.13). Again, Z f comes with a topology. The reader should check

that both topologies on the set of maximal ideals of R, satisfying (IV.13), thus obtained

do agree and that the localization R −→ R f gives (via Exercise I.9.8) rise to the inclusion

D( f ) ⊂ Z.

The singular locus of an algebraic variety

IV.7.16 Theorem. Let k be an algebraically closed field, n ≥ 1, p ⊂ k[x1, ..., xn] a prime

ideal, S := k[x1, ..., xn]/p, and Z := V(p).

i) The singular locus

Sing(Z) :=
{
a ∈ Z | Z is singular at a

}

is a proper Zariski closed subset of Z.

ii) For every point a ∈ Z, we have

edim(S ma
) ≥ dim(Z).

Proof. We will reduce to the case of a hypersurface (Lemma IV.7.9). In fact, we will

show that Z looks almost everywhere like a hypersurface. This is basically a consequence

of the theorem of the primitive element III.5.10.

Let L := Q(S ) be the quotient field of S . The proof of Theorem III.5.14 shows that

there is an injective homomorphism

ϕ : k[t1, ..., ts] −→ L,

such that the induced field extension

ϕ̃ : K := k(t1, ..., ts) −→ L

is separable. Now, there are elements g1, ..., gs, h1, ..., hs ∈ S \ {0} with

ϕ(ti) =
gi

hi

, i = 1, ..., s.

By the theorem of the primitive element III.5.10, we may find gs+1, hs+1 ∈ S \ {0}, such

that

α :=
gs+1

hs+1

is a primitive element for the field extension K ⊂ L. Set h := h1 · · · · · hs · hs+1. Then, we

may view ϕ as a homomorphism:

ϕ : k[t1, ..., ts] −→ S h.

As a k-algebra, S h is generated by ξ1 := [x1], ..., ξn := [xn], and ξn+1 := 1/h. Since

K −→ L is a finite ring extension, these elements are integral over K, i.e., we find natural

numbers si ≥ 1 and elements κi
1
, ..., κi

si
∈ K with

ξ
si

i
+ κi

1 · ξ
si−1

i
+ · · · + κi

si−1 · ξi + κ
i
si
= 0, i = 1, ..., n + 1.
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Now, there are elements αi
j
∈ k[t1, ..., ts] and βi

j
∈ k[t1, ..., ts] \ {0} with

κi
j =

αi
j

βi
j

, j = 1, ..., si, i = 1, ..., n + 1.

Setting

g :=

n+1∏

i=1

si∏

j=1

βi
j,

we find a finite ring extension

ϕ̂ : k[t1, ..., ts]g −→ (S h)g = S g·h

which induces K −→ L.13 Recall that, by our construction, there is a primitive element

α ∈ S g·h. Let ∆ ∈ k[t1, ..., ts]g be as in Theorem III.5.12. We find a natural number t ∈ N
and an element ∆′ ∈ k[t1, ..., ts], such that

∆ =
∆′

gt
.

We see that

S g·h·∆′ = (S g·h)∆′ = k[t1, ..., ts]g·∆[α] = k[t1, ..., ts]g·∆[ts+1]/〈µα〉.

The minimal polynomial µα of α has coefficients in k[t1, ..., ts]g (see Lemma III.5.11, ii).

We may find a polynomial γ ∈ k[t1, ..., ts] whose irreducible factors are among those of

g and ∆′, such that f := γ · µα ∈ k[t1, ..., ts, ts+1] is an irreducible polynomial (compare

Lemma I.6.16, i). Let

H := V( f ) ⊂ As+1
k .

This is an irreducible hypersurface, and

H0 := H \ V(g · ∆′)

is a dense open subset of H. By construction, H0 is isomorphic to the dense open subset

Z0 := Z \ V(g · h · ∆′)

of Z. Lemma IV.7.9 yields that there is a dense open subset U ⊂ Z with

Sing(Z) ⊂ Z \ U.

By the previous discussion, the rank of the Jacobian is everywhere at most

t := n − dim(Z),

and the locus where it is strictly less than t is the vanishing locus of all (t × t)-minors of

the Jacobian. But this is also the singular locus of Z. This proves all the claims about

the singular locus. The statement on the embedding dimension follows from this and the

Jacobian criterion IV.7.6. �

13By Exercise III.4.10, you should be familiar with this argument.
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IV.7.17 Remark. In the above proof, we have shown that any algebraic variety has an

open subset which is isomorphic to an open subset of an irreducible hypersurface. You

will usually find this result in the form (see, e.g., [11], Proposition I.4.9)

Any algebraic variety is birationally equivalent to a hypersurface.

IV.7.18 Exercise (Singular and non-singular points I). i) Compute the Jacobian for the

following regular functions f : C2 −→ C. Which points are non-singular by the “Jacobian

criterion”? Find out which equation gives which curve in the following picture. Try to

explain why the remaining points really are singular.

a) f (x, y) = x2 − x4 − y4, b) f (x, y) = xy − x6 − y6, c) f (x, y) = x3 − y2 − x4 − y4,

d) f (x, y) = x2y + xy2 − x4 − y4.

Node Triple point Cusp Tacnode

ii) Do the same as in i) for the following regular functions f : C3 −→ C.

a) f (x, y, z) = xy2 − z2, b) f (x, y, z) = x2 + y2 − z2, c) f (x, y, z) = xy + x3 + y3.

Double point Double line Pinch point

IV.7.19 Exercise (Singular and non-singular points II). Let k be an algebraically closed

field and R := k[x, y, z]/〈 xyz, z2〉.
i) Is the ring R reduced?

ii) Sketch the “variety” associated with R.

iii) Determine dim(R).

iv) For which maximal ideals m ⊂ R is Rm a regular local ring?
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IV. Dimension Theory

IV.8 Regularity and Normality

IV.8.1 Lemma. Let R be a noetherian ring, l ∈ N a natural number, p0 ( · · · ( pl a chain

of prime ideals, q ⊃ pl a prime ideal, and x ∈ q. There exists a chain

p
′
0 ( · · · ( p′l−1 ⊂ q

of prime ideals with x ∈ p′
0
.

Proof. l = 1. Here, we simply take p′0 := q.

l − 1 −→ l. If x ∈ pl−1, we may apply the induction hypothesis with pl−1 instead of q

to get

p′0 ( · · · ( p′l−2 ⊂ pl−1 ( p
′
l−1 := pl ⊂ q.

If x < pl−1, then we look at 〈x〉 + pl−2 1 pl−1. Let q ⊂ R/(〈x〉 + pl−2) be the image of q in

this ring. The ring (R/(〈x〉 + pl−2))q contains a minimal prime ideal s (Exercise I.4.14 or

Theorem II.4.28). The ideal s corresponds to a prime ideal r ⊂ R with

pl−2 ( 〈x〉 + pl−2 ⊂ r ⊂ q.

We apply the induction hypothesis once more,14 and find a chain

p′0 ( · · · ( p′l−2 ⊂ r

with x ∈ p′
0
. It suffices to show that r ( q.

For this, we look at the integral domain R := R/pl−2. As usual, for an ideal I ⊂ R, we

denote by I its image in R. If r = q, then the chain

〈0〉 ( pl−1 ( r

of prime ideal in R shows

ht(r) ≥ 2.

By contruction, r is a minimal prime ideal containing [x], the class of x in R. Krull’s

principal ideal theorem requires ht(r) ≤ 1. This contradiction shows that, indeed, r (

q. �

The following lemma provides an important tool for carrying out inductions on the

Krull dimension of a ring.

IV.8.2 Lemma. Let R be a noetherian local ring with maximal ideal m and x ∈ m not a

zero divisor. Then,

dim
(
R/〈x〉

)
= dim(R) − 1.

Proof. We may apply Lemma IV.8.1 to a maximal chain p0 ( · · · ( pn = m, n = dim(R),

of prime ideals in R, and q = m. It shows

dim
(
R/〈x〉

)
≥ dim(R) − 1.

14namely to the chain u0 ( · · · ( ul−1 with ui = pi, i = 1, ..., l − 1, ul−1 := r, and the prime ideal r
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IV.8. Regularity and Normality

On the other hand, in any maximal chain p0 ( · · · ( pn = m, p0 is a minimal prime

ideal. By assumption, x is not a zero divisor. Theorem II.4.28, iii), states that x is not

contained in any minimal prime ideal of R. For this reason

dim
(
R/〈x〉

)
≤ dim(R) − 1,

and we infer dim(R/〈x〉) = dim(R) − 1 as asserted. �

IV.8.3 Proposition. Let R be a regular noetherian local ring. Then, R is an integral

domain.

We will need a slight generalization of prime avoidance (Proposition II.4.17, i):

IV.8.4 Lemma. Let R be a ring, I, J ⊂ R ideals, and p1, ..., pr ⊂ R prime ideals, such that

J 1 I, J 1 pi, i = 1, ..., r.

Then,

J 1 I ∪ p1 ∪ · · · ∪ pr.

Proof. We abbreviate

P := p1 ∪ · · · ∪ pr.

If I ⊂ P, then Proposition II.4.17, i), applies directly. So, we may exclude this case. Note

also that, by Proposition II.4.17, i), J 1 P. Let x ∈ J \ I. If x < P, we are done. Otherwise,

we pick y ∈ J \ P and z ∈ I \ P. Then, it is readily verified that x + y · z ∈ J \ (I ∪ P). �

Proof of Proposition IV.8.3. Denote the maximal ideal of R by m. We proceed by induc-

tion on n := dim(R).

n = 0. In this case, the regularity of R implies m = 〈0〉 (compare Proposition IV.6.2).

n −→ n+1. By Theorem II.4.28, ii), a noetherian ring has only finitely many minimal

prime ideals, call them p1, ..., pr. We assume dim(R) = n + 1 ≥ 1, so m is not a mimimal

prime ideal. The Nakayama lemma III.1.31 shows that m , m2. By Lemma IV.8.4, we

may pick

x ∈ m \
(
m2 ∪ p1 ∪ · · · ∪ pr

)
.

Note that this implies that x is not a zero divisor. Let x1, ..., xn ∈ m be such that the

classes [x1], ..., [xn], [x] in m/m2 form a basis for that (R/m)-vector space. Recall from

Proposition IV.6.2 that

m = 〈 x1, ..., xn, x 〉.
Now, we pass to the ring R := R/〈x〉. It is clear that

edim(R) = n.

By Lemma IV.8.2,

dim(R) = n.

Thus, R is also a regular ring. By induction hypothesis, it is an integral domain. This

means that 〈x〉 is a prime ideal.

Let q ⊂ R〈x〉 be a minimal prime ideal (Exercise I.4.14 or Theorem II.4.28). Then, by

Corollary II.3.7, i),

〈0〉 ⊂ p := qc ⊂ 〈x〉
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IV. Dimension Theory

is a minimal prime ideal of R. We will show that it has to be zero, using the Nakayama

lemma III.1.31. In fact, let z ∈ p. Then, there exists an element y ∈ R with z = y · x. Since

x < p and p is a prime ideal, it follows that y ∈ p. We have shown

p ⊂ m · p ⊂ p.

As announced, the Nakayama lemma III.1.31 finishes the argument. �

IV.8.5 Exercise. Let R be a noetherian local ring. Show that

dim(R) ≤ edim(R).

IV.8.6 Theorem. Let R be a regular noetherian local ring. Then, R is a normal ring.

Proof. We set up an induction on the dimension n of R as in the proof of Proposition

IV.8.3. In the induction step n −→ n+ 1, we find an element x ∈ m \ {0}, such that R/〈x〉
is a regular noetherian local ring of dimension n. By induction hypothesis, it is normal. It

remains to prove15

Claim. Let R be a noetherian local integral domain with maximal idealm and x ∈ m\{0}.
If the ring R/〈x〉 is normal, then so is the ring R.

We form the ideal

I :=
⋂

l∈N
〈xl〉.

This ideal clearly has the property x · I = I and, thus, m · I = I. The Nakayama lemma

III.1.31 gives I = 〈0〉. We conclude that, for every r ∈ R \ {0}, the number

l(r) := max
{

l ∈ N | r ∈ 〈xl〉
}

exists and that

r = u · xl(r)

for some element u ∈ R \ 〈x〉. Since the ring R/〈x〉 is normal, it is an integral domain, by

Proposition IV.8.3. This means that 〈x〉 is a prime ideal. Using this, we infer

∀r, s ∈ R \ {0} : l(r · s) = l(r) + l(s). (IV.14)

Let K := Q(R) be the quotient field of R, α ∈ R, and β ∈ R\{0}, such that s := α/β ∈ K

is integral over R. We have to show that R = S := R[s] ⊂ K. By the lying-over theorem

IV.2.4, there is a prime ideal q ⊂ S with q ∩ R = 〈x〉. This implies

〈x〉 = R ∩ (S · x). (IV.15)

We observe that l(α) ≥ l(β). To see this, let γ, δ ∈ R \ 〈x〉 be elements with α = γ · xl(α)

and β = δ · xl(β). We have

γ = xl(β)−l(α) · δ · s.
So, l(β) > l(α) implies γ ∈ R ∩ (S · x) = 〈x〉 and contradicts the fact γ ∈ R \ 〈x〉. We write

s =
α′

δ
with α′ = xl(α)−l(β) · γ.

15The proof of this claim was kindly supplied by Professor Markus Brodmann.
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IV.8. Regularity and Normality

We see that

Rδ = S δ.

Thus, the extension 〈x〉e of the prime ideal 〈x〉 via the localization R −→ Rδ = S δ is a

prime ideal of S δ, and

r := 〈x〉e ∩ S

is a prime ideal of S with r ∩ R = 〈x〉. (We need this more specific prime ideal lying over

〈x〉 for later purposes, namely (IV.16).)

We get the induced finite ring extension

R := R/〈x〉 −→ S := S/r.

It induces a field extension

Q(R) −→ Q(S ).

The foregoing discussion shows

S ⊂ R[δ] ⊂ Q(R),

so that

Q(R) = Q(S ),

and the induction hypothesis gives R = S .

We deduce

S = R + r ⊂ R + 〈x〉e (IV.16)

s as R-module. Since s ∈ S and α = s · δ, we see

α′ = s · δ ∈ R ∩
(
〈δ〉 + 〈x〉e

) (IV.15)&〈δ〉⊂R
= 〈δ〉 + 〈x〉.

This means that we may pick a, b ∈ R with

α′ = a · δ + b · x, so that s = a +
b · x
δ
.

We infer that S is generated as an R-algebra by s1 := b · x/δ. Pick N ∈ N, such that S is

generated as R-module by 1,..., sN
1

. Then, inside Q(R), we have

R ⊂ S ⊂ 1

δN
· R.

Let us abbreviate

tn := δN · sn
1 =

δN · bn · xn

δn
∈ R, n ∈ N.

Next, we introduce

s2 :=
s1

x
=

b

δ
.

We set S 1 := R[s1] = R[s] = S and S 2 := R[s2]. We claim that

R[s2] ⊂
1

δN
· R.
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IV. Dimension Theory

For n ∈ N, we find

δN · sn
2 =

an

xn
.

By definition,

δn · an = (δN · bn) · xn ∈ 〈xn〉, n ∈ N.

Since δ ∈ R \ 〈x〉, we have l(δ) = 0. By (IV.14), it follows that l(an) ≥ n, n ∈ N. So, there

is an element un ∈ R with an = un · xn, n ∈ N. We conclude

δN · sn
2 = un ∈ R, n ∈ N,

as asserted.

Obviously, the R-module (1/δN) · R is finitely generated. According to Proposition

III.2.4, “iv)=⇒i)”, s2 is integral over R. We may replace s by s2. If we apply the procedure

which led from s to s1 to s2, we find an element s′
2
. We next set s3 := s′

2
/x and S 3 := R[s3].

This process can clearly be iterated and leads to a chain

R =: S 0 ⊂ S 1 ⊂ S 2 ⊂ · · · ⊂ S l ⊂ S l+1 ⊂ · · · ⊂
1

δN
· R

of R-modules. Since R is a noetherian ring, this chain must become stationary. Let m ∈ N
be the first index for which S m = S m+1 holds true. Then,

sm+1 =
sm

x
∈ S m+1 = S m.

This shows

sm ∈ x · S m ⊂ m · S m. (IV.17)

Let t ∈ S m. Then, there exist a natural number M and elements r0, ..., rM ∈ R, such that

t = r0 · 1 + r1 · sm + · · · + rM · sM
m .

By (IV.17), t ∈ R +m · S m. This proves

S m = R +m · S m.

By the Nakayama lemma III.1.31, applied to M = S m/R, we have S m = R. We see that

s ∈ S 1 ⊂ S m ⊂ R. This finishes the argument. �

IV.8.7 Remark. In fact, a stronger16 statement holds true, called the Auslander17–Buchs-

baum18 theorem: A regular noetherian local ring R is factorial.

The proof requires some tools from homological algebra which we haven’t developed,

so far. References are the original paper [2], [5], Satz 10.10, or [20], Theorem 20.3.

IV.8.8 Proposition. Let R be a noetherian local ring with dim(R) = 1. Then, R is regular

if and only if it is normal.

16see Lemma III.5.1
17Maurice Auslander (1926 - 1994), American mathematician.
18David Alvin Buchsbaum, born 1929, American mathematician.
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IV.8. Regularity and Normality

Proof. We have to prove that R is regular, if R is normal. According to Proposition IV.6.2,

we have to verify that the maximal ideal m of R is a principal ideal. Fix x ∈ m \m2,19 and

assume

〈x〉 ( m.

Since R is an integral domain (Proposition III.5.2) and dim(R) = 1, m is the only prime

ideal of R. Thus, by Corollary I.8.18,

m =
√
〈x〉.

The ideal m is finitely generated, so that there is some natural number s with

ms ⊂ 〈x〉,

and we set

s0 := min
{

s ∈ N |ms ⊂ 〈x〉
}
.

Note that s0 > 1. Pick

y ∈ ms0−1 \ 〈x〉.

This gives

y ·m ⊂ 〈x〉,

and we assert

y ·m ⊂ x ·m.

Otherwise, there would be an element r ∈ R \ m, i.e., a unit of R, with r · x ∈ y · m. This

would give

x = r−1 · (r · x) ∈ y ·m ⊂ m2.

So, in the quotient field Q(R), we have

∀r ∈ N :

(
y

x

)r

·m ⊂ m, x · R
[
y

x

]
⊂ R, and R

[
y

x

]
⊂

1

x
· R.

This shows that y/x is contained in a finitely generated R-submodule of Q(R). According

to Proposition III.2.4, iii), y/x is integral over R. Since R is normal, we have y/x ∈ R, so

that y ∈ 〈x〉, a contradiction. �

In geometric language, the above proposition says that a normal affine algebraic curve

is smooth. More generally, the normalization of a possibly singular irreducible algebraic

curve is non-singular. So, in the realm of curves, normalization provides a canonical way

to attach to a singular irreducible curve a non-singular one.

IV.8.9 Proposition. Let k be an algebraically closed field, n ≥ 1, and Z ⊂ An
k

an algebraic

variety. If Z is normal, then

dim
(
Sing(Z)

)
≤ dim(Z) − 2.

In the proof, we will use the following result.

19This set is non-empty by the Nakayama lemma III.1.31 and the assumption dim(R) = 1.
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IV. Dimension Theory

IV.8.10 Lemma. Let R be a noetherian local integral domain, m ⊂ R its maximal ideal,

and x ∈ m \ {0}. If the ring R/〈x〉 is regular, then R is regular, too.

Proof. By Lemma IV.8.2, dim(R/〈x〉) = dim(R) − 1 =: d. By assumption, there are

elements r1, ..., rd, such that their images r1, ..., rd generate the image m of m in R/〈x〉.
Then, m = 〈 x, r1, ..., rd 〉. Remark IV.6.1 and Proposition IV.6.2 show that R is a regular

local ring. �

Proof of Proposition IV.8.9. Let Reg(Z) := Z \Sing(Z) be the open subset of nonsingular

points of Z. It suffices to show that

H ∩ Reg(Z) , ∅

holds true for every irreducible algebraic set H ⊂ Z with

dim(H) = dim(Z) − 1.

Let us fix such a subset H ⊂ Z. Then,

p := I(H) :=
{

f ∈ k[Z] | ∀a ∈ H : f (a) = 0
}

is a prime ideal in the coordinate algebra k[Z] of Z. We look at the localization k[Z]p of

the coordinate algebra at that prime ideal. Then:

⋆ k[Z]p is a normal local ring. (This is left as an exercise (compare Exercise III.2.12).

Note that k[Z]p has the same the quotient field as k[Z].)

⋆ dim(k[Z]p) = 1 (Corollary IV.4.8).

By Proposition IV.8.8, the ring k[Z]p is regular. So, its maximal ideal pe is a principal

ideal. This means that there is an element r ∈ k[Z], such that

pe = r · k[Z]p.

Next, let r1, ..., rs ∈ p be elements with p := 〈 r1, ..., rs 〉, and a1, ..., as ∈ k[Z], h1, ..., hs ∈
k[Z] \ p elements with ri = ai/hi, i = 1, ..., s. Then, with

h := h1 · · · · · hs,

we find the equality

p · k[Z]h = r · k[Z]h. (IV.18)

Note that k[Z]h is the coordinate algebra of the principal open subset D(h) ⊂ Z (see Page

143f). Since h < p, we have

D(h) ∩ H , ∅.

Let Reg(H) := H \ Sing(H) be the open subset of non-singular points of H. Since H is

irreducible, we have

D(h) ∩ Reg(H) , ∅.

We will show that

D(h) ∩ Reg(H) ⊂ Reg(Z).
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Let a ∈ D(h) ∩ Reg(H) and ma ⊂ k[Z] the maximal ideal of a. Then, h < ma. So, (IV.18)

gives

p · k[Z]ma
= r · k[Z]ma

. (IV.19)

Let ma be the image of ma in k[H] = k[Z]/p. One checks

k[H]ma
� k[Z]ma

/(p · k[Z]ma
).

By (IV.19),

k[H]ma
= k[Z]ma

/(r · k[Z]ma
).

Our choice of a implies that k[H]ma
is a regular local ring. Therefore, Lemma IV.8.10

shows that k[Z]ma
is a regular local ring, too. �

IV.8.11 Remark. The attentive reader will have noticed that, in the above proof, we used

only the fact that k[Z]p is normal for every prime ideal p ⊂ k[Z] of height one. In fact, for

any noetherian integral domain R, it is true that R is normal if and only if Rp is normal for

every prime ideal p ⊂ R of height one and

R =
⋂

p⊂R prime
ht(p)=1

Rp.

We refer the reader to [4], Satz (13.25).

For more information on normal rings related to the above discussion, we refer the

reader to [4], p. 199ff, or [5], Section 11.
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[7] G. Fischer, Lineare Algebra. Eine Einführung für Studienanfänger, 17. akt. Aufl.,

Grundkurs Mathematik, Wiesbaden: Vieweg+Teubner, 2010, xxii+384 S.
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